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1 Initial remarks

Current descriptions of the rate at which weath-
ered rock is converted to mechanically active soil
on soil-mantled hillslopes — the soil production
rate — suggest that this rate decreases with in-
creasing soil thickness, although the specific form
of this relationship is debated (Harrison et al.,
2021). The idea of soil production with downs-
lope transport can be traced to the description of
hilltop convexities by Gilbert (1909), elaborated
by Carson and Kirkby (1972), wherein it is pro-
posed that the production rate varies as a non-
monotonic function of soil thickness, increasing
with thickness to a maximum rate at finite thick-
ness then declining with further increasing thick-
ness. Humphreys and Wilkinson (2007) provide
historical perspective on this idea.

A standard procedure for inferring the rate of
soil production builds on the pioneering work of
Lal (1991) concerning the accumulation of cos-
mogenic radionuclide atoms within earthen ma-
terials. For conditions in which the soil thickness
remains steady over a long period of time due to
removal of soil by surface erosion or by creep,
then in principle the rate of soil production can
be estimated by measuring the concentration of
cosmogenc radionuclide atoms within the top of
the immobile saprolite just beneath the mechani-
cally active soil (e.g. Heimsath et al., 1997). This
result hinges on the idea that the steady advec-

∗Notes prepared for Emma J. Harrison, Jane K. Wil-
lenbring and Gilles Y. Brocard in reaction to their paper
Global rates of soil production independent of soil depth
(2021, EarthArXiv, https://doi.org/10.31223/X5B30J).
The basic ideas presented here are theirs. The material
thus represents what theoreticians are apt to do: formal-
ize things a bit.

tion of cosmogenic radionuclide atoms within the
saprolite toward the soil-saprolite interface is bal-
anced by their steady removal upon reaching this
interface in concert with radioactive decay. The
cosmogenic radionuclide concentration at the in-
terface is then a steady value that is matched
with the soil production rate.

Herein we examine the foundational elements
of this procedure for inferring the nominal soil
production function relating the rate of produc-
tion to the soil thickness. We explain why one
must be skeptical of the procedure — how it
likely leads to spurious results under the tran-
sient conditions of varying soil thickness that
mostly exist in the wild, yielding empirical curves
whose forms are largely determined by the atten-
uation length of cosmogenic radionuclide produc-
tion in the soil — regardless of the form of any
underlying “true” function relating the soil pro-
duction rate to soil thickness. In effect the proce-
dure uses values of the independent variable, the
soil thickness, to create the values of the depen-
dent variable, the production rate — a statistics
no-no. We then show why the soil production
rate might be empirically determined only when
variations in soil thickness are sufficiently slow
that quasi-steady conditions are maintained, and
we explain why the procedure is unlikely to re-
veal a non-monotonic relationship between the
production rate and soil thickness, if it exists.

2 Typical data set

Numerous data sets have been published which
show plots of estimated soil production rates ver-
sus soil thickness based on measurements of the
concentrations of cosmogenic radionuclide atoms
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in saprolite. Although the fitted empirical re-
lationship between these quantities varies from
one field location to another (Harrison et al.,
2021), many appear as approximately straight
lines in semi-log plots suggesting an exponen-
tial decrease in the soil production rate with in-
creasing soil thickness. One example is that re-
ported by Heimsath et al. (2005) based on mea-
surements from soil pits on convex portions of
a topographically undulating hillslope formed on
granitic rock at Point Reyes, California, USA.

The measurements involve both 10Be and 26Al
sampled from 13 soil pits. Measured soil thick-
nesses at the site vary from essentially zero to
about 1.1 m (see Figure 1 in Heimsath et al.,
2005). The data reflect a monotonic decline
in the estimated soil production rates with in-
creasing soil thickness; they do not reveal a
non-monotonic form as suggested by Carson and
Kirkby (1972), although relatively small esti-
mated rates of production are associated with
two tors at the field location. As described
further below, the variable topography together
with the nonuniform soil thickness at this field lo-
cation — conditions that typically go with such
data sets — almost certainly reflect transient
conditions rather than the steady conditions ex-
amined by Lal (1991).

3 Background

3.1 Land-surface and soil
configuration

Within a fixed Cartesian xyz coordinate system
let ζ(x, t) denote a land-surface elevation field
and let η(x, t) denote the associated soil-saprolite
interface as these vary with horizontal coordi-
nate position x = (x, y) and time t. The soil-
saprolite interface η(x, t) separates mechanically
active soil from immobile saprolite. The local
soil thickness h(x, t) = ζ(x, t)− η(x, t).

Consider the derivatives ∂ζ(x, t)/∂t and
η(x, t)/∂t. Each consists of two parts. For sim-
plicity let W (t) denote a uniform rate of uplift
(or subsidence) and let E(x, t) denote a local
rate of land-surface erosion (or deposition) due
to a finite divergence of sediment transport, ei-

ther at the land surface or involving soil creep.
Then ∂ζ(x, t)/∂t = W (t) + E(x, t). In turn,
∂η(x, t)/∂t = W (t) − w(x, t) where by conven-
tion w(x, t) represents the rate of soil produc-
tion. Note that if W (t) = 0 then ∂η(x, t)/∂t =
−w(x, t). That is, the local rate of lowering of
the interface η(x, t) is equal to the negative of
the soil production rate with conversion of rock
material to soil. If ∂η(x, t)/∂t = 0 such that
η(x, t) → η(x) then w(x, t) = W (t). That is,
with W (t) > 0 the rate of soil production is equal
to the rate at which rock mass moves upward
across the steady interface η(x) during conver-
sion to soil material. More generally, the most
precise interpretation of the soil production rate
w is this: it is the velocity of the weathered
rock material measured relative to the interface
η(x, t).

Consider steady conditions defined as follows.
If the derivative ∂ζ(x, t)/∂t = 0 for all positions
x then the land-surface elevation field ζ(x) is
steady and independent of time t. If the deriva-
tive ∂η(x, t)/∂t = 0 for all positions x then the
soil-saprolite interface field η(x) is steady and
independent of time t. Either the land-surface
elevation field or the soil-saprolite interface field
may be unsteady while the other is steady. In
this situation the soil thickness field is unsteady.
But if ∂ζ(x, t)/∂t = ∂η(x, t)/∂t, regardless of
the magnitude of the uplift rate W , then the
soil thickness field h(x) = ζ(x)− η(x) is steady.
Conditions defining steady and unsteady concen-
trations of accumulated cosmogenic radionuclide
atoms are covered in the next section.

If the rate of soil production w(x, t) func-
tionally decreases with increasing soil thickness
h(x, t), then the conventional view is that a
steady soil thickness h(x) implies uniform thick-
ness, that is, ∂h(x)/∂x = 0. The essential rea-
son is this: a decreasing soil production rate
with increasing soil thickness provides a nega-
tive feedback that tends to everywhere main-
tain a uniform, steady soil thickness (Carson and
Kirkby, 1972), an idea formalized by Furbish and
Fagherazzi (2001) for the case of transport by
soil creep. A nonuniform soil thickness then im-
plies the presence of transient conditions. If the
rate of soil production functionally increases with
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soil thickness, then this gives a positive feedback,
which, depending on the rate of erosion, may lead
to either unchecked thinning or thickening of the
soil. If the rate of soil production is independent
of soil thickness, then changes in the land-surface
elevation and the soil-saprolite interface are de-
coupled via a mechanism directly involving the
soil thickness, although they may be coupled in-
directly. In this situation a nonuniform soil thick-
ness implies neither steady nor unsteady condi-
tions.

3.2 Accumulation of cosmogenic
radionuclide atoms

3.2.1 General formulation

Let n(x, z, t) denote the number concentration
of cosmogenic radionuclide atoms at the vertical
position z within the soil or saprolite. Assuming
atom production is primarily due to spallation,
let ls denote the e-folding attenuation length
within the soil and let lr denote the e-folding
length within the underlying saprolite, each ob-
tained from the absorption mean free path of cos-
mic rays and the density of the material. We now
appeal to the work of Lal (1991) using the Eu-
lerian formulation of the problem provided by
Furbish et al. (2018a, 2018b). We make the
standard simplifying assumption of uniform bulk
density for both the soil and saprolite.

