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These notes were inspired by conversations with Prof. Kristen Fauria and her PhD student Sarah
Ward. The problem pertains to bubbles in magmas.

Let fVb(Vb, t) [L−3] denote the probability density function of bubble volumes Vb, which may
vary with time t. In turn let N denote a Gibbs great number such that we may define the number
density function as nVb(Vb, t) = NfVb(Vb, t) [L−3]. Note that “number density” is in reference to
the volume domain; it should not be confused with the number of bubbles per unit rock volume,
despite having the same dimensions. That is, nVb(Vb, t)dVb is the number of bubbles within the
small volume interval Vb to Vb + dVb. By definition,∫ ∞

0
nVb(Vb, t) dVb = N . (1)

With bubble nucleation and growth (and neglecting resorption) the number density nVb(Vb, t)
satisfies a Fokker–Planck equation with respect to the volume domain. Namely,

∂nVb(Vb, t)

∂t
= −U ∂nVb(Vb, t)

∂Vb
+ κ

∂2nVb(Vb, t)

∂V 2
b

− S , (2)

where U [L3 T−1] denotes a drift speed, a change in volume per unit time, κ [L6 T−1] denotes a
diffusivity, and S [L−3 T−1] denotes a sink. From a statistical physics perspective, the drift speed
U is an ensemble averaged speed, and the diffusive term in (2) takes into account that bubbles at
volume state Vb at any instant grow at different rates due to stochastic effects, as described below.

The drift speed U may be expressed as U = dVp/dt and it has at least two parts. We thus
write U = Ud + Uc. Here, Ud denotes a contribution to the drift speed due to growth by diffusion
of gas to the bubbles, and Uc denotes a contribution due to coalescence of bubbles. For now we set
Ud aside assuming this growth rate can be specified based on previous work, and we are neglecting
volume expansion due to decompression. Here we focus on Uc and the sink S.

We need to distinguish two sets of bubble volumes. First, we let Vb denote the volume of a
“target” bubble to which smaller bubbles are added as coalescence. We then let V ′b denote the
volume of a bubble that is added to the target bubble such that V ′b ≤ Vb. Now let λ [T−1] denote
a Poisson-like rate constant. Because nVb(V ′b, t)dV

′
b is the number of bubbles within the small

volume interval V ′b to V ′b + dV ′b, the product λnVb(V ′b, t)dV
′
b describes a Markov birth process.

That is, this product gives the rate, the number per unit time, at which bubbles with volume V ′b
could be added to larger bubbles by coalescence. The actual rate is λnVb(V ′b, t)dV

′
bnVb(Vb, t)dVb.

That is, for coalescence with target bubbles of volume Vb to occur, there must be bubbles of this
volume present. We thus may clarify that the rate λ is a number per small bubble per available

1



target bubble per time. This is entirely analogous to the interactive terms in the Lotka–Volterra
(predator-prey) formulation.

Now, the product V ′bnVb(V ′b, t)dV
′
bnVb(Vb, t)dVb is the total volume of small bubbles that is added

to target bubbles of volume Vb, and the product λV ′bnVb(V ′b, t)dV
′
bnVb(Vb, t)dVb is the rate at which

this volume is added. But because this volume is added to nVb(Vb, t)dVb bubbles, the average rate at
which the volume of bubbles with volume Vb increases is λV ′bnVb(V ′b, t)dV

′
bnVb(Vb, t)dVb/nVb(Vb, t)dVb.

That is, the average rate is simply λV ′bnVb(V ′b, t)dV
′
b. We thus assume that

Uc =

∫ Vb

0
λV ′bnVb(V ′b, t) dV ′b . (3)

This integral says that the average rate at which bubbles of volume Vb grow is given by the rate
at which they consume the volume of some proportion of all bubbles smaller than Vb, that is, via
coalescence. Moreover, note that because bubbles of volume Vb do not consume the same number
of small bubbles per unit time, the variance in growth rates contributes to the diffusivity κ in the
diffusive term in (2).

This result suggests the form of the sink S. First, we reverse the meaning of the prime, such that
now Vb ≤ V ′b. We then observe that when bubbles within any interval Vb to Vb +dVb are consumed
by larger bubbles, the local density nVb(Vb) must decrease. Using elements of the development
above we assume that within any interval dVb the rate at which the number of bubbles decreases is

dnVb(Vb)

dt

∣∣∣∣
S

dVb = −
∫ ∞
Vb

λnVb(Vb, t) dVbnVb(V ′b, t) dV ′b . (4)

Because quantities involving Vb may be removed from the integral, this leads to

S = nVb(Vb, t)

∫ ∞
Vb

λnVb(V ′b, t) dV ′b , (5)

which represent the loss of bubbles of volume Vb to all larger sizes. Note that the rate constant λ
might depend on the bubble volume.

Collecting the damage, we now have

∂nVb(Vb, t)

∂t
= −

[
Ud +

∫ Vb

0
λV ′bnVb(V ′b, t) dV ′b

]
∂nVb(Vb, t)

∂Vb

+κ
∂2nVb(Vb, t)

∂V 2
b

− nVb(Vb, t)

∫ ∞
Vb

λnVb(V ′b, t) dV ′b . (6)

This is a rather interesting expression. As a Fokker–Planck equation with a sink term, it describes
the time evolution of the density nVb(Vb, t), where the coefficients are nonlocal functions of the
bubble volume Vb.

