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1 Preamble

Entropy seems to be a popular but enigmatic concept from science that is frequently used to
qualitatively explain, at a high level, the behavior and configurations of systems, yet which is
frequently misunderstood in practice. To complicate things, there are two principal definitions
of entropy: the Gibbs entropy from statistical mechanics and thermodynamics, and the Shannon
entropy from information theory. Consider a delightful comment attributed to Claude Shannon
regarding his work on information entropy:

[John] Von Neumann told me, “You should call it entropy, for two reasons. In the first
place your uncertainty function has been used in statistical mechanics under that name,
so it already has a name. In the second place, and more important, nobody knows what
entropy really is, so in a debate you will always have the advantage.” (McIrvine and
Tribus, 1971; italics mine)

Indeed, qualitative explanations of entropy often center on the idea that it is a measure of the
degree of disorganization of things, for example, the scattered arrangement of papers and books in
my office (a high-entropy configuration) relative to the well-organized placement of things in my
colleague’s office (a low-entropy configuration). With that notion, we are comfortable with the idea
that a uniform distribution of ink molecules thoroughly dissolved in a beaker of water represents a
high-entropy configuration — a maximum disorganization of the molecules relative to the initial,
highly organized ink drop that we placed in the beaker. (On the other hand, we might give pause to
the idea that the uniformity of the molecules itself represents an organized state, if we use uniformity
as a measure of organization.) But then things might seem confusing when we learn that according
to the Shannon entropy the uniform distribution of molecules has greater information content than
did the initial molecular configuration represented by the drop — particularly when we recall from
our studies of particle diffusion that the final, uniform configuration represents a condition where
all information regarding the initial configuration, the drop, is irreversibly lost. In approaching
this topic, let us therefore start with simple wisdom offered by the philosopher and physicist David
Wallace in reference to the meaning of probability:

When unsure what something is, it often pays to ask what it does. (Wallace, 2012)

This is our approach here: to show that entropy foremost is a measure of uncertainty, and that it
provides a useful way to describe how things are organized. We focus on the Shannon entropy from

1



information theory rather than the Gibbs entropy from statistical mechanics and thermodynamics.
Indeed, Jaynes (1957a) points out that the Gibbs entropy is actually a special case of the Shannon
entropy, and the Shannon entropy certainly is more useful in describing attributes of sediment
systems given its focus on information and uncertainty rather than thermodynamic quantities.

Our objective is to highlight elements of this topic that are relevant to sediment systems.
We start with basic concepts: the meaning of the information content contained in the Shannon
entropy and its relation to uncertainty represented by a probability distribution. We then examine
the foundational idea of Maxwell–Boltzmann counting of particle states, leading to the canonical
example of a maximum entropy distribution, the Boltzmann distribution. This is aimed at showing
where the idea of a maximum-entropy distribution originated, thus providing the context for the
later work of Shannon. Indeed, starting with the Shannon entropy absent a description of the
basis of the Boltzmann distribution would risk missing how the Shannon entropy is applicable to
mechanical systems. As Jaynes (1957a, p. 622) notes:

The great advance provided by information theory lies in the discovery that there is a
unique, unambiguous criterion for the “amount of uncertainty” represented by a discrete
probability distribution, which agrees with our intuitive notions that a broad distribu-
tion represents more uncertainty than does a sharply peaked one, and satisfies all other
conditions which make it reasonable.

With this context in place we then turn to the maximum entropy method championed by Edwin
Jaynes (1957a, 1957b, 2003), highlighting its emphasis on appealing to mechanical considerations
in describing distributions of particle states while being as faithful to what we do not know as we
are to what we do know about a system. We also show why the differential entropy can only be
viewed as an analogy with the Shannon entropy.

2 Basic Concepts

The Gibbs entropy is defined as

S(x) = −kB

∑
x

px(x) ln px(x) , (1)

where kB is the Boltzmann constant. The Shannon entropy is defined as

H(x) = −
∑
x

px(x) ln px(x) . (2)

In the work of Boltzmann and Gibbs, x represents an energy state so that px(x) represents the
probability mass function of these states, the set of all possible ways to arrange a great number
of particles into accessible energy states subject to macroscopic (thermodynamic) constraints. In
the work of Shannon (1948a, 1948b), x represents an element of a system of communication, for
example an alphabet, so that px(x) represents the probability mass function of the occurrence of
such elements in relation to transmitted information. In addition, for a continuous random variable
x with probability density function fx(x), the differential entropy is conventionally defined as

H(x) = −
∫
x
fx(x) ln fx(x) dx , (3)
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which is in analogy with (2). We postpone consideration of this continuous case for a later section.
Note straightaway that we are using the natural logarithm in these definitions, consistent with

the standard definition of the Gibbs entropy. However, the base of the logarithm may vary de-
pending on the conventions of the field of application.1 Then notice that according to the law of
the unconscious statistician the Gibbs entropy is the expectation — the average — of the quantity
− ln px(x) = ln[1/px(x)] multiplied by the Boltzmann constant, and the Shannon entropy is just the
average of the quantity − ln px(x) = ln[1/px(x)]. Our task now involves clarifying what ln[1/px(x)]
represents, and the implications of the similar forms of the definitions (1) and (2). We examine the
context of the definitions (1) and (2) in the next section.