Let Pζ(x) denote the rate of production of
cosmogenic radionclide atoms at the soil surface
ζ(x, t), adjusted for topographic shielding. Then
the rate of production of cosmogenic radionuclide
atoms at the soil-saprolite interface η(x, t) is

Pη(x, t) = Pζ(x)e−h(x,t)/ls , (1)

which may vary with time due to variations in
the soil thickness h(x, t). Within the underlying
saprolite, and subject to uncertainty associated
with the continuum approximation (Furbish et
al., 2018b), the rate of change in the number con-
centration n(x, z, t) with respect to time is given
by

∂n(x, z, t)

∂t
= −W ∂n(x, z, t)

∂z

+Pη(x, t)e
−[η(x,t)−z]/lr

− λn(x, z, t) , z ≤ η(x, t) , (2)

where λ denotes the decay rate. We are inter-
ested in conditions at the interface η(x, t), as
these conditions represent what is sampled in or-
der to infer the rate of soil production.

Of particular interest are steady conditions
in which the number concentration n(x, z, t) →
n(x, z) varies with z but is independent of time
t. For the xyz coordinate system associated
with (2) this can occur only if W > 0 and
∂η(x, t)/∂t = ∂ζ(x, t)/∂t = 0 in which case the
production rate w = W . Then,

dn(x, z)

dz
=
Pη(x)

w
e−[η(x)−z]/lr − λ

w
n(x, z) . (3)

Integrating (3) and using the boundary condition
that n(x,−∞) = 0 yields

n(x, z) =
Pη(x)

λ+ w/lr
e−[η(x)−z]/lr . (4)

Setting z = η(x) then gives the number concen-
tration at the soil-saprolite interface,

n[x, η(x)] =
Pη(x)

λ+ w/lr
, (5)

which may differ from the number concentration
in the soil just above the interface (Appendix A).

More generally we are interested in steady con-
ditions at and beneath the soil-saprolite inter-
face when ∂η(x, t)/∂t = ∂ζ(x, t)/∂t 6= 0. For
this situation we define a Galilean-like coordi-
nate z′ that moves with the interface η(x, t). In
this moving coordinate system we rewrite (2) as

∂n(x, z′, t)

∂t
= −w′∂n(x, z′, t)

∂z′

+Pη(x, t)e
−[η′(x)−z′]/lr

− λn(x, z′, t) , z′ ≤ η′(x) , (6)

where w′ denotes the rate of soil production
viewed with respect to the z′ coordinate and
the prime on η denotes this as the moving soil-
saprolite interface viewed with respect to the
fixed z coordinate. That is, η′(x) → η(x, t).
With steady conditions,

dn(x, z′)

dz′
=
Pη(x)

w′
e−[η′(x)−z′]/lr −λn(x, z′) . (7)
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Integrating (7) and using the boundary condition
that n(x,−∞) = 0 yields

n(x, z′) =
Pη(x)

λ+ w′/lr
e−[η′(x)−z′]/lr . (8)

Setting z′ = η′(x) then gives the number concen-
tration at the soil-saprolite interface,

n[x, η′(x)] =
Pη(x)

λ+ w′/lr
. (9)

Notice that (8) and (9) match (4) and (5).
Viewed with respect to the fixed z coordinate,
w′ = W − ∂η(x, t)/∂t. When ∂η(x, t)/∂t = 0
then z′ = z and w′ = W = w.

For simplicity we hereafter omit the func-
tional notation showing the dependence of var-
ious quantities on the coordinate position x =
(x, y). Nonetheless it is important to keep in
mind that this dependence is implied.

3.2.2 Implications of the formulation of
Lal (1991)

Before considering descriptions of the rate of soil
production, there is value in revisiting the for-
mulation of Lal (1991) and examining its impli-
cations. The starting point is (6), although Lal
(1991) casts this in its Lagrangian form. The es-
sential point is that the coordinate system is de-
fined with respect to the surface η′ (which may
be moving in a global reference frame). We now
let ψ = η′ − z′. That is, the coordinate ψ is
positive downward with ψ = 0 at the surface η′.
Then (6) becomes

∂n(ψ, t)

∂t
= −w′∂n(ψ, t)

∂ψ

+ Pηe
−ψ/lr − λn(ψ, t) , ψ ≥ 0 . (10)

As a reminder, Pη denotes the cosmogenic ra-
dionuclide production rate at the surface η. In
the absence of a soil layer above this surface, the
problem that Lal (1991) examines, then Pη = Pζ .
Thus Pη now is independent of time t. (Note that
this rate actually varies with Earth’s magnetic
field over a time scale of 100 000 years (Gosse
and Phillips, 2001)).

For steady erosion of the earthen surface η at
a rate E = w′ = −w the solution of (10) is

n(ψ, t) = n(ψ, 0)e−λt

+
Pη

λ+ w/lr

[
1− e−(λ+w/lr)t

]
e−ψ/lr , (11)

with e-folding time Tr = 1/(λ+w/lr). The initial
condition n(ψ, 0) = 0 for ψ � lr, so with erosion
of long duration the first term on the right side
of (11) may be neglected. Then in the limit of
t→∞ (or in practical terms, t� Tr) we have

n(ψ) =
Pη

λ+ w/lr
e−ψ/lr . (12)

At the surface (ψ → 0) this becomes

n(0) =
Pη

λ+ w/lr
. (13)

If λ� w/lr then this reduces to

n(0) =
Pηlr
w

, (14)

and Tr = lr/w. As a point of reference, λ ≈
5.0 × 10−7 yr−1 for 10Be and λ ≈ 9.6 × 10−7

yr−1 for 26Al. Assuming lr ≈ 0.5 m (e.g. Lal,
1991), this means that decay can be neglected
when w � 2.5× 10−7 m yr−1 for 10Be and when
w � 4.8 × 10−7 m yr−1 for 26Al. In turn we
rewrite (13) and (14) as

w =
Pηlr
n(0)

− λlr and (15)

w =
Pηlr
n(0)

. (16)

These steady-state solutions provide the starting
point of the procedure for inferring the steady
erosion rate E = −w of an earthen (e.g. rock)
surface, or for inferring the steady soil produc-
tion rate w = W (or w = −E) with ∂h/∂t = 0
from measurements of the concentration n(0)
within the top of the immobile saprolite just be-
neath the mechanically active soil.

Lal (1991) provides guidance on assessing the
steady-state condition using measurements of
more than one cosmogenic radionuclide. Here we
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take a different approach that becomes particu-
larly useful when transient effects of a soil layer
are added to the problem (Section 4.3), where the
production rate Pη → Pη(t) then depends on the
soil thickness and may vary with time according
to (1). Specifically, here we consider variations
in the erosion rate w(t) = −E(t) specified as a
sinusoidal function representing a harmonic of a
Fourier spectrum of a more complex signal.

We define zeroth-order (basic) states associ-
ated with steady conditions and first-order fluc-
tuations about these basic states, denoted by the
subscripts 0 and 1. Namely,

w(t) = w0 + w1(t) and

n(ψ, t) = n0(ψ) + n1(ψ, t) . (17)

It is then possible to show (Appendix B) that the
frequency response function relating first-order
variations in the cosmogenic radionuclide con-
centration n1(0, t) to first-order variations in the
erosion rate E1(t) = −w1(t) is

Fn̂1(0),ŵ1
(ω̂) =

λTr − 1

1 + iω̂
. (18)

Here the dimensionless quantities n̂1(0, t̂) =
n1(0, t)/n0(0) and ŵ1(t̂) = w1(t)/w0 with di-
mensionless time t̂ = t/Tr. The dimension-
less frequency ω̂ = Trω = Tr2π/Tt with pe-
riod Tt, and the imaginary number is defined
as i2 = −1. In turn the gain function (Fig-
ure 1) shows that (18) represents a low-pass fil-
ter. That is, high-frequency variations in the
erosion rate E1(t) = −w1(t) are attenuated in
the response signal n1(0, t), and the lowest fre-
quencies are “passed” without attenuation. This
means that low-frequency variations yield re-
sponses with high fidelity such that quasi-steady
conditions are maintained. High-frequency vari-
ations in the erosion rate do not produce similar
variations in the number concentration n1(0, t).
Here is the significance of this result.

