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1 Preamble

To create a valley, a river must downcut into bedrock. Flowing water cannot achieve this by itself.1

The river flow must transport sediment particles that abrade the channel bed via particle–bed
collisions. If the river transports too many particles then an alluvial cover develops and protects
the bedrock from collisions. If the river transports too few particles then the frequency of particle–
bed collisions, and thus abrasion, decreases. This is a quintessential Goldilocks-and-the-Three-Bears
problem, wherein the river channel must transport “just the right” amount of sediment to achieve
downcutting, and it therefore must be a mixed alluvial–bedrock channel.

Sediment transport and bedrock abrasion are stochastic processes, whether viewed at the short
time scales of particle motions or at longer time scales during which significant downcutting occurs.
In this situation it is unclear how to reconcile descriptions of transport and abrasion viewed at
experimental time scales with the inherent variability that exists in the wild, and which cannot be
empirically constrained with confidence owing to our limited ability to measure things over long
time scales. The problem therefore is inherently probabilistic. We can only aim at the statistical
likelihood of outcomes based on defensible probabilistic descriptions of transport and abrasion
whose physics is suitably coarsened to the length and time scales of interest. Herein I offer a
straightforward starting point for conceptualizing the mixed alluvial–bedrock part of the problem.
Mechanistic descriptions of the abrasion part of the problem likewise require a statistical rethinking,
although I only briefly comment on this point without elaboration.

2 Simple immigration and emigration of particles

Consider immigration and emigration of particles into and out of a control volume — a river channel
segment. In the simplest case this is akin to the M/M/1 queuing problem, a Markov birth–death
process. An M/M/1 queue is conceptually straightforward, and although it is a simplification of any
real sediment system, the M/M/1 queue nonetheless serves to illustrate key points about expected
values in relation to the mechanics of a system. Let n(t) denote the number of particles within a
control volume, where we do not distinguish between active or rest states of the particles. Assume
that particles enter the volume as a Poisson process with fixed intensity λ. The indistinguishable
particles are eventually re-entrained and leave the volume. The distribution of wait times between

1Aqueous chemical reactions can remove rock mass and weaken the bedrock surface, thereby increasing its sus-
ceptibility to mechanical abrasion. The process of plucking requires preconditioning by fractures, and likely hinges
on transport with particle–bed collisions.
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emigration events is exponential with mean µw = 1/σ and intensity σ. Thus emigration also is a
Poisson process. Importantly, and for reference in the next section, neither the immigration rate
nor the emigration rate depends on the state n of the system. Although simplistic, the M/M/1
queue is a conceptually reasonable description in which we imagine that the addition of particles
to a control volume and the removal of particles from it involve like stochastic processes (Furbish
and Doane, 2021).

Because of the competing processes of immigration and emigration the number n(t) within the
volume fluctuates. Under certain conditions the distribution pn(n) of the number state n is steady,
independent of time. Here the temptation is strong to assume that an “equilibrium” condition
exists if λ = σ, where over a sufficiently long period of time the number of particles leaving the
volume is equal to the number entering the volume, with fluctuations about the equilibrium state,
where the expected time-averaged difference is zero. But this is incorrect. If λ/σ ≥ 1 the number
n(t) within the volume grows indefinitely. The distribution pn(n) is steady only if λ/σ < 1. We
now demonstrate this point.

As a counting process (Feller, 1939) we assume that the probabilities of changes in state are

P [n(t+ dt)− n(t) = 1] = λdt(1− σdt) + o(dt) ,

P [n(t+ dt)− n(t) = −1] = σdt(1− λdt) + o(dt) and

P [|n(t+ dt)− n(t)| > 1] = o(dt) . (1)

Notice that we do not specify an initial state. The quantities (1−σdt) and (1−λdt) only formally
show that the probabilities P involve the joint occurrence of events and are actually unnecessary,
as they lead to terms at order o[(dt)2]. For n = 1, 2, 3, ... we then have

pn(n, t+ dt) = pn(n− 1, t)λdt+ pn(n+ 1)σdt+ (1− λdt)(1− σdt)pn(n, t) + o(dt) . (2)

For n = 0,
pn(0, t+ dt) = pn(1, t)σdt+ pn(0, t)(1− λdt) + o(dt) . (3)

We now expand (2) and (3), rearrange, then divide by dt and take the limit as dt→ 0 to give

dpn(n, t)

dt
= −(λ+ σ)pn(n, t) + λpn(n− 1, t) + σpn(n+ 1, t) (4)

and
dpn(0, t)

dt
= −λpn(0, t) + σpn(1, t) . (5)

The set of equations (4) and (5) for n = 0, 1, 2, 3, ... represents a master equation describing the
time evolution of the distribution pn(n, t).

