
The profound implications of the central limit theorem

applied to rarefied sediment transport

David Jon Furbish

Emeritus, Vanderbilt University
May 2024

1 Preamble

The central limit theorem is among the crown jewels of mathematics and science. The proof of this
theorem is elegant. It is a central element of numerous concepts and methods in probability and
statistics. And it provides the basis for clarifying the physical behavior of certain random processes,
notably the effects of adding increments represented by a random variable, as in the random-walk
displacements of particles or more generally stochastic changes in the state of a system. Herein
we will see that the central limit theorem points to why the Gaussian distribution is ubiquitous in
many science problems, notably sediment transport.

Appendix A contains a proof of the classical central limit theorem. Here we present this theorem
in practical terms. We start with the meaning of independent and identically distributed random
variables, and a description of the law of large numbers, focusing on continuous random variables.

2 The Meaning of Independent and Identically Distributed

Let x1, x2, ..., xi, ..., xn denote a set of random variables. In the simplest and perhaps most familiar
case these might represent the values of a sample of size n. We then often assume (or assert) that
the values xi are independent and identically distributed, perhaps shortening this by saying that
the xi are i.i.d. or iid. There are two ways to think about what i.i.d. means, although the practical
outcome is essentially the same.

Suppose that a stochastic process produces a measurable quantity, a random variable x, that
is distributed as fx(x). By this we mean the following. First, consider a simple static system
consisting of a nominally homogeneous granular material so that x represents the local porosity
of the material measured with a small fixed sampling volume Vs. We then envision a Gibbs great
number of such measurements systematically taken over the entirety of the granular material, and
we discover that the values of x are distributed as fx(x). Or, consider a dynamical system where
the state x varies as a time series. We systematically measure this state at a great number of
instants over an arbitrarily long interval of time, and we discover in a frequentist sense that the
values are distributed as fx(x). Alternatively, whether the system is static or varying with time,
we can imagine that the distribution fx(x) is precisely defined by the sample space of x. Thus, in
all cases we are envisioning that fx(x) is fixed (stationary) and well defined.

Now consider a sample-centric view of i.i.d. In this case the set x1, x2, ..., xi, ..., xn represents
a sample of size n drawn from the distribution fx(x), where the subscript denotes the individual
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measurement. Because each xi is drawn from precisely the same distribution, by definition the val-
ues xi are identically distributed. The idea of independence, however, is potentially more involved.
Consider the example where x denotes the porosity of a homogeneous granular material. If we
design an algorithm to randomly select locations for measuring x, then in this sense the values are
independent. But if by chance some of these locations are close together such that the sampling
volumes Vs overlap, then the measured values of x are not necessarily independent in a physical
(or mathematical) sense given that the values x are likely to be spatially correlated. Likewise, we
might randomly select values of x from a time series. But if the measured values are close together
in the series or occur with a frequency close to a rational multiple of the frequency of a periodic
series, then the values of x are not necessarily independent in a physical (or mathematical) sense in
the presence of temporal correlation. These simple examples offer a hint of the fact that sampling
is a grand challenge. For our purposes here we should be aware that the idea of random sampling
to achieve i.i.d. is not necessarily straightforward.1 And in practice, absent a careful experimen-
tal design, the i.i.d. assumption often is not satisfied. Nonetheless, we can readily envision the
idealization of i.i.d.

Consider, then, an ensemble-centric view of i.i.d. We imagine a Gibbs ensemble — a great
number of independent but nominally (statistically) identical systems. In the example of a granular
material, no two systems are identical at the particle scale, but all are indistinguishable in a
statistical sense when viewed at a larger scale. In the example of a dynamical system, no two
time series of x are identical, but the statistical structure of the time series of each system is
the same. In this manner each xi is drawn from a randomly selected member of the ensemble,
thus ensuring independence. That is, x1 is drawn from the distribution fx1(x1), x2 is drawn
from the distribution fx2(x2), and so on. These distributions have means µx1 , µx2 , ..., µxn and
variances σ2x1 , σ

2
x2 , ..., σ

2
xn . Now the subscript refers to the randomly selected system of the ensemble.