High-frequency fluctuations in the erosion rate
E1(t) = −w1(t) are not recorded as variations
in the concentration n1(0, t) at the earthen sur-
face. That is, the concentration n(0, t) remains
relatively steady and equal to the basic-state
value n0(0). Using (15) or (16), a measurement

Figure 1: Gain function |Gn̂1(0),ŵ1
(ω̂)| ver-

sus dimensionless frequency ω̂ showing low-
pass quality of the frequency response function
Fn̂1(0),ŵ1

(ω̂).

of n(0, t) ≈ n0(0) at any instant in the pres-
ence of high-frequency variations in the erosion
rate yields the basic-state erosion rate w0 rather
than the actual rate. At the other extreme, low-
frequency fluctuations in the erosion rate record
with high fidelity the variations in the concen-
tration n1(0, t) commensurate with the extant
erosion rate. Quasi-steady conditions are main-
tained, so using (15) or (16), a measurement
of n(0, t) at any instant in the presence of low-
frequency variations in the erosion rate yields the
actual rate w(t). Measurements of n(0, t) at any
instant in the presence of moderate-frequency
fluctuations in the erosion rate yield underesti-
mates of the magnitude of the actual rate using
(15) or (16).

The e-folding time Tr = 1/(λ+ w/lr) has spe-
cial significance in this problem. Lal (1991, p.
431) is quite clear in pointing out that the steady-
state relationships described by (15) and (16)
hinge on the presence of steady erosion for a pe-
riod of time at least as long as ∼ 4Tr with fixed
production rate Pη. (The e-folding time Tr is de-
noted as Teff in Lal (1991).) As a point of refer-
ence, and neglecting radioactive decay, with w =
0.0001 m yr−1 and lr = 0.5 m, then Tr = 5 000
yr and 4Tr = 20 000 yr, or nearly twice the dura-
tion of the Holocene epoch. With w = 0.00001 m

5



yr−1 then 4Tr = 200 000 yr, and with w = 0.001
m yr−1 then 4Tr = 2 000 yr. This idea is directly
embodied in the gain function depicted in Figure
1. Namely, for a varying erosion rate a quasi-
steady condition (|Gn̂1(0),ŵ1

(ω̂)| → 1) is main-
tained only when the dimensionless frequency
ω̂ ≤ 0.1. This means that with w = 0.0001 m
yr−1 and lr = 0.5 m, the period Tr ≥ 300 000 yr.
With w = 0.00001 m yr−1 then Tt ≥ 3 000 000
yr, and with w = 0.001 m yr−1 then Tt ≥ 30 000
yr.

To summarize, if the erosion rate is strictly
steady, then the steady-state condition is satis-
fied only after a period ∼ 4Tr. If the erosion rate
is unsteady, then the quasi-steady condition is
satisfied only if the rate of change is at least as
slow as that of a sinusoidal variation with dimen-
sionless frequency ω̂ ≤ 0.1 and is maintained for
the associated period Tt.

We now turn to the topic of soil production,
where we add effects of a soil layer. A key ele-
ment of this is that the cosmogenic radionuclide
production rate Pη → Pη(t) now generally de-
pends on time t due to variations in soil thick-
ness h(t). For reference below, note that the time
scales described above in relation to achieving
steady (or quasi-steady) conditions with respect
to cosmogenic radionuclide concentrations have
little to do with time scales associated with hills-
lope and soil dynamics, for example, the response
time of a soil-mantled hillslope to variations in
its boundary conditions, or the relaxation time
of creeping soil following disturbance (e.g. Fur-
bish and Fagherazzi, 2001). Further note that
hereafter we neglect radioactive decay, so the e-
folding time Tr = lr/w.

4 Soil production function

4.1 Conceptual framework

The current conceptualization of a soil produc-
tion function assumes that the rate of production
w(t) depends on soil thickness h(t). Namely,

w(t) = f [h(t);F(t)] , (19)

where F denotes a vector of factors representing
effects of the rock type and the climate and as-

sociated hydrologic and biotic conditions. Note
that this function in principle is independent of
the uplift rate W (t). Current approaches for
determining this function empirically from mea-
surements of cosmogenic radionuclide concentra-
tions require assuming time independent condi-
tions so that (19) becomes

w = f(h;F) . (20)

For a given set of factors F and time independent
conditions, the production rate w must equal the
steady uplift rate, w = W (with E = 0), or
it must equal the steady erosion rate, w = −E
(with W = 0), in which case a one-to-one corre-
spondence between the soil thickness h and either
W or E must exist. Current conceptualizations
typically propose an empirical relationship of the
form

w = P0e
−h/lw , (21)

where P0 is interpreted as a maximum produc-
tion rate in the limit of h → 0 and lw is an em-
pirically determined e-folding length.

For a given setting we know (or assume) the
surface production rate Pζ , the e-folding lengths
ls and lr, the soil thickness h and the cosmogenic
radionuclide concentration n(η) at the interface
η. We also may have an independent measure
of the uplift rate W . We must assume that the
soil thickness has been steady (∂h/∂t = 0) for a
sufficiently long period of time (∼ 4Tr) that the
concentration n(η) has achieved a steady value.
We now combine (1) and (16) with n(0)→ n(η)
to give

w =
Pζ lr
n(η)

e−h/ls . (22)

This says that the product n(η)w is a unique
function of h. If in the steady case described
above where w = W , then this rate is satisfied
by an infinite set of values of n(η) and h. Or, for
a specified thickness h, an infinite set of values
of n(η) and w satisfy (22).

If the production rate w varies as a single-
valued function of the soil thickness h accord-
ing to (21), then because (21) must be consistent
with (22) the concentration n(η) must be a fixed
value where P0 = Pζ lr/n(η) and lw = ls (or, for
example, n(η) ∼ e−h/ln with e-folding length ln
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such that 1/lw = 1/ls − 1/ln.) Moreover, be-
cause the production rate w = W is unique to h
according to (21), there is only one soil thickness
h that is compatible with a specific uplift rate
w = W , so the function (21) in this situation is
in fact not independent of W . In turn, estimates
of the soil production rate from a set of soil pits
with different thicknesses h at the same location
presumably involve the same uplift rate. But
this is incompatible with the idea that a specific
soil thickness is associated with a specific uplift
rate. Alternatively, if the rate of soil production
w = W − ∂η(t)/∂t in each pit is different, then
with the same cosmogenic radionuclide concen-
tration n(η) (i.e. for the same soil production
curve), the soil thickness h associated with each
pit must be independently steady for a period
of time at least as long as ∼ 4Tr (or satisfy the
quasi-steady condition; see below) as the surface
is nonuniformly lowered despite a uniform uplift
rate W .

Note that (22) is akin to an equation of state,
for example, the ideal gas law,

ρ =
p

RT
, (23)

where ρ denotes the density of the gas, p denotes
its pressure, T denotes its temperature and R
is the specific gas constant. For a specified gas
at thermodynamic equilibrium an infinite set of
values of the state variables ρ, p and T satisfy
this expression. One cannot express the density
ρ as a single-valued function of the pressure p
without first specifying a fixed temperature T . A
plot of density ρ versus pressure p in fact consists
of an infinite set of ρ–p curves, each associated
with a specific temperature T . The ideal gas law
(23) merely represents a condition that must be
satisfied as the ρpT state of a system changes.
As written it says nothing about the dynamics
of a system (or its phase trajectory) leading to a
specific set of state values.

Similarly, (22) merely expresses a condition
that must be satisfied under steady-state con-
ditions. A plot of production rate w versus soil
thickness h in fact consists of an infinite set of w–
h curves, each associated with a specific concen-
tration n(η). As written, (22) says nothing about

the dynamics of a system leading to a specific set
of values of n(η), w and h. This expression only
describes the outcome of the systematics of accu-
mulation of cosmogenic radionuclide atoms in an
infinite half-space with finite motion of the ma-
terial in the half-space. Despite its exponential
form, it does not suggest any particular form of
the function f(h;F) in (20) — just as the ideal
gas law (23) does not claim that the density ρ
varies linearly with the pressure p for any given
system, or a set of systems, unless isothermal
conditions are maintained.

4.2 Steady-state conditions

Consider an idealized soil mantled landscape at
steady state with respect to soil production. The
uniform rate of uplift is matched by the rate of
channel incision and the land-surface elevation
ζ(x) is everywhere fixed in a global reference
frame. Alternatively the elevation is everywhere
lowered at a fixed rate equal to the soil pro-
duction rate. Assuming the soil production rate
varies as a single-valued function of soil thickness
— exponential or otherwise — then such a land-
scape by definition possesses a uniform soil thick-
ness. Further assuming that the analysis of Lal
(1991) is correct, then the cosmogenic radionu-
clide concentration at the soil-saprolite interface
is a fixed value everywhere, and reflects the uni-
form soil production rate. In this idealized sit-
uation a plot of the soil production rate versus
soil thickness as measured in one or a great num-
ber of soil pits involves a single point. For this
reason an empirical soil production function —
exponential or otherwise — cannot be inferred
from a single (idealized) steady-state landscape.