There are several ways to solve (4) and (5) for the steady distribution pn(n). Here we take a
direct route. Namely, we assume steady conditions and set the time derivatives in (4) and (5) to
zero. Thus,

pn(n+ 1) =
λ+ σ

σ
pn(n)− λ

σ
pn(n− 1) (6)

and

pn(1) =
λ

σ
pn(0) . (7)
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By starting with (7) and recursively stepping through n = 1, 2, 3, ... we quickly discover that

pn(n) =
λ

σ
pn(n− 1) . (8)

This simple geometric progression decreases monotonically if λ/σ < 1 and is uniquely satisfied by
the geometric distribution,

pn(n) =

(
1− λ

σ

)(
λ

σ

)n
n = 0, 1, 2, 3, ... (9)

with mean µn = (λ/σ)/(1 − λ/σ) and variance σ2n = (λ/σ)/(1 − λ/σ)2. Notice that the mean µn
is undefined if λ/σ ≥ 1. That is, as asserted above, an “equilibrium” condition does not exist if
λ = σ. Also notice for reference below that pn(0) = (1− λ/σ). Thus, as n(t) fluctuates over a long
period of time the proportion of this time for which n = 0 increases as the ratio λ/σ decreases.

Here are key points. First, the expected state E[n(t)] does not coincide with our usual view
of an equilibrium condition in which the time-averaged rates at which particles enter and leave
the volume are equal such that the time-averaged difference is zero. Indeed, this assumption leads
to a result that is perhaps counterintuitive. Second, the extent to which the expected state can
be connected to mechanistic reasoning is unclear. The Poisson input rate λ must derive from the
physics of particle entrainment and the timing of downstream displacements that lead to the rate
λ, but these physics are independent of anything occurring in the control volume. Likewise the
exponential distribution of wait times and the timing of particle displacements must derive from
physics that give the rate σ. Given just these rates, the expected state E[n(t)] is a probabilistic
outcome. In any realization the state n(t) stochastically fluctuates about the expected state but
this expected state is not an attractor for such realizations in the sense of an Ornstein–Uhlenbeck
process. Any mechanistic description of the expected state therefore would require a synthesis of
the physics of the rates λ and σ. And swapping these rates with deterministic expressions of the
flux that do not reflect the physics of λ and σ does not get closer to a mechanistic description,
notably if such expressions hinge on or imply that λ = σ under nominally steady conditions.

The M/M/1 queuing problem in fact represents a first-order version of an alluvial versus mixed
alluvial–bedrock channel segment involving fluctuations in transport. A value of λ/σ ≥ 1 represents
the onset of alluvial conditions. With λ/σ < 1, then as the number of particles n(t) fluctuates over
time, periods with large n(t) represent full alluvial cover. This is more likely with large λ/σ. Periods
with small n(t) represent limited cover and the possibility of downcutting into bedrock by abrasion
as available particles move through the segment. This is more likely with λ/σ � 1. Real behavior
is of course more complicated. For example, the input and output rates may not be Poissonian
or homogeneous, and pertain only to periods of active transport. Output rates are not likely to
be independent of the number n(t) (see below). Nonetheless, this is an appropriate conceptual
starting point, where we know that over long times bedrock downcutting requires λ/σ < 1, which
is equivalent to saying that the time-averaged divergence of the particle flux must be negative over
long times. On heuristic grounds the abrasion potential likely goes as a ∼ n(1 − n/n0), where n0
represents a state of complete alluvial cover (see below). The statistics of various attributes of this
problem are well-known, for example, particle residence times, and crossing events defined as the
time durations for which n(t) is above or below a specified value; and in principle the effects can
be time integrated.
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3 State-dependent emigration

An emigration event is more likely to occur if a channel segment contains many particles than if it
contains few particles. Let us therefore assume that the emigration rate depends on the state n(t)
(Allemand et al., 2023). As a counting process we assume that

P [n(t+ dt)− n(t) = 1] = λdt(1− σndt) + o(dt) ,

P [n(t+ dt)− n(t) = −1] = σndt(1− λdt) + o(dt) and

P [|n(t+ dt)− n(t)| > 1] = o(dt) . (10)

Note that emigration now depends on the state n, where the rate constant σ must vary inversely
with the size of the segment.