Because the systems are nominally identical, fx1(x1) = fx2(x2) = ... = fxn(xn) = fx(x) such that
µx1 = µx2 = ... = µxn = µx and σ2x1 = σ2x2 = ... = σ2xn = σ2x, thus ensuring that the xi are
identically distributed. Notice that this outcome is identical to that of the sample-centric view
above. This ensemble-centric view if i.i.d. serves us well in developing the mathematics of the
law of large numbers and the central limit theorem (Appendix A), although it does not address
practical problems associated with sampling. In what follows we assume the i.i.d. assumption is
satisfied as a canonical starting point.

3 Law of Large Numbers

Here we focus on the weak law of large numbers (Appendix A). Let x1, x2, ..., xn denote a set of
independent and identically distributed random variables, each with mean µx and variance σ2x. We
then define a new random variable as the sum

Sn =
n∑
i=1

xi . (1)

1The problem of random sampling to achieve i.i.d. is a large topic. Sampling in the social sciences and medicine is
particularly challenging, and there are numerous recognized types of sampling bias. Sampling in the physical sciences
is usually tuned to the nature of the data and its sources, with a great variety of approaches across fields. In the
field of sediment transport we must contend with such things as data censorship, effects of serial correlation and
non-stationarity, instrument bias and filtering, resolution bias, and so on.
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Because the xi are independent and identically distributed, the expected value of the sum Sn is
µx1 + µx2 + ...+ µxn = nµx. In turn, because the variances of xi are additive with zero covariance,
the variance of the sum Sn is σ2x1 + σ2x2 + ... + σ2xn = nσ2x. To be clear, this is the variance of Sn,
not the variance of the values xi. That is, we can imagine creating a large number N of sums Sn.
Then nσ2x is the variance of these sums. This becomes important when we examine the central
limit theorem below.

We now define a new random variable as

xn =
Sn
n

=
1

n

n∑
i=1

xi , (2)

which is just the arithmetic average of the set of xi, where the subscript n associates the average
with the size of the set. The (weak) law of large numbers (Appendix A) then tells us that

lim
n→∞

xn = lim
n→∞

Sn
n

= µx . (3)

A simple way to visualize this is as follows. Envision a random sample of xi with relatively small
n giving a value xn. By chance the value xn does not coincide with µx. Repeating this N times, no
two values of xn are the same and each is similar but not identical to the mean µx. As n increases,
individual values of xn are on average closer to µx. As n approaches infinity, each random sample
of xi now closely represents all possible values of x in proportion to the occurrence of x represented
by the distribution fx(x). Indeed, a histogram of the values xi is virtually indistinguishable from
the smooth distribution fx(x). As a consequence the value xn (and indeed all N values of xn)
converge to the mean µx.

Here we have focused on the convergence of xn to the mean E(x) = µx. However, an expectation
is not limited to the mean. The law of large numbers also applies to other expectations, for example
the variance, such that the sample estimate s2n → σ2x in the limit of n → ∞. Moreover, whereas
we assume that the values xi are identically distributed, the law of large numbers is at work even
if successive values are not independent, so long as the set xi represents all possible values of x in
the proportions represented by fx(x). Thus, systematic successive measurements of a stationary
time series give a value xn, essentially a time average, that converges to µx in the limit of n→∞
and thus as t→∞. Also note that the law of large numbers applies in certain problems where the
distribution of the random variable is itself a function of the averaging time, if the mean is fixed.
In fact this is implied by the convergence of realizations of the particle flux q̂nx to the expected
value 〈qnx〉 (Figure 1).