Continuing with this scenario, to obtain an
empirical soil production function using the
steady-state condition imposed by the analysis
of Lal (1991) requires sampling different land-
scapes, or different parts of a landscape, each
in a steady-state condition with a different soil
thickness that has been steady for a period much
greater than the e-folding time Tr = lr/w. More-
over, to be empirically meaningful this would re-
quire the same geological and environmental con-
ditions F across such locations. Imagining that
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this is possible, the outcome of this effort would
be a plot of w = W versus h — an empirical
soil production function for the specified rock
type and climate conditions — such that (22)
is used only to determine the rate w assuming
the steady-state condition is satisfied. Unfortu-
nately, such idealized conditions are unlikely to
be realized. It is difficult if not impossible to
control for rock type and climate conditions for
varying uplift rates while also satisfying the con-
dition of uniform, steady soil thickness.

One can also envision an idealized situation
involving steady, uniform lowering of the land
surface (or a steady land surface with uniform
soil production matching uplift) in the presence
of a nonuniform soil thickness. The uniform soil
production rate might arise from hydrochemical
processes in concert with effects of soil thick-
ness. But then this situation would be inconsis-
tent with the idea of a single-valued relationship
between the soil production rate and soil thick-
ness, instead requiring a multivariable function
w = f(h, . . . ;F) that explicitly involves relevant
quantities in addition to the soil thickness h.

4.3 Transient conditions

4.3.1 Qualitative assessment

We start with a simple example to illustrate the
essence of the consequences of using (22) under
transient conditions. We then systematically in-
crease the complexity of the analysis.

Consider a steady condition in which the soil
production rate w = W with ∂h/∂t = 0, where
we denote the steady soil thickness as h0. The
associated fixed radionuclide concentration at
the soil-saprolite interface η is n(η;h0). Now
suppose that the production rate w = w0 is
in fact independent of soil thickness. That is,
w = f(h;F) → w = f(F) = w0. (This may
or may not have a physical basis; but this does
not matter, as we need only to envision initially
steady conditions.) With unknown uplift rate
W , under these conditions measurements of h0

and n(η;h0) yield the correct value w0 = W .
Namely,

w0 =
Pζ lr

n(η;h0)
e−h0/ls . (24)

But now suppose, following the scenario sug-
gested by Harrison et al. (2021), that the soil
thickness at some location suddenly decreases to
a value h1 due to erosion. This location inher-
its the number concentration n(η;h0). Letting
an asterisk denote an estimate, if we take mea-
surements soon (i.e. � Tr) after the decrease in
thickness then we obtain w∗ = w1 > w0 as

w1 =
Pζ lr

n(η;h0)
e−h1/ls . (25)

Further suppose that at another location the soil
thickness suddenly increases to a value h2. This
location also inherits the concentration n(η;h0).
If we again take measurements soon after the in-
crease in thickness then we estimate w∗ = w2 <
w0 as

w2 =
Pζ lr

n(η;h0)
e−h2/ls . (26)

The leading coefficient C = Pζ lr/n(η;h0) in (24),
(25) and (26) is fixed. Upon taking logarithms
we have

lnw0 = C1 −
1

ls
h0 ,

lnw1 = C1 −
1

ls
h1 and

lnw2 = C1 −
1

ls
h2 , (27)

with C1 = lnC. These estimates w∗ of the pro-
duction rate associated with three measurements
of soil thickness h have the same intercept C1 and
semi-log slope 1/ls so they fall on the same curve.
More generally,

lnw∗ = C1 −
1

ls
h . (28)

Thus, despite the fact that the soil production
rate is independent of soil thickness (in fact, in
this example it could have any functional rela-
tionship with thickness; see below), we nonethe-
less have created an empirical soil production
function whose form is exponential with semi-
log slope equal to the negative of the reciprocal
of the attenuation length ls — merely because the
rate of production Pη of cosmogenic radionuclide
atoms at the soil-saprolite interface η involves an
exponential function for steady-state conditions
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that we have, perhaps unwittingly, misapplied to
transient conditions.

Consider a second example in which the soil
production rate w = W = w0 with steady
soil thickness h0. The associated fixed radionu-
clide concentration at the soil-saprolite interface
is n(η;h0). Now suppose that the actual pro-
duction rate w varies according to an exponen-
tial function with semi-log slope of −α 6= −1/ls
(Figure 2). We again imagine locations that ex-

Figure 2: Schematic diagram of actual soil pro-
duction curve (black line) with semi-log slope
of −α and apparent production curve (red line)
with semi-log slope of −1/ls showing initial
steady soil thickness h0. Horizontal blue arrows
represent sudden thinning and thickening to h1

and h2. Vertical blue arrows represent changes
to apparent soil production rates w∗1 and w∗2 and
black arrows represent changes to actual produc-
tion rates w1 and w2 if new thicknesses h1 and
h2 are sustained.

perience a sudden decrease and increase in the
soil thickness to h1 and h2. As in the preceding
example these locations inherit the concentra-
tion n(η;h0) leading to the estimated production
rates w∗1 and w∗2 on a curve with a semi-log slope
of −1/ls. But the actual production rates be-
come w1 and w2 if the new thicknesses h1 and h2

are sustained. This would represent an unsteady

configuration with nonuniform soil production.
Further note that this argument does not de-
pend on the initial state. That is, the initial
soil thickness h0 and associated soil production
rate need not fall on the actual soil production
curve as shown in Figure 2. A different initial
state would lead to essentially the same conclu-
sions, albeit involving different response trajec-
tories than those shown in the figure.

Of course conditions immediately following a
sudden decrease or increase in soil thickness h are
not likely to be sustained. A decreased thickness
sees an increased exposure to cosmic rays and
production of cosmogenic nuclide atoms at the
soil-saprolite interface η, and the radionuclide
concentration at this interface changes from its
inherited concentration n(η;h0). Such a location
may also experience relaxation to an increased
soil thickness due to transport as well as contin-
ued soil production (e.g. Furbish and Fagherazzi,
2001). Similarly an increased thickness sees a de-
creased exposure to cosmic rays and production
of cosmogenic nuclide atoms at the soil-saprolite
interface, and the radionuclide concentration at
this interface changes from its inherited concen-
tration n(η;h0). Such a location may also ex-
perience relaxation to a decreased soil thickness
due to transport in the presence of continued soil
production. Effects of these changes still give in-
correct estimates w∗ of the fixed (time indepen-
dent) production rate w = w0.

Again assuming for illustration that the rate of
soil production w = w0 is independent of the soil
thickness h, consider the response to a square-
wave variation in soil thickness (Figure 3). Fol-
lowing a transient response to the onset of the
wave train the number concentration n(η, t) at
the interface appears as a series of step responses
centered about the expected value n(η;h0), each
individual response asymptotically approaching
a value compatible with the extant soil thick-
ness. In turn the estimated production rate
w∗(t) appears as a mirror image of the response
n(η, t), each individual response asymptotically
approaching a value compatible with the extant
soil thickness. That is, during each period fol-
lowing a change in soil thickness, the estimated
rate w∗(t) varies with time independently of the
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Figure 3: Idealized square-wave variations in soil thickness (black lines) and responses of number
concentration n(η, t) (red lines) and estimated production rate w∗(t) (blue lines), assuming the
rate of soil production w = w0 is independent of thickness h. Vertical positions and magnitudes of
signals n(η, t) and w∗(t) are only relative, chosen for visual clarity.

actual production rate w = w0. As the period of
the waves increases the responses of n(η, t) and
w∗(t) more closely approach their final values
relative to the responses associated with shorter
periods. This indicates that with increasing pe-
riod the phase shift between the thickness wave-
forms and the response waveforms decreases and
the response waveforms experience less attenu-
ation. This information formally emerges from
the quantitative assessment provided in the next
section, and reflects the competing time scales in
this problem.