To simplify notation we denote pi = px(xi) for discrete values xi. We refer to xi as an outcome,
so we may say pi is the probability that the ith outcome will occur. We now denote an information
function or surprisal as I(pi). This function has three properties. First, I(pi) monotonically
decreases with pi. That is, the information represented by the occurrence of a particular outcome
decreases as the likelihood of the outcome increases. Or, the occurrence of an unsurprising (likely)
outcome represents less information than one whose occurrence is surprising (unlikely). Second,
when pi = 1 then I(pi = 1) = 0, which coincides with an outcome whose occurrence is completely
certain with no surprise. Third, consider the joint occurrence of two independent outcomes x1

and x2 with probabilities p1 and p2. Given that the probability of the joint occurrence of the
outcomes x1 and x2 is p1p2, Shannon insisted that the information I(p1p2) represented by the
joint occurrence should be given by I(p1p2) = I(p1) + I(p2). That is, the total information of the
joint occurrence is the sum of the information represented by each outcome. Shannon thus defined
I(pi) = log(1/pi) = − log pi, which satisfies the three desired properties. We may thus write the
Shannon entropy as

H =
∑
i

I(pi)pi , (4)

showing that the entropy is the average information content of an event or series of events taking
into account all possible outcomes represented by the distribution pi.

Because the Shannon entropy usually appears in relation to communication and signal process-
ing, we should be clear about the meaning of information content as used here. In writing text
we normally intend the text to inform (i.e. provide information to) its audience about a topic, in
which case the intended meaning of the text must be clear from our construction of the elements
— the characters of the alphabet or the words — selected with varying probabilities from the set of
possible elements. However, the definition of entropy in (4) does not depend on the meaning of the
transmitted information. Rather, the information that is characterized by the entropy is actually
information about the form of the probability distribution pi that describes the likelihood of the
occurrence of the outcomes (the characters or words), not the meaning of the characters and words
per se. These comments apply more broadly to operational applications of information entropy in
encoding and transmitting messages, data compression, image processing and so on.

In considering mechanical systems it is more useful to focus on the idea of entropy as a mea-
sure of uncertainty, or our absence of knowledge, rather than information per se. (This becomes
essential when we consider the differential entropy given by (3) in Section 4.) This emphasizes the

1Normally the base 2 logarithm is used in information theory. Moreover, because px(x) in (1) and (2) is di-
mensionless, taking the logarithm ln px(x) presents no issues. However, because the density fx(x) in (3) may have
dimensions determined by x, care must be given to casting x as a dimensionless quantity, or ensuring that dimensions
are correctly preserved in manipulations of (3).
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distribution of possible outcomes rather than the outcomes themselves. Thus, consider the canon-
ical example of a Bernoulli trial representing a coin toss. Letting pi denote the probability of the
two possible outcomes k = [0, 1] given by the Bernoulli distribution, then p1 = p is the probability
that k = 1 will occur and p2 = q = 1 − p is the probability that k = 0 will occur. The entropy is
then given by

H = −
2∑
i=1

pi ln pi

= −p ln p− q ln q

= −p ln p− (1− p) ln(1− p) . (5)

The entropy H systematically varies with p (Figure 1). It is zero at p = 0 and p = 1 with a

Figure 1: Plot of Shannon entropy H versus the probability p associated with a Bernoulli distribu-
tion.

maximum at p = 1/2. Taking the derivative dH/dp and setting the result to zero,

ln p = ln(1− p) . (6)

Exponentiation gives p = 1 − p, or p = 1/2. Thus, the entropy H is a minimum with a perfectly
unfair coin (p = 0, 1) and it is maximized with a fair coin (p = 1/2). Moreover, the entropy does
not favor the outcome k = 0 or k = 1. For example, it is the same for p = 0.8 with q = 1−0.8 = 0.2
and q = 0.8 with p = 1 − 0.8 = 0.2. Using the language of information, each successive toss of a
perfectly unfair coin provides no new information, as the outcome is certain. Each toss of a fair
coin provides the maximum information.2 Note, too, that the Bernoulli distribution with maximum
entropy coincides with a uniform distribution.

It should be clear from this example that the uncertainty of the outcome of a coin toss is a
maximum when p = 1/2, coinciding with the maximum entropy condition. This extends to multiple
trials as well as systems of coins. For example, with four trials and p = 1 the Bernoulli distribution

2Using base 2 logarithms, each toss of a fair coin (p = 1/2) provides one bit (one shannon) of information. Two
trials give I(p2) = I(p) + I(p) = 2 bits. Because p = q, n trials give n bits, regardless of the individual outcomes.
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tells us that we must have one sequence of four 1s. We thus have complete knowledge of the system
with no uncertainty. Likewise, for p = 0 we must have one sequence of four 0s with no uncertainty.
But with p = q = 1/2 there are 24 = 16 possible unique sequences of 0s and 1s with maximum
uncertainty in their order of appearance.

Instead of trials, consider a system of four coins. With p = 1 all four must be 1s, or if p = 0
all four must be 0s, with no uncertainty. But with p = 1/2 we have two coins with 0s facing up
and two with 1s facing up. Now with maximum uncertainty we have six possible arrangements:
[1 1 0 0], [1 0 1 0], [1 0 0 1], [0 1 1 0], [0 1 0 1] and [0 0 1 1]. As a preview of material in the next section,
this configuration involving four coins with two 0s and two 1s may be viewed as a macrostate, and
the six arrangements may be viewed as microstates.

More generally, consider a distribution px(xi) describing an arbitrarily large number of possible
states xi. Then let us recall the comments of Jaynes appearing in the preamble above, “...that a
broad distribution represents more uncertainty than does a peaked one...” If px(xi) has a sharp peak
centered on a particular value of xi, then the occurrence of this and immediately surrounding values
is unsurprising, like the outcome of an unfair coin, relative to values of xi with small probabilities
px(xi). In contrast, if px(xi) is relatively uniform over all xi, then our uncertainty about the likely
occurrence of any xi increases, and this uncertainty is what the entropy is measuring.