4 Classical Central Limit Theorem

Reconsider the sum Sn given by (1). The expected value of this sum is nµx and the variance is
nσ2x. This implies that

nσ2x =
1

N

N∑
j=1

(Snj − nµx)2 , (4)

where we are appealing to the law of large numbers in letting N be arbitrarily large. Dividing (4)
by n2,

σ2x
n

=
1

N

N∑
j=1

(
Snj
n
− µx

)2

=
1

N

N∑
j=1

(xnj − µx)2 = σ2xn . (5)
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Figure 1: Plot of high-fidelity numerical simulations of 10 realizations of the particle number flux
q̂nx(∆t) [L−1 T−1] associated with rain splash on a horizontal surface during steady rainfall, showing
(black line) expected flux 〈qnx〉 = 0 together with (blue lines) ±1 and (red lines) ±2 standard
deviations in the values of q̂nx(∆t) about the expected value. Each realization is calculated as the
net number N(∆t) of particles crossing a position x per length ∆y normal to x, per averaging
interval ∆t, namely, q̂nx(∆t) = N(∆t)/∆y∆t. Moreover, each realization arises from precisely the
same controlling factors: the rainfall intensity, surface slope, particle size and so on. Indeed, these
are examples of an infinite set of possible realizations for the same controlling factors. Similar
results are obtained when the expected flux 〈qnx〉 is finite with nonzero surface slope.

More formally (Appendix A), the central limit theorem says that the variance σ2xn of the average
xn is

σ2xn =
σ2x
n
. (6)

Moreover, this theorem gives the remarkable result that the average xn ∼ N (µx, σ
2
x/n), regardless

of the form of the underlying distribution fx(x), so long as its mean µx and variance σ2x are
defined. This result also holds for discrete distributions px(x). We must note, however, that the
sampling distribution fxn(xn) of xn is only approximately Gaussian. In a strict sense this sampling
distribution converges to a normal distribution only in the limit of n → ∞, where in general the
central part of the distribution in the vicinity of the mean converges faster than the tails.

A simple way to visualize this outcome of the central limit theorem is to reconsider the sampling
described above in relation to the law of large numbers. Envision a large number N of random
samples of xi, each with modest size n. The histogram of each sample crudely mimics the smooth
distribution fx(x). But the average xn of each sample, a single number, reveals nothing about the
appearance of the histogram from which it is obtained. The N averages xn are centered about the
mean µx, and a histogram of these averages roughly mimics a Gaussian distribution. As the sample
size n increases, this histogram formed from the N averages xn becomes virtually indistinguishable
from a smooth Gaussian distribution and is increasingly centered on µx with deceasing variance.
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5 Implications

5.1 A Statistics Aside

Those familiar with parametric statistics will recognize that (6) is the basis for defining the so-called

standard error of the estimate xn of the mean µx defined as SE =
(
σ2xn

)1/2
= σxn . Thus,

SE =
σx√
n
. (7)

Because we rarely know the precise values of the mean and variance of the underlying distribution
fx(x), the standard deviation σx is in practice replaced with the sample estimate sx of the standard
deviation, and we then form “error bars” and a “confidence interval” using the sample average, for
example, xn ± SE or xn ± 2SE with SE = sx/

√
n. Because of the popularity of the standard error

in statistical analyses, let us briefly note several items that should not go unsaid before returning
to our main objectives.

First, the word error is a misnomer. The quantity σxn is just the standard deviation of the
random variable xn. Unless it specifically refers to, say, measurement error, this standard devia-
tion has nothing to do with errors. Rather, it reflects the natural variability in the values of x,
characterized by the distribution fx(x), leading to variability in the average xn calculated from n
values of x. To view the quantity σxn as error reflects a 20th century style of frequentist thinking
preoccupied with the perceived importance of expected values in attempting to codify our under-
standing of things based on what can be concluded from dichotomous hypothesis testing involving
arbitrary thresholds of “significance” — versus engaging with variability as an inherent feature of
a system, including its physical basis. Second, to claim that a confidence interval as defined above
gives a probability (e.g. a 95% “confidence”) that the “true” mean µx falls within the interval is
wrong. Yet hundreds of scientists make this mistaken claim every year. In fact, with probability
equal to one the mean µx is either within or outside the specified interval, and one can never know
this unless the mean µx is known a priori. Such intervals pertain to assessments of sampling based
on the properties of the sampling distribution fxn(xn), not to assessments of the location of the
mean µx. Third, a rule of thumb is often offered to the effect that if n ≥ 30 then the sampling
distribution fxn(xn) is sufficiently well approximated by a Gaussian distribution that calculations
of probability based on the Gaussian can be trusted in (statistical) inferential matters. In fact, this
rule of thumb has no justification and can lead to flawed analyses. These items are among the many
“don’ts” of statistics (Furbish and Schmeeckle, 2020). On the other hand, when combined with
other techniques, and depending on availability of information regarding the distribution fx(x), the
so-called standard error can be valuable in sampling design to anticipate sample sizes needed to
achieve a desired convergence of the estimate xn to the mean µx. We now set this topic aside to
focus on probabilistic implications of the central limit theorem.