If instead of a square-wave the soil thickness
varies as an Ornstein-Uhlenbeck (mean revert-
ing) process in the sense described by Furbish
and Fagherazzi (2001) for creeping soil, then
whether the soil production rate is or is not cou-
pled with the soil thickness, values of n(η, t) and
w∗(t) to which these responses asymptotically
approach are “moving targets.” (One concep-
tualization of this signal is provided by Sweeney
et al. (2020) who describe the response to fluc-
tuations in the erosion rate about a mean rate as
a mean-reverting process.) Nonetheless the out-
come is qualitatively similar. Values of n(η, t)
and w∗(t) fluctuate about expected (average)
states with phase shifts that decrease with in-
creasing periods of the variations in thickness.

Before turning to a more detailed assessment

of the effects of transient conditions, a comment
on the statistics of induced correlations is mer-
ited. This comment in effect views the preceding
examples through a probabilistic lens. Without
reference to the dynamics of a soil-mantled hill-
slope or landscape, suppose that at any instant
the soil thickness h is a random variable. Further
assume that the measured concentration n(η;h)
also is a random variable whose mean value coin-
cides with the expected value associated with the
mean soil thickness h0 and production rate w0 ac-
cording to (24). The values of h and n(η;h) are
independent (as is the case for the data of Heim-
sath et al. (2005)). In this situation the produc-
tion rate w defined by (22) is a new random vari-
able that is strongly correlated with the thickness
h. Indeed, this new random variable is created as
the product of a noise given by the reciprocal of
the random variable n(η;h) and the exponential
function of the thickness h. The outcome is an
induced exponential correlation between the pro-
duction rate w and the thickness h whose semi-
log slope is equal to −1/ls (Figure 4). More-
over, in the limit of vanishing variance of the
concentration n(η;h) the exponential correlation
becomes exact. Thus, variability in soil thickness
h combined with uncorrelated variability in mea-
surements of concentration n(η;h) — which may
be attributable to transient conditions or due to
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Figure 4: Plot of an induced exponential corre-
lation between the production rate w (normal-
ized) and the soil thickness h. In this example
the thickness h is drawn from a uniform distri-
bution and the concentration n(η;h) is drawn
from a Gaussian distribution, where n(η;h) and
h are uncorrelated. The line has semi-log slope
of −1/ls.

unrelated effects — yield the appearance of an
exponential production function when the thick-
ness h is transformed as an exponential function
to create the variable w. Normally in statistics
the values of the dependent variable are not cre-
ated from the values of the independent variable;
these quantities are measured independently.

4.3.2 Quantitative assessment

The next step in this line of reasoning involves
changing the land-surface elevation ζ(t) as a si-
nusoidal function representing a harmonic of a
Fourier spectrum of a more complex signal. Here
we consider the situation in which the soil pro-
duction rate w(t) may be coupled with the soil
thickness h(t). To do this we need to solve the
unsteady problem involving changes in the land-
surface elevation ζ(t), the soil-saprolite interface
η(t), the soil thickness h(t), the production rate
Pη(t), the radionuclide concentration n(η, t) and
the estimated soil production rate w∗(t). This
includes solving for the changing concentration
n(z′, t) beneath the soil-saprolite interface η(t)
in order to obtain the concentration n(η′, t) at

this interface.
The sinusoidal form of the transient is not es-

sential, but it is convenient. We choose this form
because it nicely provides insight regarding the
time scales involved in the process. In addi-
tion we approach this problem both analytically
and numerically. Our analytical analysis (Ap-
pendix C) involves obtaining the frequency re-
sponse functions relating variations in soil thick-
ness to the rate of soil production, the rate of
production of cosmogenic radionuclide atoms at
the soil-saprolite interface, and the number con-
centration of cosmogenic radionuclide atoms at
this interface, assuming a fixed uplift rate W .
For this we linearize the governing equations as
needed. The value of the analytical analysis is
that it provides clarity regarding key dimension-
less quantities that cannot be obtained from nu-
merical analysis, it provides clarity on the nature
of the response in relation to different transient
time scales, and it serves as a check for consis-
tency with the numerical analyses.

For comparison our numerical work involves
solving the full nonlinear equations using an
explicit finite-difference scheme. Beneath the
soil-saprolite interface, cosmogenic radionuclide
atoms are advected upward toward the inter-
face. Solving the advection equation can be no-
toriously challenging when using finite-difference
schemes. Nonetheless, because n(z′, t) varies
smoothly and monotonically beneath the inter-
face, and because information is lost at the in-
terface as saprolite is converted to soil, a simple
upwind scheme performs nicely. The algorithm
is vetted with analytical solutions.

For simplicity we treat the problem using
the differential equations presented in Section
3.2 and associate the outcome with a particu-
lar Eulerian position. The more realistic situ-
ation involves coupling these equations with ap-
propriate partial differential equations describing
soil transport in response to initial and bound-
ary conditions on a hillslope (e.g. Furbish and
Fagherazzi, 2001) or a landscape. Nonetheless
we may envision the sinusoidal forcing of the
land-surface elevation ζ(t) with period Tt as be-
ing specified externally to the system. Then Tt

is the time scale over which a perturbation from

11



the steady-state condition is envisioned to per-
sist. At a relatively local scale, it might be the
time scale of relaxation of a soil pit-mound cou-
plet due to tree throw (Doane et al., 2021). More
generally the time scale Tt is merely a way to
specify the persistence of a perturbation regard-
less of its specific physical form. Thus, it could
represent the relaxation time scale of an entire
hillslope in response to changes in the lower hill-
slope boundary condition (e.g. Mudd and Fur-
bish, 2007). Or it could represent the time scale
of adjustment of a massif to rearrangements of
the massif-scale channel network with adjacent
hillslope responses. Or it could represent the
time scale of variations in the overall erosion rate
due to climate change and associated environ-
mental factors, including biological conditions.

We assume the possibility of a soil production
function with the form

w = P0e
−h/lw , (29)

where, as described above, P0 is interpreted as a
maximum production rate in the limit of h → 0
and lw is a specified e-folding length. We now
write

h(t) = h0 + h1(t) , (30)

where h0 is the basic-state thickness under
steady conditions and h1(t) is a fluctuation about
the basic state. Then (29) may be linearized to

w = P0e
−αh0(1− αh1) , (31)

with α = 1/lw. This provides a very good
approximation of the exponential function (29)
near h0 for small h1, and more generally it repre-
sents a linear production function for arbitrarily
large h1. For reference below the leading coeffi-
cient in (31) is just a constant P (h0) = P0e

−αh0 .
We may thus rewrite (31) as

w = P (h0)(1 + αh1) , (32)

with arbitrary coefficient α and without reference
to an exponential form as in (29). Now (32) rep-
resents a linear production function that either
decreases or increases with soil thickness about
the basic state thickness h0 depending on the sign
of α. If α = 0 then (32) simply becomes

w = P (h0) , (33)

which represents a fixed soil production rate that
is independent of soil thickness.

We now define three additional zeroth-order
(basic) states and first-order fluctuations de-
noted by the subscripts 0 and 1. Namely,

E(t) = E0 + E1(t) ,

w(t) = w0 + w1(t) and

n(ψ, t) = n0(ψ) + n1(ψ, t) , (34)

with ψ = η′ − z′. It is then possible to show
(Appendix C) that the frequency response func-
tion relating first-order variations in the cosmo-
genic radionuclide concentration n1(0, t) at the
soil-saprolite interface to first-order variations in
the erosion rate E1(t) is given by

Fn̂1(0),Ê1
(ω̂) =

(1− αls)(lr/ls)
αls + ω̂2 − i(1− αls)ω̂

, (35)

where with w0 = W the dimensionless values
n̂1(0, t̂) = n1(0, t)/n0(0) and Ê1(t̂) = E1(t)/w0

with dimensionless time t̂ = (w0/lr)t, and
the dimensionless frequency ω̂ = (lr/w0)ω =
(lr/w0)2π/Tt with period Tt. In turn the gain
function (Figure 5) shows that (35) represents a

Figure 5: Example gain function Gn̂1(0),Ê1
(ω̂)

versus dimensionless frequency ω̂ showing low-
pass quality of the frequency response function
Fn̂1(0),Ê1

(ω̂).

low-pass filter. Here is the significance of this
result.
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High frequency fluctuations in the erosion rate
E1(t) and associated fluctuations in the soil
thickness h1(t) are not recorded as variations in
the concentration n1(0, t) at the soil-saprolite in-
terface. That is, this concentration remains rela-
tively steady. As a consequence the fluctuations
in soil thickness give fluctuations in the estimates
of the soil production rate w∗1(t) that fall on a
curve with a semi-log slope of −1/ls. This situ-
ation is most like the qualitative analysis above
where sudden changes in soil thickness inherit the
preexisting (fixed) concentration n(η;h0) yield-
ing an empirical curve (28) that merely reflects
a −1/ls relationship.