Experience suggests that confusion can arise from the idea that a high entropy condition has
greater information content than a low entropy condition. This has to do with the meaning of
information as used in different contexts. With certain physics and geometry problems we some-
times associate “information” with such things as system configuration. Using the example from
the preamble, we might imagine the fully dissolved ink molecules as having lost all “information”
concerning the configuration of the low entropy, highly organized initial conditions of the molecules
(the drop), thus implying that low entropy is associated with high information content. Likewise
we might associate spatial randomness of moving particles on a streambed with high entropy, where
the statistical uniformity in the arrangement of the particles implies that information associated
with a more organized arrangement (e.g. clustering; Roseberry et al., 2012) is missing. These views
of entropy and information are reasonable, but they differ from the meaning of information and its
relation to entropy in information theory.

For completeness we note that non-traditional definitions of entropy exist. For example the
Tsallis (1988) entropy is intended to address non-additive entropies of independent events, and has
been applied to various specialized systems. Here, however, we adopt the view of Peterson et al.
(2013), who highlight the conclusions of Shore and Johnson (1980). Namely, because the definitions
of entropy provided by Gibbs and Shannon uniquely ensure addition and multiplication rules of
probability, any other definition of entropy yields a bias in the fitting of data. Peterson et al.
(2013) suggest that this offers a “compelling first-principles basis for defining a proper variational
principle for modeling distribution functions” (Section 4).

We started this section by presenting the definitions of the Gibbs entropy and the Shannon
entropy, then focused on the meaning of the information function I(pi) = ln(1/pi) = − ln(pi)
appearing in these definitions and its relation to uncertainty represented by the probability distri-
bution pi. Our next task is to examine the context of the definitions (1) and (2) to gain a sense of
where they come from.
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3 Macrostates, Microstates and the Boltzmann Distribution

Consider a system containing a fixed number N of particles. For simplicity this system consists
of an isolated box containing the N particles. We are interested in two attributes of the particles:
their spatial configuration and their energy states. Each particle has three degrees of freedom
in movement defined by its xyz coordinate position, and three degrees of freedom defined by its
velocity components parallel to the three coordinate directions. The N particles are free to move
anywhere within the box, and at any successive instants they are in different configurations. Due
to particle–particle collisions the energy of an individual particle changes, so at any instant the N
particles have a distribution of energy states. We now want to know the most likely configuration
and the most likely distribution of energy states. We start with particle positions.

3.1 Configurations

To illustrate the essential points involved, we use an example involving a small (manageable)
number of particles N . We also choose a small box, and further imagine it to be “one-dimensional”
such that we can focus just on the x coordinate positions of the particles. With N = 4, suppose
the particles are constrained to be in four possible coordinate positions: x1, x2, x3 and x4. Now
consider all possible arrangements of the four particles in these four coordinate positions (Figure
2). Each possible configuration is a macrostate. In general, for N particles distributed among m

Figure 2: Schematic illustration of 35 macrostates involving four particles and four coordinate
positions, together with the number of microtates in each macrostate.

coordinate positions the number of macrostates is given by

Ne =
(N +m− 1)!

N !(m− 1)!
. (7)

In our example with N = 4 and m = 4 there are Ne = 35 macrostates.
Classical particles are distinguishable with respect to coordinate position and velocity, and thus

energy. Here we focus just on coordinate position. To see the significance of this we label the four
particles as A, B, C and D. Now consider the first macrostate in which the number of particles
n1 = 4 in position x1 (Figure 3). Because all particles are in the same coordinate state x1, they
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Figure 3: Schematic illustration of the first, second and fifth macrostates in Figure 00, showing
associated microstates with four distinguishable particles A, B, C and D. Note that the ordering
of particles within an individual coordinate position is immaterial, and that the first macrostate at
position x1 also is a microstate.

are indistinguishable. In contrast, consider the second macrostate with n1 = 3 in x1 and n2 = 1
in x2. The single particle at position x2 could be A, B, C or D. But any three particles in the
same position x1 are indistinguishable with respect to coordinate position. Thus, for the second
macrostate there are a total of four possible arrangements of the four distinguishable particles in
two coordinate states, x1 and x2. Each of these four possible arrangements is a microstate. In
general, for N particles distributed among m coordinate positions the number of microstates in a
macrostate is given by

ne =
N !

n1!n2!n3!...nm!
, (8)

where n1, n2, n3, ..., nm denotes the numbers of particles in the coordinate states x1, x2, x3, ..., xm.
Notice in our example that each macrostate with all four particles in one coordinate state has one
microstate (Figure 2). That is, the macrostate coincides with the microstate. Also notice that the
macrostate with one particle in each of the four coordinate states has 24 microstates.

This enumeration of distinguishable particle states is referred to as Maxwell–Boltzmann count-
ing (or Maxwell–Boltzmann statistics). The numerator in (8) gives the total number of ways to
uniquely order N distinguishable particles into distinct coordinate positions. The denominator
removes from the counting those instants in which, with ni > 1, the particles are indistinguishable
with respect to coordinate position. A second type of counting, referred to as Bose–Einstein statis-
tics, focuses on indistinguishable particles, essentially starting with (7). Bose–Einstein statistics
converge to Maxwell-Boltzmann statistics at high temperatures or with sufficiently small particle
number densities.