To explore the behavior of (6) we focus on the possibility of steady-state conditions with
∂nVb(Vb, t)/∂t = 0. We assume that the rate λ is fixed across bubble volumes and that the
process of coalescence proceeds much faster than growth by gas diffusion. Dividing by N2 we then
have

0 = −λ
∫ Vb

0
V ′bfVb(V ′b) dV ′b

dfVb(Vb)

dVb

+κN (Vb)
d2fVb(Vb)

dV 2
b

− fVb(Vb)λ

∫ ∞
Vb

fVb(V ′b) dV ′b , (7)
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where κN (Vb) = κ/N almost certainly varies with volume Vb. To simplify notation we observe
that the first integral gives the “partial” mean volume of the density fVb(Vb), which we denote
as M(Vb), and the second integral is the exceedance probability of the density fVb(Vb), which we
denote as RVb(Vb). Then,

λM(Vb)
dfVb(Vb)

dVb
− κN (Vb)

d2fVb(Vb)

dV 2
b

= −λRVb(Vb)fVb(Vb) . (8)

Note that, in general, the magnitudes of M(Vb) and κN (Vb) increase with Vb, and the magnitude
of RVb(Vb) decreases with Vb.

We now assume for argument that the density fVb(Vb) is exponential-like and write fVb(Vb) ∼
e−Vb/µVb , where µVb denotes the mean bubble volume. We then have

−AλM(Vb) −BκN (Vb) = −CλRVb(Vb) , (9)

where A, B and C are coefficients associated with the probability density fVb(Vb) and its derivatives.
The first term on the left side converges to AλµVb with increasing Vb. The magnitude of the term
on the right side asymptotically approaches zero with increasing Vb. Because the magnitude of
the second term on the left side increase with Vb, an exponential distribution is not admissible.
Neglecting the diffusive term does not change this outcome.

***

Consider the special case of coalescence, focusing just on the expected (average) behavior under
steady-state conditions, neglecting effects of diffusion. Here we assume that the Poisson-like rate
λ is volume specific. Namely, we assume to first order that λ = λ0(1 − V ′b/Vb) when V ′b ≤ Vb and
λ = λ0(1 − Vb/V

′
b) when Vb ≤ V ′b, where λ0 is the basic rate. We then have

λ0

∫ Vb

0

(
1 − V ′b

Vb

)
V ′bfVb(V ′b) dV ′b

dfVb(Vb)

dVb

= −fVb(Vb)λ0

∫ ∞
Vb

(
1 − Vb

V ′b

)
fVb(V ′b) dV ′b . (10)

Canceling λ0 and expanding the parenthetical terms,[∫ Vb

0
V ′bfVb(V ′b) dV ′b −

1

Vb

∫ Vb

0
V ′2b fVb(V ′b) dV ′b

]
dfVb(Vb)

dVb

= −
[∫ ∞

Vb

fVb(V ′b) dV ′b − Vb

∫ ∞
Vb

1

V ′b
fVb(V ′b) dV ′b

]
fVb(Vb) . (11)

As before the first integral gives the partial mean volume and the third integral gives the exceedance
probability function. The second integral gives the partial raw variance and the fourth integral
gives a partial (exceedance) mean of the reciprocal 1/Vb. The magnitudes of the first two integrals
increase with Vb and the magnitudes of the third and fourth integrals decrease.

Consider an exponential distribution fVb(Vb) = ae−aVb with a = 1/µVb . To be sure, this
distribution does not satisfy (11). Nonetheless, we can learn key information by allowing the integral
coefficients in (11) to vary over Vb according to what is expected for an exponential distribution, as
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the decay of this distribution defines a separation between light-tail and heavy-tail behavior. We
then have (

1

a
− 1

a
(aVb + 1)e−aVb +

2

a2
+

1

a2
[−aVb(aVb + 2) − 2]e−aVb

)
dfVb(Vb)

dVb

= −
[
e−aVb − aVbEi(−aVb)

]
fVb(Vb) , (12)

where Ei( ) denotes the exponential integral function. To simplify notation we denote the first
parenthetical expression in (12) as A(Vb) and the second parenthetical expression as B(Vb) then
rewrite it as

dfVb(Vb)

dVb
= −B(Vb)

A(Vb)
fVb(Vb) . (13)

The coefficient A(Vb) is zero at Vb = 0 then monotonically increases with Vb. The coefficient
B(Vb) is unity at Vb = 0 then steadily decreases with Vb. At face value the slope dfVb(Vb)/dVb is
unbounded at Vb = 0, which is akin to, say, a Weibull or gamma distribution. The essential reason
for this is that the formulation maximizes the transfer of small bubbles to larger bubbles, so there
is a rapid loss of small bubbles near Vb = 0. This points to the need to clarify what tiny bubbles do
when they are near larger bubbles, and the appropriateness of the approximation that vanishingly
small bubbles coalesce with larger bubbles at the maximum rate. If instead we numerically “force”
fb(Vb) to have a finite value at Vb, then this (non-normalized) distribution decays approximately
exponentially over small Vb with B(Vb)/A(Vb) ∼ const. However, because this ratio approaches
zero with increasing Vb, the derivative dfVb(Vb)/dVb approaches zero and thus the (non-normalized)
distribution fb(Vb) flattens, giving it an “extra” heavy tail. The essential reason for this is that
with increasing volume Vb and decreasing bubble density fb(Vb), there are increasingly fewer larger
bubbles available to consume smaller bubbles. That is, the available sink S is decreasing, as reflected
by the decreasing value of A(Vb). But simultaneously, smaller bubbles are increasingly adding to
the volume (but not numbers) of larger bubbles, as reflected by the increasing value of B(Vb). The
effect is to produce ever increasing bubble sizes with no mechanism to remove them.

Now, despite setting up this argument assuming a steady-state condition, it is not likely a
steady problem, at least not using the formulation above. Moreover, to the extent that the non-
local formulation of coalescence and the sink are physically defensible, then aside from the details
suggested by an exponential description of the integral coefficients, this nonlocal behavior suggests
that a heavy-tail distribution is likely.
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