At the other extreme, low-frequency fluctua-
tions in the erosion rate and associated fluctu-
ations in the soil thickness record with high fi-
delity the variations in the concentration n1(0, t)
commensurate with the extant soil thickness.
The concentration n1(0, t) and the thickness
h1(t) track together, so estimates of the pro-
duction rate w∗1(t) are close to those defined
by the specified soil production relationship. In
the example depicted in Figure 5 the frequency
ω̂ must be less than about ω̂ ∼ 0.1 in order
to approach this high-fidelity condition. With
w0 = 0.001, 0.0001, 0.00001 m yr−1 this fre-
quency coincides respectively with periods Tt >
25 000, 250 000, 2 500 000 yr.

We can use the gain function and associated
phase function (Appendix C) to map w∗–h tra-
jectories in the w–h state space. The analytical
solutions reasonably mimic the full numerical so-
lutions. Nonetheless, for completeness we use the
numerical solutions next.

We start with the situation in which the soil
production rate w is specified as an exponential
function (29) with P0 = 0.0001 m yr−1, lw = 0.6
m, and h0 = 0.5 m so that w0 = 0.00004 m yr−1.
For illustration we use the attenuation lengths
ls = lr = 0.4 m, and we choose Tt = 10 000 yr.
Following an initial transient the estimated rate
w∗(t) follows a trajectory that loops about the
line with a semi-log slope of −1/ls, not −1/lw
(Figure 6). The loop reflects the effect of the
phase shift associated with this period. When
Tt = 100 000 yr the trajectory bends toward the
specified exponential relation with semi-log slope

of −1/lw. When Tt = 1 000 000 yr the trajectory
begins to converge to this specified exponential
relationship.

Similar results are obtained for the situations
in which the soil production rate w is specified
as a linear function (32) (Figure 7) and as a con-
stant w0 independent of soil thickness h (Figure
8). Note that we can change the values of the
various parameters listed above, but in all cases
the essence of the outcome is the same.

We may imagine a great number of hillslope
or landscape locations that intermittently expe-
rience disturbances from a nominal steady-state
condition, representing a range of scales and
transient periods. This gives a family of trajec-
tories in w–h the phase plot. Suppose that we
then measure the cosmogenic radionuclide con-
centration at a great number of such locations at
one instant. Such a plot is unlikely to reflect the
true soil production function that would be ob-
tained under steady state conditions as described
above. Rather, it reflects one instant in the his-
tory of disturbances (thinning and thickening of
soils with recovery) on the particular landscape.

4.3.3 Competing time scales

Recall that the time scale Tt characterizes the
persistence of transient variations in erosion that
give thinning or thickening of the soil. This time
scale is associated with the horizontal component
of the trajectory of a system in a w–h phase plot.
In turn Tr = lr/w is an advective time scale that
determines the interface number concentration
n(η) (Appendix C). This time scale characterizes
the rate at which the radionuclide concentration
at the soil-saprolite interface approaches a steady
condition in concert with radioactive decay and
it therefore controls the vertical component of
the trajectory of a system in a w–h phase plot.

We now define the dimensionless Lal number1

as

La =
Tr

Tt
=

1

Tt(λ+ w/lr)
≈ lr
Ttw

, (36)

1This number is named in honor of Devendra Lal
(14 February 1929 – 01 December 2012) for his pioneer-
ing work on the accumulation of cosmogenic radionuclide
atoms in earthen materials and the implications thereof.
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Figure 6: Example phase plot of production rate w,w∗ versus soil thickness h assuming true soil
production rate is exponential function with P0 = 0.0001 m yr−1 and lw = 0.6 m (black line). Also
shown is linear function (red line), exponential function with ls = 0.4 m (blue line), and simulated
estimates of production rate (blue dots) for periods Tt = 10 000, 100 000, 1 000 000 yr.

Figure 7: Example phase plot of production rate w,w∗ versus soil thickness h assuming true soil
production rate is linear function with α = −1/lw and lw = 0.6 m (red line). Simulated estimates
of production rate (blue dots) are for periods Tt = 10 000, 100 000, 1 000 000 yr.

which differs from the dimensionless frequency
ω̂ by the factor 2π. A small value of La implies
that the approach to a steady number concentra-
tion n(η) is rapid relative to the rate of change
in the soil thickness. A large value of La implies
that this approach to a steady concentration does
not keep pace with the rate of change in the soil
thickness. This means that the steady-state ap-
proximation with respect to cosmogenic radionu-
clide concentrations is recovered in the limit of
La → 0.

In each of the examples depicted in Figures 6,
7 and 8, the Lal number is La = 0.9, 0.09, 0.009
for the periods Tt = 10 000, 100 000, 1 000 000 yr
with w0 = 0.0001 m yr−1 and lr = 0.4 m. If the
zeroth-order soil production rate w0 is increased
by an order of magnitude then the Lal number
decreases by an order of magnitude for these pe-
riods. This implies that with increasing uplift

rates, assuming steady zeroth-order conditions,
the w∗–h phase trajectories begin to converge to
the specified soil production curve over shorter
transient periods Tt, a point supported by nu-
merical simulations.

4.4 Absence of non-monotonic
empirical functions

The procedure outlined above for estimating the
soil production rate w likely precludes the possi-
bility of empirically discovering a non-monotonic
form of the soil production function under tran-
sient conditions, if such a form exists. To illus-
trate this point we start with the first example
in Section 4.3.1.

Consider a steady condition in which the pro-
duction rate w = W with ∂h/∂t = 0, where we
denote the steady soil thickness as h0. The as-
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Figure 8: Example phase plot of production rate w,w∗ versus soil thickness h assuming true soil
production rate is a constant (horizontal line). Simulated estimates of production rate (blue dots)
are for periods Tt = 10 000, 100 000, 1 000 000 yr.

sociated fixed radionuclide concentration at the
soil-saprolite interface η is n(η;h0). Now sup-
pose that the production rate w is given by (32)
with positive sign, that is, the production rate
increases with increasing soil thickness h. This
represents conditions to the left of the maxi-
mum production rate in a non-monotonic pro-
duction function (e.g. Carson and Kirkby, 1972),
where now the soil thickness h0 coincides with a
metastable state. With unknown uplift rate W ,
under these conditions measurements of h0 and
n(η;h0) yield the correct value w0 = W given by
(24). But now suppose that the soil thickness at
some location suddenly decreases to a value h1

due to erosion. This location inherits the num-
ber concentration n(η;h0). And, suppose that
at another location the soil thickness suddenly
increases to a value h2. This location also inher-
its the concentration n(η;h0). If we take mea-
surements soon after the decrease or increase in
thickness, then following the same reasoning pre-
sented in Section 4.3.1, we end up producing
an empirical function having the form of (28).
Thus, despite the fact that the true soil produc-
tion rate increases with increasing soil thickness,
we nonetheless again have created an empirical
soil production function whose form is exponen-
tial by misapplying a steady-state formulation to
transient conditions.

Of course conditions immediately following a
sudden decrease or increase in soil thickness h
are not likely to be sustained. As described in
Section 4.3.1, changes in thickness are accompa-

nied by changes in exposure to cosmic rays and
production of cosmogenic radionuclide atoms at
the soil-saprolite interface. But there also is a
response to the metastable configuration repre-
sented by h0. A decrease in soil thickness, unless
matched by a decrease in the erosion rate com-
bined with continued soil production, leads to
unchecked thinning of the soil. An increase in
soil thickness combined with continued soil pro-
duction, unless matched by an increase in the
erosion rate, leads to unchecked thickening of the
soil (e.g. Furbish and Fagherazzi, 2001). Mea-
surements of the concentration of cosmogenic ra-
dionuclides at the soil-saprolite interface during
such periods of response could give estimates of
the soil production rate that are confusing in re-
lation to a conceptualized single-valued function
of soil thickness.