With reference to Figure 2, all 35 macrostates are admissible representations of the system
for the given constraints, and in turn, each of the 256 microstates is an admissible representation
of the system. Four macrostates have one microstate, 12 macrostates have four microstates, six
macrostates have six microstates, 12 macrostates have 12 microstates, and one macrostate has 24
microstates. Following Gibbs (1902), we designate this set of 256 microstates as an ensemble of
microstates.3 We now make a far-reaching assumption — the foundational assumption of clas-
sical statistical mechanics. Namely, we assume that all microstates are independent and equally
likely. That is, each microstate has a probability equal to 1/256 of occurring. Using all digits,

3In effect we imagine, as did Gibbs (1902), “a great number of independent systems, identical in nature, but
differing in phase, that is, in their condition with respect to configuration and velocity.”
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the probability is 4/256 = 0.015625 that the system has all particles clumped at one coordinate
position. The probability is 48/256 = 0.1875 that the system has a clump of three particles at
one coordinate position and one at another position. The probability is 36/256 = 0.140625 that
the system has two particles in each of two positions. The probability is 144/256 = 0.5625 that
the system has two particles in one position and one particle in each of two positions. And, the
probability is 24/256 = 0.09375 that the system has one particle in each of four positions. These
probabilities sum to unity. Thus clumping is less likely than is a more uniform configuration. As we
will see below, clumping represents a relatively low entropy configuration and uniformity represents
a relatively high entropy configuration.

We can go beyond this. Because the microstates are assumed to be equally probable, we can
calculate expected proportions of particles in each coordinate position by averaging over the 256
microstates. This amounts to summing the product nine in each coordinate position, then dividing
by the total sum of this product over all coordinate positions. More directly, we can observe in
Figure 2 that the four coordinate positions contain identical sets of ni. We therefore discover that
the expected distribution px(xi) of coordinate states xi is uniform and equal to 1/m = 1/4. That
is, upon selecting a particle at random, the probability that it is located within any one of the four
coordinate positions is px(xi) = 1/4. Let us note that this averaging over all microstates is doable
for small numbers of macrostates and microstates. But as we will see next, this is not the strategy
that Boltzmann adopted.

Let us now consider a slightly more formal analysis, loosely following the presentation of Furbish
and Schmeeckle (2013) and unpublished notes of A. M. Steane, to provide a view of the original
arguments of Boltzmann and in turn the basis for appealing to entropy in describing probability
distributions. We start by assuming large N and large n1, n2, n3, ... in (8). As a point of reference,
for N = 10 particles distributed among m = 2 coordinate states, there are a total of Ne = 11
macrostates and a total of ne = 1 024 microstates. For N = 10 and m = 5, there are Ne = 1 001
macrostates and ne = 9 765 625 microstates. And, for N = 10 and m = 10, there Ne = 92 378
macrostates and ne = 1010 microstates. One can imagine that these numbers become unimaginably
large for gas systems involving the Avogadro number of 6.022 140 76× 1023 particles per mole and
a great number of coordinate states.

Using Stirling’s approximation of factorials we write (8) as

lnne = N lnN −N −
∑
i

(ni lnni − ni) . (9)

Now note that ni = Npi, where for simplicity of notation the probability mass function pi = px(xi).
Then (9) becomes

lnne = N lnN −N −N
∑
i

[pi(ln pi + lnN)− pi]

= N lnN −N −N
∑
i

pi ln pi −N lnN
∑
i

pi +N
∑
i

pi . (10)

By the definition of a probability distribution the last two sums equal unity, so

lnne

N
= −

∑
i

pi ln pi . (11)

Observe that the sum in (11) is the Shannon entropy of the distribution pi, which is notable in
that we have reached this point just based on the counting of particle states. Also notice that
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the Boltzmann constant kB is not involved. That is, the formulation that follows launches from
the Shannon entropy rather than the Gibbs entropy. As an aside, if we interpret (11) in terms of
information content, and using our example with four particles, then the right side of (11) gives
the average information content of the configuration of particles in the four coordinate states xi
depending on the set of pi and thus the macrostate.

We now want to know the set of pi that gives the maximum number of microstates ne, which is
the same as the set of ni, and thus the macrostate, that maximizes ne. In this problem, maximizing
ne is the same as maximizing lnne. And to be clear, maximizing ne is the same as maximizing the
entropy given by the right side of (11). To proceed we use the method of Lagrange multipliers. We
denote f(pi) = lnne/N so that

f(pi) = −
∑
i

pi ln pi . (12)

To constrain the problem we specify that the probabilities sum to unity,∑
i

pi = 1 (13)

We now write

f(pi) = −
∑
i

pi ln pi + α

(∑
i

pi − 1

)
, (14)

with Lagrange multiplier α. The function f has a stationary value when

∂f

∂pj
= 0 . (15)

Here, pj denotes the set of pi representing the maximum, and we note that the derivative ∂f/∂pj = 0
for all pi 6=j . Taking derivatives over the system of equations then leads to

ln pj + 1− α = 0 . (16)

Thus, the set of pj (the macrostate) representing the maximum number of microstates is

pj = eα−1 . (17)

Because eα−1 is a constant, pj = px(xj) must be a uniform distribution. Specifically, because the
set of pj must sum to unity over m discrete coordinate positions,

m∑
j=1

pj =

m∑
j=1

eα−1 = eα−1m = 1 . (18)

From this it follows that

pj =
1

m
. (19)

That is, the most probable configuration of the set of ni and thus xi is uniform. Moreover, among
all possible configurations, this uniform configuration of particle coordinate states is the one with
the maximum entropy.

Recall in our example with small N and m that we inferred the most likely particle configuration
as being uniform by averaging the particle positions over all equally probable microstates. This is
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possible for small N and m, but is not manageable with large N and m. Here we emphasize that,
instead, Boltzmann aimed at determining the macrostate representing the most microstates. We
examine the justification for this strategy when we consider energy in the next section.