5.2 Emergence of Gaussian Behavior

Consider a physical problem that illustrates the elements of the central limit theorem in a tangible
manner related to particle transport. First, recall that the expected value of the sum Sn given by
(1) is equal to nµx and the variance of this sum is nσ2x. We presented the result that, according
to the central limit theorem, the average xn = Sn/n ∼ N (µx, σ

2
x/n). But because xn and Sn differ
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only by the specified factor n as Sn = nxn, this also implies that Sn ∼ N (nµx, nσ
2
x). That is, the

sum Sn is approximately Gaussian with sufficiently large n. We return to this point momentarily.
Consider the stochastic one-dimensional movement of a particle parallel to the y axis. We

choose a fixed interval of time ∆t during which the particle is displaced by an amount xi. Note
that the instantaneous velocity of the particle might fluctuate during ∆t. Nonetheless we can define
its velocity as vpi = xi/∆t, which is an average over ∆t. Thus the displacement xi = upi∆t. As
above, consider the set of random variables x1, x2, ..., xn. These now represent a set of n particle
displacements such that fx(x; ∆t) denotes the distribution of possible displacements with mean µx.
Notice that we have added ∆t after a semicolon in the functional notation to emphasize that this
distribution is specific to the interval ∆t. Further notice that x1, x2, ..., xn = vp1∆t, vp2∆t, ..., vpn∆t.
Now the subscripts i = 1, 2, ... imply successive displacements in time.

Now reconsider the sum Sn. A particle starting at the initial position y(0) = 0 at time t = 0
must be at a position y(t) = Sn after n displacements. That is,

Sn = y(t) =
n∑
i=1

xi =
n∑
i=1

upi∆t = ∆t
n∑
i=1

upi . (8)

Moreover, because each displacement occurs over an interval ∆t, the total time t = n∆t. This also
implies that the expected value of y(t) is E[y(t)] = nµx and the variance is V[y(t)] = nσ2x. In turn,
we expect from the central limit theorem that

fy(y, t) =
1√

2πV[y(t)]
exp

[
−(y − E[y(t)])2

2V[y(t)]

]
=

1√
2πnσ2x

exp

[
−(y − nµx)2

2nσ2x

]
. (9)

We now write the expected displacement as E[y(t)] = nµx = n(µx/∆t)∆t. Here, µx/∆t = 〈vp〉 is
the expected particle velocity so E[y(t)] = 〈vp〉t with n∆t = t. In turn we write the variance as
V[y(t)] = nσ2x = n(σ2x/∆t)∆t. By convention we denote σ2x/∆t = 2κy where κy denotes the particle
diffusivity, so V[y(t)] = 2κyt. Substituting these expressions into (9) then gives

fy(y, t) =
1√

4πκtt
exp

[
−(y − 〈vp〉t)2

4κyt

]
. (10)

That is, the distribution of particle positions y is a Gaussian distribution whose mean and variance
increase linearly with time t.

It can be shown that (10) is a solution of a Fokker–Planck-like equation — an advection–diffusion
equation — having the form,

∂fy(y, t)

∂t
= −〈vp〉

∂fy(y, t)

∂y
+ κy

∂2fy(y, t)

∂y2
. (11)

This expression is obtained from a master equation, a general probabilistic description of the time
evolution of the distribution fy(y, t) of particle states y, taking into account the difference in the
rate at which particles arrive at the position y at time t from all possible preceding positions, and
the rate at which particles leave the position y. Importantly, this derivation involving a master
equation makes no reference to the central limit theorem. Let us now highlight several points.