Using the same conditions of the example
presented in Figure 6 but with a soil produc-
tion rate w that increases linearly with increas-
ing soil thickness h, simulations reveal exam-
ples of unchecked thickening and thinning (Fig-
ure 9). In this figure unchecked thickening fol-
lows from an initial thickening of the soil from its
metastable configuration, and unchecked thin-
ning follows from an initial thinning of the soil
from its metastable configuration. Notice that
these phase trajectories have little to do with the
underlying linear soil production function, and
instead the oscillations locally mimic a relation-
ship with negative semi-log slope. Also note that,
unlike the examples in the preceding section, long
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Figure 9: Example phase plots of production
rate w,w∗ versus soil thickness h assuming the
true soil production rate (orange line) increases
linearly with soil thickness, showing unchecked
thickening (top) and unchecked thinning (bot-
tom) from initial metastable configuration.

transient periods Tt do not involve convergence
to the specified soil production curve. As the
soil thickens or thins a metastable configuration
is maintained; the initial condition does not mat-
ter.

4.5 Extant rate of soil production

A question lingers. Aside from its use for in-
ferring the form of a relationship between the
rate of soil production w and soil thickness h,
does the procedure provide an accurate mea-
sure of the extant rate of soil production under

moderate-frequency to high-frequency transient
conditions?

The veracity of the steady-state relationship,
(15) or (16), hinges on specifying the correct cos-
mogenic radionuclide production rate at the soil-
saprolite interface, Pη. This rate only can be in-
ferred from (1), which depends on the soil thick-
ness h. Thus the historical state of the soil thick-
ness must be independently known such that Pη
can be correctly related to the cosmogenic ra-
dionuclide concentration n(0) — just as the rate
of production of cosmogenic radionuclide atoms
at the soil surface, Pζ , must be independently
known. Unless the historical state of the soil
thickness is known to satisfy the steady-state or
quasi-steady condition, then the value of Pη used
in (15) or (16) based on the extant soil thickness
is just a guess.

5 Summary of key results

Here we summarize key results from our analy-
sis pertaining to the procedure for inferring the
rate of soil production. For clarity we reproduce
several equations.

The procedure starts with the equation,

n(η) =
Pη

λ+ w/lr
≈ Pηlr

w
. (37)

This equation is satisfied only if quasi-steady
conditions have existed for a period Tt � Tr

(i.e. La � 1) such that the number concentra-
tion n(η) at the interface η is a fixed value for
a steady atom production rate Pη and a steady
soil production rate w. Then, neglecting decay
and rearranging (37),

w =
Pηlr
n(η)

. (38)

Like (37), (38) states a condition that must be
satisfied if and only if the quasi-steady condition
is satisfied. It says nothing about whether this
condition is actually satisfied. That is, if one
uses (38) to estimate the soil production rate w,
one cannot know if this estimate of w is correct
unless it is independently verified that the quasi-
steady condition is satisfied. Thus, if for a spec-
ified value lr one has a set of paired values of Pη
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and n(η) and uses (38) to create a set of values
w, then unless one independently verifies that the
quasi-steady condition is satisfied for each pair,
the numbers w are just guesses.

To use (38) requires measuring n(η) and es-
timating the value Pη. To estimate Pη requires
specifying the soil thickness h and using

Pη = Pζe
−h/ls . (39)

Combining (38) and (39) then gives

w =
Pζ lr
n(η)

e−h/ls . (40)

Like (37) and (38), (40) states a condition that
must be satisfied if and only if the quasi-steady
condition is satisfied. Thus, if for a specified
value lr one has a set of paired values of h and
n(η) and uses (40) to create a set of values w,
then unless one independently verifies that the
quasi-steady condition is satisfied for each pair,
the numbers w are just guesses. Moreover, for a
fixed value of n(η) or for a set of values of n(η)
that reflect transient variations in saprolite and
soil properties, including the thickness h, then
(40) yields a set of values of w which by definition
are correlated exponentially with the thicknesses
h — an induced correlation — as values of w are
created from values of h rather than being deter-
mined independently. And, in practice, whether
one does or does not algebraically combine (38)
and (39) to give (40), the outcome is the same.

Momentarily setting aside effects of transient
conditions and other sources of uncertainty, it is
statistically indefensible to create values of the
dependent variable using values of the indepen-
dent variable, then turn around and use curve
fitting (e.g. regression) to “discover” the form
of the function used to create the dependent val-
ues. Moreover, it is immaterial whether quanti-
ties estimated from such an analysis do or do not
closely match expected values (e.g. 1/lw ∼ 1/ls),
as the exercise, at the outset, is not statistically
meaningful.

To form an empirical relationship between the
soil production rate w and the soil thickness h
requires knowing what the production rate is in-
dependently of the soil thickness, that is, with-
out reference to the equations above. But how

does one independently determine the soil pro-
duction rate? Perhaps one could do this by de-
termining the uplift rate W independently then
assume based on separate evidence that quasi-
steady conditions have existed for a period of
time where La � 1 such that the soil production
rate w is equal to the uplift rate W . Then the
use of (40) mostly becomes a check on what one
is already assuming to be true, that quasi-steady
conditions exist and w = W .

6 Postscript

The current procedure for estimating soil pro-
duction rates in relation to soil thickness using
measurements of cosmogenic radionulide concen-
trations likely leads to spurious outcomes from
the misapplication of what Lal (1991) explained
three decades ago regarding the accumulation
of radionucide atoms within earthen materials
in the presence of steady erosion. Due to the
transient conditions that mostly exist in natural
landscapes this procedure, which is based on the
assumption of steady conditions, cannot reveal
the form of the soil production function in rela-
tion to soil thickness, if such a function exists, in
the presence of moderate to high-frequency vari-
ations in soil thickness. Moreover, that the mag-
nitude of the semi-log slope of an empirical soil
production function generated from this proce-
dure is of the same order as the reciprocal of the
attenuation length ls is likely not a coincidence
(Harrison et al., 2021).

The analyses presented herein suggest a
straightforward lesson. If the semi-log slope of an
empirical soil production curve obtained by the
method described above is similar to the recip-
rocal of the soil attenuation length ls — making
allowances for uncertainty in soil properties over
long times, any covariance between the concen-
tration n(η) and the thickness h (Appendix D),
and measurement and analytical uncertainties —
then the parsimonious interpretation is that this
situation likely represents the presence of mod-
erate to high-frequency transient conditions. If
instead the slope markedly differs from the re-
ciprocal of the soil attenuation length scale, or
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the empirical relationship is altogether different
from an exponential curve (e.g. Heimsath et al.,
2020; Harrison et al., 2021), then the relationship
might merit closer examination.

In exploring the dynamics of soil-mantled hill-
slopes in the presence of soil production, it is
entirely reasonable to assume that the rate of
production varies as a function, exponential or
otherwise, of soil thickness. But this must be
viewed as an hypothesis, not a confirmed rela-
tionship. Moreover, a genuine soil production
function is unlikely to involve a single-valued re-
lationship with soil thickness for a specified rock
type in view of natural variability in climate and
associated hydrologic and biotic conditions (e.g.
Heimsath et al., 2020).

The basic idea that the rate of soil production
might systematically vary with soil thickness is
compelling, and merits closer examination. In
particular the negative feedback associated with
a decreasing production rate with increasing soil
thickness (Carson and Kirkby, 1972; Furbish and
Fagherazzi, 2001) provides a sensible hypothesis
for the seeming stability in the mantling of soils
on hillslopes in the presence of soil transport.
Clarifying how the rate of soil production might
be related to soil thickness will require an expla-
nation of the mechanics, in concert with chemical
effects, that produce the transition from immo-
bile to mobile conditions at the soil-saprolite in-
terface, giving way to active transport above —
likely representing a set of stochastic processes
rather than a continuum-like behavior.

We end with an observation. As mentioned
above, Lal (1991) is quite clear in pointing out
that the steady-state relationships described by
(13) and (14) hinge on the presence of steady ero-
sion for a period of time at least as long as ∼ 4Tr

with fixed production rate Pη — a rather rigid
constraint imposed on the procedure. Heimsath
et al. (1997) clearly are aware of this constraint,
but seem to justify the procedure by appealing
to the time scale of hillslope relaxation as a mea-
sure of steadiness rather than providing an as-
sessment of steadiness with respect to the rel-
evant e-folding time Tr. In their review paper
on cosmogenic radionuclides, Granger and Riebe
(2014) show the unsteady solution (11) of the

concentration n(ψ, t) with fixed erosion rate, but
only note the steady-state constraint in passing
without further comment when applied to the
problems of rock erosion and the soil production
rate. In their recent paper, Schaller and Ehlers
(2022) simply give the steady-state formula for
calculating the cosmogenic radionuclide concen-
tration without reference to its applicability to
only steady-state conditions nor to the constraint
imposed by the e-folding time Tr. The progres-
sion in such examples offers the impression that
the procedure is now disconnected from the ba-
sis of the work that Lal (1991) presented, and
simply assumes that (13) and (14) yield the cor-
rect result with Pη determined by the extant soil
thickness without independently constraining its
history.