Here is a point of interest with important implications for interpreting sediment systems. The
arguments presented above apply to arbitrarily large numbers N and accessible coordinate positions
x, y and z. Consider the air particles in an ordinary classroom. These particles are, by chance,
continuously transitioning from one configuration microstate to another among a great number
possible. At any instant there is a small but finite probability that all particles, by chance, will
become clumped within a small volume in the room, representing a low-probability microstate.
The reason we do not see this configuration occur is not because it is not possible. Rather, this
configuration and others like it are highly improbable. Most possible microstates are virtually
identical, and are essentially uniform in the configuration of particle locations. Collectively these
microstates are highly probable, and this is what we experience from one instant to the next. For
fun, we can use the binomial distribution to estimate the likelihood of “observing” all air molecules
within a small volume at some instant. This involves N trials with k = N successes with the
probability of a success equal to p = 1/m. Partitioning a classroom of volume ∼ 1 000 m3 into
cubic meter volumes gives p ∼ 10−3. With 1025 molecules per cubic meter, N ∼ 1028. So assuming
a grand amount of time to wait for it (here we are neglecting the time element of the calculation),
the probability of observing all air molecules within a cubic meter is ∼ 0.0011028 . I think we can
take our chances that we will not suddenly be within a vacuum while listening to a lecture.

Consider a counterfactual. Suppose our classroom contains a relatively small number of air
molecules representing rarefied conditions in the outer atmosphere of Earth. With N = 100, the
probability of observing all of them at some instant within a cubic meter is now ∼ 0.001100. This is
still a small number, but not as unimaginably small as the example above. On the other hand, and
more importantly, the probability is ∼ 0.905 that any cubic meter contains no molecules at any
instant, and the probability is ∼ 0.091 that any cubic meter contains one molecule at any instant.
Because the 100 molecules must be moving among the 1 000 cubic meter partitions, this means
we would certainly perceive the fluctuations in the particle configurations (microstates) from one
instant to the next. This is at the heart of the matter in considering the small numbers of sediment
particles involved in rarefied (non-continuum) transport conditions. That said, we now turn to
particle energies, which was the focus of Boltzmann’s efforts in this problem.

3.2 Energy States

Again consider a system containing a fixed number N of particles. We now imagine that these
particles can be arranged in a great number of different energy states, ε1, ε2, ε3, ..., and we let
n1, n2, n3, ... denote the numbers of particles in these states. As with particle configurations, there
are a great number of ways to arrange N particles into the different energy states, and we want
to know the most likely arrangement. In contrast to particle configurations, here we impose an
additional constraint on the possible arrangements. Namely, we insist that the total energy E of
the N particles is fixed. By fixing the system volume, the number of particles N and the total
energy E of the particles, we are considering what is referred to as a microcanonical ensemble of
possible microstates. In the language of thermodynamics, this coincides with an isolated system
with fixed mass, pressure and temperature.

Recall that classical particles are distinguishable with respect to coordinate position and veloc-
ity, and thus energy. Absent a gravitational field, particle velocities in a microcanonical ensemble
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are independent of coordinate positions, so here we may focus just on energy. Using our exam-
ple from above, consider all possible arrangements of N = 4 particles in different energy states
ε1, ε2, ε3, ..., εm such that the total energy of each arrangement is E = 10 (Figure 4). For simplicity

Figure 4: Schematic illustration of nine macrostates involving four particles together with the
number of microstates in each macrostate. The total energy E = 10.

of illustration we are setting the energy states to integer values: ε1 = 1, ε2 = 2, ε3 = 3, .... Each of
these nine arrangements is a macrostate. In turn, for distinguishable particles we can specify the
number of microstates associated with each macrostate using (8), where now the energy εm can be
no larger than the total energy E, which must be much smaller than the energy associated with
the speed of light. As before, in our example a macrostate with all four particles in one energy
state coincides with a microstate.

Here we make a key observation. Suppose that we had not constrained the total energy of
the particles, but instead allowed them to randomly occupy all energy states up to and including
E = 10. According the (7) the number of possible macrostates would be Ne = 715, and as a
consequence there would be a great number of possible microstates. Thus, because each macrostate
is constrained to possess a total energy E = 10, we are now focused on a subset of the imagined
possible (unconstrained) macrostates, namely, those in which the sum of the particle energies is
fixed. Concomitantly, the total number of microstates is reduced, and we may refer to these as
accessible microstates.

With reference to Figure 4, all nine macrostates are possible representations of the system for
the given constraints, and in turn, each of the 84 microstates is a possible representation of the
system. We again appeal to the foundational assumption of classical statistical mechanics, that all
microstates are independent and equally likely. Thus each microstate has a probability equal to
1/84 of occurring. As with particle configurations we calculate the expected proportions of particles
in each energy state by averaging over the 84 microstates, and we discover that the distribution
pε(εi) of energy states εi is decidedly not uniform (Figure 5). In fact, this bounded exponential-like
distribution provides a glimpse of the Boltzmann distribution, which comes next.