First, aside from the kinematic definitions of the average particle velocity 〈vp〉 and the diffusivity
κy, the arguments leading to (10) involve no physics. The result embodied in (10) therefore is
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simply the necessary probabilistic outcome of adding random increments. Thus, we should not
be surprised that (10), representing a solution of (11), is independently obtained from a master
equation. Moverover, the displacements xi are not restricted to particle displacements. These
displacements more generally can refer to changes in a measure of the state of a system. For
example, if the displacements xi represent incremental changes in the local elevation y(t) of a
granular surface, then the average velocity represents the expected erosion or deposition rate and
the diffusivity characterizes the noisiness of fluctuations about the expected rate. The key lesson
is this: Owing to the central limit theorem we should anticipate the likely appearance of Gaussian
behavior in diverse stochastic systems, regardless of the detailed physics involved.

Second, the probabilistic arguments leading to (10) are scale independent. That is, as proba-
bilistic constructs (10) and (11) equally pertain to the behavior of Brownian particles and sediment
particles. The physics of these different systems are then distinguished by the specific ingredients
of the expected velocity 〈vp〉 and the diffusivity κx.

Third, in the specific case of sediment particle states y, the descriptions of behavior provide
by (10) and (11) represent a particle-centric view of things. This view is entirely agnostic to the
presence or absence of continuum conditions. These equations describe the probabilistic ensemble
behavior (sensu Gibbs, 1902) of an individual particle having little to do with a continuum, or they
may equally apply to a great number of particles in any realization (Schumer et al., 2009; Furbish
et al., 2018; Furbish and Doane, 2021).

Consider the form of the distribution fx(x; ∆t) of displacements x within the context of remarks
offered by the celebrated probabilist and physicist Edwin Jaynes (2003, p. 206):

This is just the process by which noise is produced in Nature — by addition of many
small increments, one at a time... Once a Gaussian form is obtained, it is preserved;
this process can be stopped at any point, and the resulting final distribution still has
the Gaussian form. What is at first surprising is that this stable form is independent of
the distribution... of the small increments.

That is, the emergence of the Gaussian and its persistence through time is remarkably insensitive
to the form of fx(x; ∆t). For example, if fx(x; ∆t) has a mean µx = 0, then the expected value
E[y(t)] = 〈vp〉t = 0 with 〈vp〉 = 0. Now (10) becomes

fy(y, t) =
1√

4πκtt
exp

[
− y2

4κyt

]
, (12)

where the associated Fokker–Planck-like equation is a diffusion equation,

∂fy(y, t)

∂t
= κy

∂2fy(y, t)

∂y2
. (13)

Here, fx(x; ∆t) might be a symmetrical Gasussian distribution or a symmetrical Laplace distribu-
tion; or fx(x; ∆t) could be asymmetrical with µx = 0. In these examples the displacements x are
both positive and negative. If instead the distribution fx(x; ∆t) involves only positive displacements
or only negative displacements, then the expected value E[y(t)] = 〈vp〉t is finite with 〈vp〉 6= 0. Now
the behavior of fy(y, t) is described by (10) and (11), and we say that 〈vp〉 represents a drift speed
or an advective speed. Here the distribution fx(x; ∆t) might be an exponential distribution or a
gamma distribution.
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In this same vein, it is well known that the binomial and Poisson distributions converge to
the Gaussian distribution with a large number of trials n (binomial) or large time t (Poisson).
Numerous formal proofs of this are available. In the case of the binomial distribution we may
think of this distribution as representing the possible set of integer-valued displacements occurring
after n trials, analogous to the distribution of displacements fx(x; ∆t = t/n). In the case of the
Poisson distribution we may think of this distribution as representing the possible set of integer-
valued displacements occurring during a specified interval ∆t, again analogous to the distribution
of displacements fx(x; ∆t). The sum Sn in (1) or (8) thus consists of a set of binomial or Poisson
distributed increments. In both case the arguments presented above lead to the conclusion that
the binomial and Poisson distributions converge to the Gaussian distribution.

Because the velocity is defined as vp = x/∆t so that x = vp∆t, the distribution of velocities
fvp(vp; ∆t) has the same form as the distribution fx(x; ∆t) of displacements x. It is therefore
equally correct to claim that Gaussian behavior reflects varying particle velocities. Let us also recall
that the developments above assume that fx(x; ∆t) has finite mean and variance. Things change
if fx(x; ∆t) is heavy-tailed with undefined moments. For simplicity we also assumed continuous
particle motions. In the case of bed load particles the effects of rest times must be addressed in
describing displacements.