For n = 1, 2, 3, ... we then have

pn(n, t+ dt) = pn(n− 1, t)λdt+ pn(n+ 1)σ(n+ 1)dt+ (1− λdt)(1− σndt)pn(n, t) + o(dt) . (11)

For n = 0,
pn(0, t+ dt) = pn(1, t)σdt+ pn(0, t)(1− λdt) + o(dt) . (12)

We now expand (11) and (12), rearrange, then divide by dt and take the limit as dt→ 0 to give

dpn(n, t)

dt
= −(λ+ σ)pn(n, t) + λpn(n− 1, t) + σpn(n+ 1, t) (13)

and
dpn(0, t)

dt
= −λpn(0, t) + σpn(1, t) . (14)

The set of equations (13) and (14) for n = 0, 1, 2, 3, ... represents a master equation describing the
time evolution of the distribution pn(n, t).

Because we are interested in the steady distribution pn(n), we assume steady conditions and
set the time derivatives in (13) and (14) to zero. Thus,

pn(n+ 1) =
λ+ σn

σ(n+ 1)
pn(n)− λ

σ(n+ 1)
pn(n− 1) (15)

and

pn(1) =
λ

σ
pn(0) . (16)

By starting with (16) and recursively stepping through n = 1, 2, 3, ... we quickly discover that

pn(n) =
λ/σ

n
pn(n− 1) . (17)

For n ≥ 1 this progression decreases monotonically if λ/σ ≤ 1 and it is non-monotonic if λ/σ > 1.
It is uniquely satisfied by a Poisson distribution,

pn(n) =
(λ/σ)n

n!
e−λ/σ , (18)
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with mean µn = λ/σ and variance σ2n = λ/σ. Notice that pn(0) = e−λ/σ. Thus, as n(t) fluctuates
over a long period of time the proportion of this time for which n = 0 increases as the ratio λ/σ
decreases.

In contrast to the geometric distribution described above in relation to the M/M/1 queue, the
mean and variance of the Poisson distribution are well defined for λ/σ ≥ 1. Moreover, whereas it is
incorrect to assume that λ = σ represents a steady condition in the M/M/1 problem, here in fact we
can write λ = σn, take the ensemble average, and conclude that the expected value E[n(t)] = λ/σ.
In this problem the state-dependent emigration rate σn provides a negative feedback such that
for a given immigration rate, emigration quickens with increasing n and it decreases with small
n. Nonetheless, like the M/M/1 problem, in any realization the state n(t) stochastically fluctuates
about the expected state but this expected state is not an attractor for such realizations in the
sense of an Ornstein–Uhlenbeck process.

4 Poisson fluctuations

If for illustration we take the abrasion potential as a(n) = Cn(1 − n/n0) with coefficient C, then
this potential is a random variable with bounded probability distribution pa(a). According to the
law of the unconscious statistician the expected value E(a) is

E(a) = C
∑
n

npn(n)− C

n0

∑
n

n2pn(n)

= CE(n)− C

n0

(
Var(n) + [E(n)]2

)
. (19)

The variance is

Var(a) =
∑
n

[
Cn− Cn2

n0
− E(a)

]2
pn(n)

= −2CE(a)E(n) +

[
C2 +

2CE(a)

n0

]
E
(
n2
)
− 2C2

n0
E
(
n3
)

+
C2

n20
E
(
n4
)

+ [E(a)]2 . (20)

If pn(n) is a Poisson distribution, then E(n) = Var(n) = λ/σ = m1. This gives

E(a) = Cm1 −
C

n0
(m1 +m2

1) ≈ Cm1

(
1− m1

n0

)
, (21)

assuming 1/n0 � 1. Turning to the variance Var(a), all moments of n in (20) can be expressed
in terms of the first moment m1 (Appendix A). We can therefore plot the expected value E(a)
together with the variance Var(a) as these vary with the first moment m1 = λ/σ (Figure 1). This
reveals a greater variability in the potential a(n) at small and large values m1/n0 than at the value
of m1/n0 coinciding with the maximum expected value E(a), and is reflected in the asymmetry of
the bounded distribution pa(a) as it varies with m1/n0. The reason for this asymmetry is as follows.
The variability in the state n associated with the Poisson distribution for small and large m1/n0
samples over a large range of a(n) due to the steepness of this function. The variance of the Poisson
distribution is larger for large m1/n0, so the effect increases. At a value m1/n0 coinciding with the
maximum of a(n), the Poisson distribution samples a smaller range of a(n). As a consequence, time
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Figure 1: Plot of (left) normalized values of E(a) and Var(a) versus normalized moment m1/n0
and (right) cumulative distributions Pa(a) for three values of the first moment m1.

series of the state n(t) with small and large m1/n0 experience greater variability in the potential
a(n).