Closely following the development above we again have

lnne

N
= −

∑
i

pi ln pi , (20)
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Figure 5: Probability distribution pε(εi) of energy states εi based on the 84 microstates involving
four particles in Figure 4.

where now ne is the number of energy microstates in a macrostate and pi = pε(εi) is the probability
mass function of the particle energy states εi. As before we want to know the set of pi that gives
the maximum number of microstates ne. We again denote f(pi) = lnne/N so that

f(pi) = −
∑
i

pi ln pi . (21)

To constrain the problem we again specify that the probabilities sum to unity,∑
i

pi = 1 , (22)

and then add a second constraint, that with fixed N and E the distribution of energy states has
finite mean µε = E/N , ∑

i

εipi = µε . (23)

We now write

f(pi) = −
∑
i

pi ln pi + α

(∑
i

pi − 1

)
+ λ

(∑
i

εipi − µε

)
, (24)

with Lagrange multipliers α and λ. We again take derivatives ∂f/∂pj over the system of equations
to give

ln pj + 1− α− λpj = 0 . (25)

Thus, the set of pj (the macrostate) representing the maximum number of microstates is

pj = eα−1eλεj , (26)

which represents the Boltzmann distribution.
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Based on separate arguments the Lagrange multiplier λ = −1/kBT where T is absolute temper-
ature. The quantity eα−1 is a constant, and we treat it as a normalization factor. That is, because
the distribution pj must sum to unity we now write (26) as

pj =
e−εj/kBT∑m
j=1 e

−εj/kBT
. (27)

The denominator in (27) is referred to as a partition function. In addition, if 〈Nj〉 denotes the
expected number of particles in the jth energy state, then 〈Nj〉 = Npj so that

〈Nj〉
N

=
e−εj/kBT∑m
j=1 e

−εj/kBT
. (28)

The Boltzmann distribution is the starting point for deriving the Maxwell–Boltzmann distributions
of particle speeds, velocities, momenta and kinetic energies for ideal gases at thermal equilibrium.
In addition the Boltzmann distribution can be generalized in essentially the same form to the case
of a canonical ensemble in which the number of particles, the system volume and the temperature
are fixed, and to the case of a grand canonical ensemble in which the system volume and the
temperature are fixed but the system can exchange particles with its surroundings (e.g. Tolman,
1938).

Consider the justification for choosing the macrostate with the most microstates versus at-
tempting to average over all microstates. Substituting our notation in the comments of Edwin
Schrödinger (1952, p. 6) on this matter,

...all [micro]states of the assembly are embraced — without overlapping — by the classes
[macrostates] described by all different admissible sets of numbers ni... The number of
single [micro]states, belonging to this class [macrostate], is obviously (00)... The present
method [of the most probable distribution] admits that, on account of the enormous
largeness of the number N , the total number of distributions (i.e., the sum of all ne’s)
is very nearly exhausted by the sum of those ne’s whose number sets ni do not deviate
appreciably from the set which gives ne its maximum value (among those, of course,
which comply with (00)). In other words, if we regard this set of occupation numbers
as obtaining always, we disregard only a very small fraction of all possible distributions
— and this has “a vanishing likelihood of ever being realized”.

This points to our earlier assertion that most microstates appear similar to those in the one
macrostate having the most microstates. That is, one must not imagine that a system is constrained
just to the set of microstates in the one macrostate identified by the maximization method. There
are a great number of macrostates that are virtually (statistically) identical to the one macrostate
identified, and as a consequence there are a great number of virtually identical microstates. Thus,
the system continuously fluctuates among a great number of possible microstates, but the distri-
bution of energy states does not deviate appreciably from the expected distribution. This likewise
means that conditions described by the Maxwell–Boltzmann distributions of particle speeds, veloci-
ties and kinetic energies continuously fluctuate, but these fluctuations do not appreciably vary from
the expected conditions. Numerical simulations of manageably small numbers of classical particles
moving about in an isolated box nicely illustrate this point, and are readily available on numerous
websites. Conversely, because the numbers are relatively small, the fluctuations are readily appar-
ent in such simulations. To complete the story of a Gibbs ensemble, we summarize in Appendix A
the idea of a phase space as used in classical statistical mechanics.
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4 Maximum Entropy Distributions

With respect to sediment transport research, entropy really is about uncertainty, and about being
as faithful to our uncertainty as we are to what we think we know — notably in view of the neces-
sary coarsening of physics to the sediment particle scale and larger. The celebrated physicist and
mathematical probabilist Edwin Jaynes championed these points — that entropy and uncertainty
are synonymous, and that an important element of our intellectual honesty in doing science resides
in formalizing this uncertainty. For example, in reference to using a criterion of maximum entropy
in selecting a probability distribution Jaynes suggests:

The maximum entropy distribution may be asserted for the positive reason that it is
uniquely determined as the one which is maximally noncommittal with regard to missing
information [p. 623]. [T]he maximization of entropy is not an application of a law of
physics, but merely a method of reasoning which ensures that no unconscious arbitrary
assumptions have been introduced [p. 630]. (Jaynes, 1957a)

Jaynes (1957a, 1957b) elaborated the significance of the fact that the Gibbs entropy in statistical
mechanics and the Shannon entropy in information theory are essentially one and the same, differing
only by a constant. This similarity inspired Jaynes to champion the use of a maximum entropy
criterion in choosing a probability distribution, leading to what is now known as the maximum
entropy method (aka MaxEnt or MEM). The key idea of the maximum entropy method, whether
viewed as a method of statistical mechanics or as one of inferential statistics, is that it provides
an unbiased choice of a distribution by honoring only what is known mechanically about a system.
That is, this unbiased choice is a maximally noncommittal choice that is faithful to what we do not
know; it is therefore the most reasonable choice in the absence of additional information (Jaynes,
1957a; Williamson, 2010, pp. 25 and 51). Importantly, mechanical constraints imposed on the
system are part of the choice of the distribution, as opposed to empirical fitting without regard
to such constraints. The maximum entropy method has been applied in a remarkable variety
of fields (Shore and Johnson, 1980; Ramirez and Carta, 2006; Verkley and Lynch, 2009; Singh,
2011; Peterson et al., 2013; Golan and Harte, 2022), including sediment transport (Furbish and
Schmeeckle, 2013; Furbish et al., 2016, 2021b).