Let us end with a simple but profound truth attributable to the central limit theorem. Sediment
particles experience varying velocities and displacements during transport — a hallmark of their
behavior. Regardless of the detailed physics involved, formulations of rarefied sediment transport
that do not explicitly acknowledge the existence and effects of particle diffusion are wrong. Particle
diffusion is an inherent feature of transport — a probabilistic consequence of varying particle
velocities and displacements — and its effects must figure into formulations of transport.

A Proof of the Central Limit Theorem

There are several proofs of the central limit theorem. Here we appeal to proofs involving the
moment generating function and the characteristic function of a random variable. The moment
generating function and the characteristic function provide ways to analytically work with prob-
ability distributions and their moments as alternatives to working directly with the probability
density functions. We start with proofs of the weak law of large numbers, followed by proofs of the
classical central limit theorem.2

A.1 Moment Generating Function

Let x denote a random variable distributed as fx(x) with mean µx and variance σ2x. The moment
generating function of x is defined as

Mx(t) = E(etx) =

∫ ∞
−∞

etxfx(x) dx , (14)

for argument t (not to be confused with time). Notice that, according to the law of the unconscious
statistician, Mx(t) is just the expected value of etx. Also notice that (14) is like a Fourier transform,

2For typical problems the weak law and the strong law of large numbers give the same conclusion; the nature of
the convergence differs. Similarly, various versions of the central limit theorem differ in how they are obtained, and
in the assumptions regarding whether the random variables are independent and identically distributed.
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but without the imaginary number i. For later reference, the moment generating function of a
constant a is Ma(t) = E(eta) = eta.

We now expand etx as a Taylor series,

etx = 1 + tx+
t2x2

2!
+
t3x3

3!
+ ...+

tnxn

n!
+ ... . (15)

Substituting this into (14),

Mx(t) =

∫ ∞
−∞

(
1 + tx+

t2x2

2!
+
t3x3

3!
+ ...+

tnxn

n!
+ ...

)
fx(x) dx . (16)

From this it is clear that

Mx(t) = E(etx) = 1 + tE(x) +
t2E(x2)

2!
+
t3E(x3)

3!
+ ...+

tnE(xn)

n!
+ ...

= 1 + tm1 +
t2m2

2!
+
t3m3

3!
+ ...+

tnmn

n!
+ ... , (17)

where mn = E(xn) denotes the nth moment about the origin. In turn,

mn = E(xn) = M (n)
x (0) =

dnMx

dtn

∣∣∣∣
t=0

. (18)

To see that this is the case, simply take the nth derivative of (17) with respect to t then set
t = 0. This provides an algorithm for computing the nth moment of a distribution, hence the name
moment generating function.

Note that not all distributions have moment generating functions. One example is the log-
normal distribution, although all moments of the log-normal distribution exist.

A.2 Characteristic Function

Let x denote a random variable distributed as fx(x) with mean µx and variance σ2x. The charac-
teristic function of x is defined as

φx(t) = E(eitx) =

∫ ∞
−∞

eitxfx(x) dx , (19)

for argument t. Notice that, according to the law of the unconscious statistician, φx(t) is just
the expected value of eitx. Also notice that (19) is essentially a Fourier transform involving the
imaginary number i defined by i2 = −1. For later reference, the characteristic function of a constant
a is φa(t) = E(eita) = eita.

We now expand eitx as a Taylor series,

eitx = 1 + itx− t2x2

2!
− it3x3

3!
+ ... . (20)

Substituting this into (19),

φx(t) =

∫ ∞
−∞

(
1 + itx− t2x2

2!
− it3x3

3!
+ ...

)
fx(x) dx . (21)
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From this it is clear that

φx(t) = E(eitx) = 1 + itE(x)− t2E(x2)

2!
− it3E(x3)

3!
+ ...