The flux of particles out of one segment must equal the flux into the downstream segment. To
illustrate this point we rewrite (11) for the ith segment in a series as

pni(ni, t+ dt) = pni(ni − 1, t)σni−1dt+ pni(ni + 1)σ(ni + 1)dt

+(1− σni−1dt)(1− σnidt)pni(ni, t) + o(dt) , (22)

showing that the ith segment is coupled to the state ni−1 of the upstream (i − 1) segment. Time
series of the number state n(t) within three successive segments illustrate the fluctuations in this
state about the expected value E[n(t)] (Figure 2), where for simplicity of illustration I have selected

Figure 2: Plot of time series of number n(t) for three successive segments with expected state
E[n(t)] = 100. Time units scale with the upstream Poisson intensity.
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rates that involve relatively small numbers. On this point, recall that the variance of the number
state n(t) increases with its expected value. Despite state-dependent emigration to downstream
segments, the state n in each segment retains a Poisson character.

The time series of the abrasion potential a(n) is in phase with the number series n(t) when
m1/n0 = 1/4; it is subdued and decreases with both positive and negative fluctuations in n(t) when
m1/n0 = 1/2; and it is out of phase and amplified when m1/n0 = 3/4 (Figure 3). This directly

Figure 3: Plot of time series of number n(t) (black lines) and potential a(t) (blue lines) coinciding
with m1/n0 = 1/4 (top), m1/n0 = 1/2 (middle) and m1/n0 = 3/4 (bottom). The levels of the a(t)
series are centered on the n(t) series to highlight the phase differences.

reflects the effect of the differences in the variances Var(a) for each condition (Figure 1), the local
slope of the function a(n), and the effect of the upper bound of the distribution pa(a). In particular,
for small m1/n0 the fluctuations in a are dominated by the leading term in a(n) ∼ n(1 − n/n0)
and thus track fluctuations in n. Particle are sparse and alluvial cover is minimal, so fluctuations
in particle numbers are more important than fluctuations in alluvial cover. For large m1/n0 the
fluctuations in a are dominated by the second-order term and thus respond inversely with n. Now
particles are plentiful, so fluctuations in alluvial cover become more important. For m1/n0 = 1/2
the fluctuations in a reflect a subdued version of both effects.

Sediment transport in a mixed alluvial–bedrock channel occurs under rarefied conditions (Fur-
bish et al., 2012; Furbish and Doane, 2021). In this situation it is essential to treat particle fluxes
and conservation as counting process (Poisson, renewal, Lévy, etc.). The conceptualization offered
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above can be elaborated to incorporate, for example, inhomogeneous counting processes, mixtures
of particle sizes, particle patchiness, and transitions between the active and rest states of particles.
Such efforts, however, must be strongly guided by parsimony focused on uncertainty in considering
time scales larger than experimental time scales — which often invites deterministic conjecture
over falsifiability. Meanwhile, current mechanistic descriptions of sediment particle motions and
abrasion mix deterministic quantities with random variables and manipulate these according to
the ordinary rules of algebra, not recognizing or acknowledging that the algebra of random vari-
ables is unlike the algebra of ordinary variables, nor properly averaging the algebraic expressions
involved. As a consequence it is difficult to decipher the mechanical meaning and implications of
such descriptions, as they can involve hidden or missing information, or algebraic relations among
quantities that do not correctly represent the physical situation. We therefore must await a clearer
treatment of the abrasion part of the problem.

A Moments of the Poisson distribution

The moment generating function Mn(t) of the Poisson distribution is

Mn(t) = eλ(e
t−1) , (23)

for argument t. We obtain the moments of pn(n) by taking successive derivatives of Mn(t) with
respect to t and then setting t = 0. This leads to

E(n) = m1 ,

E(n2) = m2 = m2
1 +m1 ,

E(n3) = m3 = m3
1 + 3m2

1 +m1 and

E(n4) = m4 = m4
1 + 6m3

1 + 7m2
1 +m1 . (24)
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