In using the maximum entropy method, constraints imposed on the system normally translate
to constraints imposed on the moments of the distribution. In this case the method leads to a
distribution that is among the exponential family (e.g. exponential, Gaussian). However, appli-
cations of the maximum entropy method to non-exponential distributions, including heavy-tailed
distributions, are of particular interest in many problems (Peterson et al., 2013). Applying this
method to heavy-tailed distributions presents a special challenge (Furbish et al., 2021b) in that
the first or second moment, or both of these moments, may be undefined for such distributions.
Hereafter we focus on the differential entropy.

If x denotes a continuous random variable distributed as fx(x) with support x ∈ [0,∞), then
the differential entropy of x is conventionally defined as

H(x) = −
∫ ∞

0
fx(x) ln fx(x) dx , (29)

where it is understood that fx(x) ln fx(x) = 0 when fx(x) = 0. In turn, let gj(x) denote a
measurable quantity of x with j = 0, 1, 2, ..., n. We then assume that

E [gj(x)] =

∫ ∞
0

gj(x)fx(x) dx = aj , (30)
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with finite aj . For example, if g0(x) = g0 = 1, then (30) gives a0 = 1. That is, the density
fx(x) integrates to unity. If g1(x) = x, then (30) gives the mean of the distribution, a1 = µx.
If g2(x) = (x − µx)2, then (30) gives the variance, a2 = σ2

x. Note, however, that gj(x) need
not be selected just to obtain the usual moments of a distribution. Indeed, (30) may represent a
constraint imposed by a function gj(x) that does not coincide with a moment of fx(x). This is
essential for heavy-tailed distributions whose first or second moment, or both of these moments,
is undefined (Peterson et al., 2013; Furbish et al., 2016c). Whether obtained from the method of
Lagrange multipliers (as in Section 3 above) or from a variational method, the maximum entropy
distribution is then given by

fx(x) = exp

 n∑
j=0

λjgj(x)

 , (31)

where λ0, λ1, λ2, ... are Lagrange multipliers introduced in the problem of maximizing the entropy
H(x). Moreover, we set g0(x) = g0 = 1 with a0 = 1, which guarantees that the probability density
fx(x) integrates to unity.

As a point of reference, a fixed mean with g1(x) = x and no other constraint leads to the result

fx(x) = eλ0eλ1x . (32)

The Lagrange multipliers are then obtained as follows. By the definition of a probability density,

eλ0
∫ ∞

0
eλ1x dx = 1 , (33)

which leads to eλ0 = −λ1. Alternatively, (33) may be written as

fx(x) =
eλ1x∫∞

0 eλ1x dx
, (34)

where it becomes clear that eλ0 is a normalization factor that ensures the probability density
integrates to unity. In turn, by the definition of the mean,

−λ1

∫ ∞
0

xeλ1x dx = µx , (35)

which leads to λ1 = −1/µx and the exponential distribution,

fx(x) =
1

µx
e−x/µx , (36)

where it becomes clear that the Lagrange multiplier λ1 enforces the constraint of a fixed mean.
With support x ∈ R the Gaussian distribution is similarly obtained as the maximum entropy
distribution with the additional constraint imposed by a fixed second moment (variance).

We must add caveats regarding the interpretation of the differential entropy. First, if the random
variable x has dimensions, then the probability density fx(x) has dimensions and the differential
entropy given by (29) is not dimensionally sound. This means that x must be dimensionless or
recast in dimensionless form, or care must be given to ensuring that dimensions are preserved in
manipulating (29). For example, notice that the expression for the maximum entropy distribution
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given by (31) is dimensionally sound so long as the product λjgj(x) is dimensionless. This occurs
because the maximization procedure removes the logarithm of fx(x).

Second, the Shannon entropy is formally restricted to discrete random variables and is a positive
quantity. The differential entropy therefore must be viewed as an analogy with the Shannon
entropy.4 Recall that the definite integral of a continuous function can be obtained from the limit
of a Riemann sum as ∫ ∞

−∞
fx(x) dx = lim

∆x→0

∞∑
i=−∞

fx(xi)∆x . (37)

By interpreting fx(xi)∆x = pi as the discrete probability associated with the small interval ∆x,
we now write a Shannon-like entropy as

H∗(x) = −
∞∑

i=−∞
fx(xi)∆x ln[fx(xi)∆x] .

This is dimensionally sound and may be interpreted as a Shannon entropy so long as the interval
∆x is specified. In effect it represents a discretization of the probability density fx(x). However,
expanding the logarithm gives

H∗(x) = −
∞∑

i=−∞
fx(xi)∆x[ln fx(xi) + ln(∆x)]

= −
∞∑

i=−∞
fx(xi)∆x ln fx(xi)−

∞∑
i=−∞

fx(xi)∆x ln(∆x) . (38)

Taking the limit as ∆x→ 0 then leads to

H∗(x) = −
∫ ∞
−∞

fx(x) ln fx(x) dx+∞ , (39)

in that ln(∆x) → −∞ as ∆x → 0. That is, the differential entropy is not a limit of the Shannon
entropy as the interval ∆x goes to zero in a Riemann sense. The differential entropy is offset from the
Shannon entropy by an infinite amount, and it may be defined as H(x) = lim∆x→0H

∗[x+ ln(∆x)].
Jaynes (1963) addresses these points and offers a modified definition of the differential entropy that
views it as the limit of an increasingly dense discrete distribution, analogous to a Riemann sum.
Operationally the maximum entropy method reduces to the result given by (31).

