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A delightful way to estimate the number m =
3.14159... involves simultaneously counting rain-
drop impacts on a circular sensor and a square
sensor during a rainstorm. Experimental demon-
strations of this idea occasionally are posted
on various websites. Perhaps understandably,
the explanations provided with these demonstra-
tions focus on the experimental measurements
and calculations, and offer little regarding the
physical basis of why the procedure leads to es-
timates of m. Here I fill in some of the physical
details accompanied by a Monte Carlo code that
illustrates the uncertainty in the procedure.

At a local scale, raindrop impacts on a sur-
face represent a Poisson process in space and
time (Uijlenhoet et al., 1999; Jameson and
Kostinski, 2002; Larsen et al., 2005; Bako et al.,
2017). Consider a horizontal area A impacted
by drops during a rainstorm. With respect to
space, the set of xy coordinate positions of im-
pact locations after a period of time ¢ is com-
pletely spatially random. With respect to time,
let w denote the wait times (or inter-arrival time)
between successive drop impacts on A. A Pois-
son process has the property that the probability
distribution f,,(w) of wait times w is exponen-
tial,

Le—w/ pw

fuw(w) = o

(1)
where 1, denotes the mean wait time. Moreover,
successive wait times between impacts are com-
pletely independent. This independence com-
bined with the self-similar properties of the ex-
ponential distribution (1) means that the num-
ber of impacts N (t) occurring within an interval
of time t is entirely independent of the number
occurring within any other non-overlapping in-
terval of time. A Poisson process therefore is

memoryless.

Let R denote the radius of a circular impact
sensor and let D denote the edge length of a
square impact sensor. Then, let J denote the
raindrop impact rate, the number of impacts per
square meter per second. As a point of reference,
J =1000 m~2 s~! represents a heavy rainstorm
(Smith et al., 2009). The expected Poisson im-
pact rate on the circular sensor is A\g = TR?J
(s7!) and the expected Poisson impact rate on
the square sensor is A\p = D?J (s7!). Now let
Ng(t) denote the number of impacts on the cir-
cular sensor at time ¢ and let Np(t) denote the
number of impacts on the square sensor with
Npr(0) = Np(0) = 0. These numbers at time ¢
are described by a Poisson distribution with ex-
pected values E[Ng(t)] = 7 R2Jt and E[Np(t)] =
D?Jt and variances V[Ng(t)] = wR2Jt and
V[Np(t)] = D?Jt. We now take the ratio of
the numbers Ngi(t) and Np(t) to give

D% Ng(t)  D?*E[Ng(t)] _
5o RZNp(t)  REE[Np(t)]

(2)

This shows that as the numbers Ng(t) and Np(t)
increase with time ¢, then in the limit of ¢ — oo
their ratio converges to the number 7. Notice
that this result is independent of the impact rate
J.

An experiment with impact sensors collects
the time stamps of impacts during a storm and
successively calculates the ratio (2). As the num-
ber of impacts increases, the value of the esti-
mate of 7 tends to converge to the true value.
The demonstrations that I have seen usually
involve one realization in which the value ap-
proached 3.14 after a few thousand drop impacts.
What is not usually shown is the uncertainty in
this estimate of . Recall that at time ¢ the num-



bers Ng(t) and Np(t) possess uncertainty as re-
flected by their finite variances. This means that
there exists a great number of possible outcomes
of the ratio (2) at any time ¢. That is, this ratio
is described by a distribution of values at time .

Appended below is a MATLAB code that il-
lustrates this point. If you have MATLAB or
GNU Octave, just copy and paste it into a script
and it should run fine. It plots estimates of 7 for
a specified number realizations over both time ¢
and the total number of impacts N (¢). If you run
another programming language, then translation
should not be difficult.
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pi _hat(k,j) =

lastR(j) + 1;
lastD(j) + 1;
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plot(t,pi_hat(:,:)," k', XL, Y, 'r',"LineWdth', 1)

axi s([0 mn(t(Nd,:)) 1 5])

set (gca, ' Font Nanme',' Ti nes New Ronman')

set(gca, ' Fontsize', 12)

xlabel (" Time $t$ (s)',"Interpreter',' Latex',' Fontsize', 14)

yl abel (' Estimate $\hat \pi$', ' Interpreter','Latex','Fontsize', 14)

subpl ot (2,1, 2)

plot (N, pi _hat(:,:)," k', X2,Y," ' r'","LineWdth", 1)
axis([0 Nd 1 5])

set (gca, ' Font Nanme',' Ti nes New Ronan')

set (gca, ' Fontsize', 12)

x| abel (' Number of drop inpacts $N(t)$', ' Interpreter','Latex',' Fontsize', 14)
yl abel (' Estimate $\hat \pi$', ' Interpreter','Latex','Fontsize', 14)

estimate =

3.166308446475466
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