= 1 + itm1 −
t2m2

2!
− it3m3

3!
+ ... , (22)

where mn = E(xn) denotes the nth moment about the origin.
As a Fourier transform of a probability density function, the characteristic function completely

specifies the density function. In contrast to the moment generating function, the characteristic
function exists for all distributions of real-valued random variables.

A.3 Law of Large Numbers

A.3.1 Proof Involving the Moment Generating Function

Let x1, x2, ..., xn denote a set of independent and identically distributed random variables, each
with mean µx and variance σ2x. We now define a new random variable as the sum

Sn =
n∑
i=1

xi . (23)

We then want to show that the moment generating function MSn(t) of Sn is

MSn(t) = [Mx(t)]n , (24)

where Mx(t) is the moment generating function of x given by (17). To do this we use the definition
of the moment generating function and write

MSn(t) = E(etSn) = E
[
et(x1+x2+...+xn)

]
= E(etx1etx2 ...etxn) . (25)

Because the xi are independent,

MSn(t) = Ex1(etx1)Ex2(etx2)...Exn(etxn) = Mx1(t)Mx2(t)...Mxn(t) . (26)

In turn, because the xi are identically distributed, Mx1(t) = Mx2(t) = ... = Mxn(t) = Mx(t), which
leads to the result (24).

We now define a new random variable Yn as

Yn =
Sn
n
, (27)

which is the arithmetic average xn of the random variables x1, x2, ..., xn. Now let s = t/n. By
arguments identical to those above we can write the moment generating function MYn(t) of Yn as

MYn(t) = E(etYn) = E(esSn) = [Mx(s)]n =

[
Mx

(
t

n

)]n
. (28)

We now write Mx(s) = Mx(t/n) as a Taylor series to give

MYn(t) =

[
1 +

tm1

n
+ o

(
t2

n2

)]n
, (29)
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where o(t2/n2) indicates that the second and higher-order terms ultimately vanish faster than the
first-order term in the limit of n→∞. Taking this limit,

lim
n→∞

MYn(t) = lim
n→∞

[
1 +

tm1

n
+ o

(
t2

n2

)]n
= etm1 = etµx . (30)

Recall that the moment generating function of a constant a is equal to eta. Thus, the result etµx

is just the moment generating function of the mean µx. This implies that the average Yn = xn
converges to the ensemble mean µx in the limit of n→∞, thus completing the proof.

A.3.2 Proof Involving the Characteristic Function

A proof of the law of large numbers using the characteristic function closely follows the developments
above. Here we may start with the sum Yn defined above, namely,

Yn =
Sn
n
, (31)

which is the arithmetic average xn of the random variables x1, x2, ..., xn. Again letting s = t/n, the
characteristic function φYn(t) of Yn is

φYn(t) = E(eitYn) = E(eisSn) = [φx(s)]n =

[
φx

(
t

n

)]n
. (32)

Writing φx(s) = φx(t/n) as a Taylor series,

φYn(t) =

[
1 +

itm1

n
+ o

(
t2

n2

)]n
. (33)

Taking the limit,

lim
n→∞

φYn(t) = lim
n→∞

[
1 +

itm1

n
+ o

(
t2

n2

)]n
= eitm1 = eitµx . (34)

Recall that the characteristic function of a constant a is equal to eita. Thus, the result eitµx is just
the characteristic function of the mean µx. As concluded above, the average Yn = xn converges to
the ensemble mean µx in the limit of n→∞, thus completing the proof.

A.4 Central Limit Theorem

A.4.1 Proof Involving the Moment Generating Function

We first need to show that the moment generating function of a standard normal distribution fz(z)
with mean µz = 0 and variance σ2z = 1 is Mz(t) = et

2/2. To do this we write

Mz(t) = E(etz) =

∫ ∞
−∞

1√
2π
e−

1
2
z2etz dz

=

∫ ∞
−∞

1√
2π
e−

1
2
z2+tz dz . (35)
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Focusing on the exponent,

−1

2
z2 + tz = −1

2

(
z2 − 2tz + t2

)
+

1

2
t2 = −1

2
(z − t)2 +

1

2
t2 ,

so that (35) becomes

Mz(t) = et
2/2
∫ ∞
−∞

1√
2π
e−

1
2
(z−t)2 dz . (36)