As a point of reference, using (29) the differential entropy of the exponential distribution is

H(x) = 1− ln

(
1

µx

)
= 1 + lnµx . (40)

This illustrates that the differential entropy cannot be interpreted in terms of the Shannon infor-
mation content, as H(x) becomes negative with small values of the mean µx. Nonetheless, this
decrease corresponds with decreasing uncertainty; the mode of the distribution at x = 0 sharpens
with decreasing µx such that most values of x are close to the origin. Conversely, as H(x) increases

4Shannon presented the differential entropy as an analogue of the discrete entropy but did not elaborate the
relation between the two.
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with increasing µx, uncertainty in the occurrence of any value x increases with flattening of the
distribution to a more uniform condition.

The maximum entropy method has been used to describe the energetics of rarefied particle
motions on hillslopes (Furbish et al., 2021b) as well as bed load particle velocities (Furbish and
Schmeeckle, 2013; Furbish et al, 2016) to suggest how the probability distributions of these mo-
tions reflect mechanical constraints. This work is focused on the idea that mechanical constraints
imposed on the system are part of the choice of the distribution, as opposed to empirical fitting
without regard to such constraints. With respect to rarefied particle motions on hillslopes, the anal-
ysis is satisfying in that it reveals how the transition from a light-tailed form of the distribution of
travel distances to a heavy-tailed form involves no real change in the physics of particle–surface in-
teractions, thus reinforcing the physical (versus mathematical) interpretation of nonlocal transport
(Furbish and Haff, 2010; Doane, 2018; Doane et al., 2018; Furbish et al., 2021a, 2021b). However,
with respect to bed load particle motions the analysis is less satisfying in that we have information
about the dynamics of these motions that cannot (yet) be readily cast as a mechanical constraint
in the maximum entropy method.

A Phase Space

To complete the story of a Gibbs ensemble, consider Figure 2, Figure 3 and Figure 4. These give
a static view of particles in different states. As described above, however, individual particles
are continuously moving among accessible coordinate and energy states such that the system is
continuously transitioning from one microstate to another among a great number possible — an
ensemble of microstates — subject to imposed constraints. This leads to the idea of a phase space.

We need to appeal to generalized coordinates and velocities versus our familiar view of things.
Starting with the familiar view, the instantaneous state of a classical particle is defined by its
position and velocity. We are then accustomed to specifying the state of a particle using three
position coordinates and three velocity components, representing six degrees of freedom. A sys-
tem consisting of N particles thus involves 6N degrees of freedom. Letting subscripts 1, 2, 3, ...
denote individual particles, then their coordinate states are normally specified as a set of tuples:
(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), ..., (xN , yN , zN ). Similarly, particle velocities are specified as a
set: (u1, v1, w1), (u2, v2, w2), (u3, v3, w3), ..., (uN , vN , wN ). The instantaneous state of a system is
then specified by a set of N points located in the spaces defined by three coordinate axes and three
velocity axes.

Let us now instead choose generalized coordinates and velocities denoted by q and q̇ = dq/dt.
These coordinates and velocities are identified with individual particles, but not in the sense above.
Rather, they refer to degrees of freedom, so now the subscripts 1, 2, 3, ... refer to these degrees of
freedom rather than the particles per se. We thus map x1 = q1, y1 = q2, z1 = q3 and x2 = q4,
y2 = q5, z2 = q6, then so on to xN = q3N−2, yN = q3N−1, zN = q3N . Similarly with velocities,
u1 = q̇1, v1 = q̇2, w1 = q̇3 and u2 = q̇4, v2 = q̇5, w2 = q̇6, then so on to uN = q̇3N−2, vN = q̇3N−1,
wN = q̇3N . We then imagine a 6N -dimensional phase space (a hyperspace) whose axes consist of the
6N degrees of freedom. In contrast to the previous specification of the state of a system involving
N points in three-dimensional coordinate and velocity spaces, the state of a system involving N
particles is completely specified by a single point in the 6N -dimensional phase space. Moreover,
with distinguishable particles this point in the phase space coincides with a microstate of the system
such that its phase trajectory reflects movement of the system among accessible microstates. In
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addition, the states of an ensemble of systems consist of a set of points in this phase space, each
moving along a phase trajectory.

As impossible as it is to envision a 6N -dimensional phase space, we can actually gain the essence
of what this is point of view is describing by examining a low-dimensional system. Following Kittel
(1958), let us imagine a two-particle system where each particle is free to move with varying
velocities in one dimension parallel to x. Thus each particle has two degrees of freedom and the
system has 2N = 4 degrees of freedom. Assuming positions and velocities are independent, we
focus on velocities. We now have u1 = q̇1 and u2 = q̇2. Assuming microcanical conditions the total
kinetic energy E of the system is fixed, so

q̇2
1 + q̇2

2 = C , (41)

where C = 2E/m. This is just the equation of a circle in the q̇1q̇2 phase space. Thus, for a
given total kinetic energy within the infinitesimal interval dE at E, the probability distribution
fq̇1,q̇2(q̇1, q̇2) of velocities q̇1 and q̇2 looks like a thin cylinder with radius (2E/m)1/2 in the q̇1q̇2 phase
space. Because each microstate is equally probable, and because we have no information regarding
initial states, the distribution is uniform over the cylinder. If instead we consider a three-particle
system such that q̇2

1 + q̇2
2 + q̇2

3 = C, then the probability distribution of the velocities looks like a
spherical shell in the q̇1q̇2q̇3 phase space.
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