
Estimating π from raindrops

David Jon Furbish
Emeritus, Vanderbilt University

A delightful way to estimate the number π =
3.14159... involves simultaneously counting rain-
drop impacts on a circular sensor and a square
sensor during a rainstorm. Experimental demon-
strations of this idea occasionally are posted
on various websites. Perhaps understandably,
the explanations provided with these demonstra-
tions focus on the experimental measurements
and calculations, and offer little regarding the
physical basis of why the procedure leads to es-
timates of π. Here I fill in some of the physical
details accompanied by a Monte Carlo code that
illustrates the uncertainty in the procedure.

At a local scale, raindrop impacts on a sur-
face represent a Poisson process in space and
time (Uijlenhoet et al., 1999; Jameson and
Kostinski, 2002; Larsen et al., 2005; Bako et al.,
2017). Consider a horizontal area A impacted
by drops during a rainstorm. With respect to
space, the set of xy coordinate positions of im-
pact locations after a period of time t is com-
pletely spatially random. With respect to time,
let w denote the wait times (or inter-arrival time)
between successive drop impacts on A. A Pois-
son process has the property that the probability
distribution fw(w) of wait times w is exponen-
tial,

fw(w) =
1

µw
e−w/µw , (1)

where µw denotes the mean wait time. Moreover,
successive wait times between impacts are com-
pletely independent. This independence com-
bined with the self-similar properties of the ex-
ponential distribution (1) means that the num-
ber of impacts N(t) occurring within an interval
of time t is entirely independent of the number
occurring within any other non-overlapping in-
terval of time. A Poisson process therefore is

memoryless.
Let R denote the radius of a circular impact

sensor and let D denote the edge length of a
square impact sensor. Then, let J denote the
raindrop impact rate, the number of impacts per
square meter per second. As a point of reference,
J = 1 000 m−2 s−1 represents a heavy rainstorm
(Smith et al., 2009). The expected Poisson im-
pact rate on the circular sensor is λR = πR2J
(s−1) and the expected Poisson impact rate on
the square sensor is λD = D2J (s−1). Now let
NR(t) denote the number of impacts on the cir-
cular sensor at time t and let ND(t) denote the
number of impacts on the square sensor with
NR(0) = ND(0) = 0. These numbers at time t
are described by a Poisson distribution with ex-
pected values E[NR(t)] = πR2Jt and E[ND(t)] =
D2Jt and variances V[NR(t)] = πR2Jt and
V[ND(t)] = D2Jt. We now take the ratio of
the numbers NR(t) and ND(t) to give

lim
t→∞

D2

R2

NR(t)

ND(t)
=
D2

R2

E[NR(t)]

E[ND(t)]
= π (2)

This shows that as the numbersNR(t) andND(t)
increase with time t, then in the limit of t→ ∞
their ratio converges to the number π. Notice
that this result is independent of the impact rate
J .

An experiment with impact sensors collects
the time stamps of impacts during a storm and
successively calculates the ratio (2). As the num-
ber of impacts increases, the value of the esti-
mate of π tends to converge to the true value.
The demonstrations that I have seen usually
involve one realization in which the value ap-
proached 3.14 after a few thousand drop impacts.
What is not usually shown is the uncertainty in
this estimate of π. Recall that at time t the num-
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bers NR(t) and ND(t) possess uncertainty as re-
flected by their finite variances. This means that
there exists a great number of possible outcomes
of the ratio (2) at any time t. That is, this ratio
is described by a distribution of values at time t.

Appended below is a MATLAB code that il-
lustrates this point. If you have MATLAB or
GNU Octave, just copy and paste it into a script
and it should run fine. It plots estimates of π for
a specified number realizations over both time t
and the total number of impacts N(t). If you run
another programming language, then translation
should not be difficult.
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clear;

R = 0.05; % circular sensor radius (m)
D = 0.1; % square sensor edge length (m)
J = 100; % raindrop rate (number of drops per square meter per second)

AR = pi*R^2;
AD = D^2;
A = AR + AD;
lambda = J*A; % Poisson impact rate
mu = 1/lambda;

RR = AR/A;
DR = D^2/R^2;
Nd = 3000; % total number of drop impacts
Nr = 10; % number of realizations

for j=1:Nr
    t(1,j) = exprnd(mu);
    N(1,j) = 1;
end
for j=1:Nr
    for k=2:Nd
        t(k,j) = t(k-1,j) + exprnd(mu);
        N(k,j) = k;
    end
end

for j=1:Nr
    lastR(j) = 0;
    lastD(j) = 0;
end

for j=1:Nr
    for k=1:Nd
        temp = rand;
        if temp <= RR
            lastR(j) = lastR(j) + 1;
        else
            lastD(j) = lastD(j) + 1;
        end
        pi_hat(k,j) = DR*lastR(j)/lastD(j);
    end
end

estimate = mean(pi_hat(Nd,:)) % average of final values of Nr realizations

X1 = [0 min(t(Nd,:))];
X2 = [0 Nd];
Y = [pi pi];

subplot(2,1,1)
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plot(t,pi_hat(:,:),'k',X1,Y,'r','LineWidth',1)
axis([0 min(t(Nd,:)) 1 5])
set(gca,'FontName','Times New Roman')
set(gca,'Fontsize',12)
xlabel('Time $t$ (s)','Interpreter','Latex','Fontsize',14)
ylabel('Estimate $\hat \pi$','Interpreter','Latex','Fontsize',14)

subplot(2,1,2)
plot(N,pi_hat(:,:),'k',X2,Y,'r','LineWidth',1)
axis([0 Nd 1 5])
set(gca,'FontName','Times New Roman')
set(gca,'Fontsize',12)
xlabel('Number of drop impacts $N(t)$','Interpreter','Latex','Fontsize',14)
ylabel('Estimate $\hat \pi$','Interpreter','Latex','Fontsize',14)

estimate =

   3.166308446475466

Published with MATLAB® R2022b
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