We then define u = z − t so that du = dz. A change of variable then gives

Mz(t) = et
2/2
∫ ∞
−∞

1√
2π
e−

1
2
u2 du . (37)

Because the integrand in (37) is the standard normal distribution the integral equals unity, leading
to the result that Mz(t) = et

2/2.
Let x1, x2, ..., xn denote a set of independent and identically distributed random variables, each

with mean µx and variance σ2x. We now define a new random variable as the sum

Sn =
n∑
i=1

xi . (38)

Because the xi are independent and identically distributed, the expected value of the sum Sn is
µx1 + µx2 + ...+ µxn = nµx and the variance of Sn is σ2x1 + σ2x2 + ...+ σ2xn = nσ2x. We now define a
new random variable as

Zn =
Sn − nµx√

nσx
=

n∑
i=1

xi − µx√
nσx

=
n∑
i=1

zi√
n

=
Sz√
n
, (39)

where each zi = (xi − µx)/σx has zero mean and unit variance, and Sz denotes the sum of the zi.
Following the developments in preceding sections the moment generating function MZn(t) of

Zn is

MZn(t) = E(etZn) = E(esSz) = [MZn(s)]n =

[
Mz

(
t√
n

)]n
, (40)

with s = t/
√
n. Writing Mz(s) = Mz(t/

√
n) as a Taylor series,

MZn(t) =

[
1 +

tm1√
n

+
t2m2

2n
+ o

(
t3

(
√
n)3

)]n
. (41)

From our results above, m1 = 0 and m2 = 1, so

MZn(t) =

[
1 +

t2

2n
+ o

(
t3

(
√
n)3

)]n
. (42)

Taking the limit,

lim
n→∞

MZn(t) = lim
n→∞

[
1 +

t2

2n
+ o

(
t3

(
√
n)3

)]n
= et

2/2 , (43)

which is the moment generating function of a standard normal distribution. This implies that the
distribution of Zn approaches N (0, 1) as n→∞. Because of the definition of z, it also implies that
the average xn ∼ N (µx, σ

2
x/n) with sufficiently large n, thus completing the proof.
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A.4.2 Proof Involving the Characteristic Function

A proof of the central limit theorem using the characteristic function closely follows the develop-
ments above. We first need to show that the characteristic function of a standard normal distribu-
tion fz(z) with mean µz = 0 and variance σ2z = 1 is φz(t) = e−t

2/2. To do this we write

φz(t) = E(itz) =

∫ ∞
−∞

1√
2π
e−

1
2
z2eitzdz =

∫ ∞
−∞

1√
2π
e−

1
2
z2+itz dz . (44)

Focusing on the exponent,

−z
2

2
+ itz =

(
−z

2

2
+ itz +

t2

2

)
− t2

2
= −1

2
(z − it)2 − t2

2
, (45)

so that (44) becomes

φz(t) = e−t
2/2
∫ ∞
−∞

1√
2π
e−

1
2
(z−it)2 dz . (46)

We then define u = z − it so that du = dz. A change of variable then gives

φz(t) = e−t
2/2
∫ ∞
−∞

1√
2π
e−

1
2
u2 du , (47)

which leads to the result that φz(t) = e−t
2/2.

Let x1, x2, ..., xn denote a set of independent and identically distributed random variables, each
with mean µx and variance σ2x. As in the preceding section we define the sum Sn given by (38)
and the random variable Zn given by (39). Following the developments in the preceding sections
the characteristic function MZn(t) of Zn is

φZn(t) =

[
1− t2

2n
+ o

(
t3

(
√
n)3

)]n
. (48)

Taking the limit,

lim
n→∞

φZn(t) = lim
n→∞

[
1− t2

2n
+ o

(
t3

(
√
n)3

)]n
= e−t

2/2 , (49)

which is the characteristic function of a standard normal distribution. As stated above, this implies
that the distribution of Zn approaches N (0, 1) as n → ∞. Because of the definition of z, it also
implies that the average xn ∼ N (µx, σ

2
x/n) with sufficiently large n, thus completing the proof.
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