Appendixes

A: Discontinuity of the radionuclide
concentration at the soil-saprolite
interface

The rate of production Pη(t) of cosmogenic ra-
dionuclide atoms at the soil-saprolite interface is
set by the surface production rate Pζ , the soil
thickness h and the attenuation length ls. How-
ever, different values of the attenuation lengths ls
and lr due to differences in density can lead to a
discontinuity in the cosmogenic radionuclide con-
centrations n(η, t) measured just above and just
below the soil-saprolite interface. The conver-
sion of weathered rock (saprolite) to mechani-
cally active soil means that radionuclide atoms
within the saprolite particles are “handed” to
the base of the soil and are thus subject to
mixing. The mathematics used herein give the
impression that this is a piecewise continuous
process, whereas in reality the conversion (with
a change in bulk density) and entrainment of
weathered material likely is a complex stochastic
process. One perhaps could perform matching of
the concentrations across the soil-saprolite inter-
face with additional description of the physics in-
volved, but this level of mathematics is not war-
ranted. Indeed, we may be using mathematics
that are far more precise than might be justi-
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fied by the stochastic ingredients of the natural
process.

B: Frequency response function
without soil

In order to examine effects of unsteady erosion,
which Lal (1991) does not consider, here we de-
rive the frequency response function relating the
rate of erosion E(t) = −w(t) to the cosmogenic
radionuclide concentration n(0, t). The starting
point is the statement of conservation (10). As
in the main text we define zeroth-order and first-
order quantities denoted by the subscripts 0 and
1. Namely,

n(ψ, t) = n0(ψ) + n1(ψ, t) and (41)

w(t) = w0 + w1(t) . (42)

Upon substituting (37) and (38) into (10) we
have at zeroth order,

0 = w0
∂n0(ψ)

∂ψ
+ Pηe

−ψ/lr − λn0(ψ) . (43)

From this we obtain

n0(0) =
Pη

λ+ w0/lr
, (44)

which in effect is a restatement of (13). At lin-
earized first order,

∂n1(ψ, t)

∂t
= w0

∂n1(ψ, t)

∂ψ

+ w1(t)
∂n0(ψ)

∂ψ
− λn1(ψ, t) . (45)

We now define the following dimensionless quan-
tities denoted by circumflexes:

n = n0(0)n̂ , w = w0ŵ ,

ψ = lrψ̂ and t = Trt̂ , (46)

with Tr = 1/(λ + w0/lr). Substituting these ex-
pressions into (41) then gives

∂n̂1(ψ̂, t̂)

∂t̂
− w0Tr

lr

∂n̂1(ψ̂, t̂)

∂ψ̂
+ λTrn̂1(ψ̂, t̂)

= −ŵ1(t̂)e−ψ̂ + λTrŵ1(t̂)e−ψ̂ . (47)

We now assume that

n̂1(ψ̂, t̂) = Ân̂1e
iω̂t̂e−ψ̂ and

ŵ1(t̂) = Âŵ1e
iω̂t̂ , (48)

with dimensionless frequency ω̂ = Trω and imag-
inary number defined by i2 = −1. Substituting
these expressions into (43) then leads to the fre-
quency response function,

Fn̂1(0),ŵ1
(ω̂) =

λTr − 1

1 + iω̂
, (49)

where the first subscript denotes the response
and the second subscript denotes the forcing
quantity. This has the gain and phase functions,

Gn̂1(0),ŵ1
(ω̂) =

λTr − 1√
1 + ω̂2

and (50)

φn̂1(0),ŵ1
(ω̂) = tan−1(−ω̂) . (51)

The gain function (46) revels that (45) is a low-
pass filter (Figure 1). That is, high-frequency
variations in the erosion rate E1(t) = −w1(t) are
attenuated in the response signal n1(0, t), and
the lowest frequencies are “passed” without at-
tenuation. This means that low-frequency varia-
tions yield responses with high fidelity such that
quasi-steady conditions are maintained. High-
frequency variations in the erosion rate do not
produce similar variations in the number concen-
tration n1(0, t).

C: Frequency response functions with
soil

Here we obtain the frequency response functions
relating variations in soil thickness to the rate
of soil production, the rate of production of cos-
mogenic radionuclide atoms at the soil-saprolite
interface, and the number concentration of cos-
mogenic radionuclide atoms at this interface.
Throughout we assume a fixed uplift rate W . We
start by collecting the essential equations from
the main text.

Variations in the land-surface elevation are re-
lated to the erosion rate as

∂ζ(t)

∂t
= W + E(t) . (52)
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Variations in the soil-saprolite interface are given
by

∂η(t)

∂t
= W − w(t) . (53)

Variations in the soil thickness therefore are
given by

∂h(t)

∂t
= E(t) + w(t) . (54)

We assume a linear soil production function at
the outset. Namely,

w(t) = w0(1 + αh1) . (55)

If this is viewed as a linearized form of an ex-
ponential function then w0 = P0e

−h0/lw with
α = −1/lw where h1 denotes a fluctuation about
the basic state soil thickness h0. Otherwise it
may be considered a linear function that de-
creases (α < 0) or increases (α > 0) with increas-
ing soil thickness h. If α = 0 then the rate of soil
production w(t) is independent of soil thickness.
The rate of production of cosmogenic radionu-
clide atoms at the soil-saprolite interface is given
by

Pη(t) = Pζe
−h(t)/ls . (56)

Conservation of cosmogenic radionuclide atoms
beneath the soil-saprolite interface is described
by an advection equation with source term,

∂n(ψ, t)

∂t
= w

∂n(ψ, t)

∂ψ
+ Pη(t)e

−ψ/lr , (57)

where ψ = η′ − z′ with dψ = −dz′. The esti-
mated rate of soil production assuming steady-
state conditions is given by

w∗ =
Pζ lr
n(η)

e−h/ls . (58)

Before continuing, here we note an important so-
lution of (53), namely, the response n(ψ, t) to a
step change in the production rate Pη(t) = Pη
with fixed velocity w(t) = w. Namely, upon ne-
glecting radioactive decay (11) becomes

n(ψ, t) =
Pηlr
w

[
1− e−(w/lr)t

]
e−ψ/lr , (59)

such that n(0,∞) = Pηlr/w. This reveals that
the advective time scale Tr = lr/w coincides

with the e-folding response time of the number
concentration n(ψ, t). Moreover, as a step re-
sponse this solution reveals that the concentra-
tion n(0, t) at the soil-saprolite interface may be
described in terms of variations in the produc-
tion rate Pη(t) without reference to concentra-
tions beneath the interface (ψ > 0).

We now define zeroth-order states and first-
order fluctuations denoted by the subscripts 0
and 1. Namely,

h(t) = h0 + h1(t) ,

E(t) = E0 + E1(t) ,

w(t) = w0 + w1(t) ,

Pη(t) = Pη0 + Pη1(t) and

n(ψ, t) = n0(ψ) + n1(ψ, t) . (60)

Substituting these expressions into (50), (51),
(52) and (53) leads to the zeroth-order identity
w0 = w0 plus the following conditions:

0 = E0 + w0 , (61)

Pη0 = Pζe
−h0/ls and (62)

0 = w0
∂n0(ψ)

∂ψ
+ Pη0e

−ψ/lr . (63)

From these we obtain

∂n0(ψ)

∂ψ
=
Pη0

w0
e−ψ/lr and (64)

n0(0) =
Pη0lr
w0

. (65)

At linearized first order,

∂h1(t)

∂t
= E1(t) + w1(t) , (66)

w1(t) = w0αh1(t) , (67)

Pη1(t) = −Pη0

ls
h1(t) and (68)

∂n1(ψ, t)

∂t
= w0

∂n1(ψ, t)

∂ψ
+ w1(t)

∂n0(ψ)

∂ψ

+ Pη1(t)e−ψ/lr . (69)

We then combine (62), (63), (64) and (65) to give

∂h1(t)

∂t
= E1(t) + w0αh1(t) and (70)
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∂n1(ψ, t)

∂t
= w0

∂n1(ψ, t)

∂ψ

+
w0n0(0)

lr

(
α− 1

ls

)
h1(t)e−ψ/lr . (71)

We now define the following dimensionless
quantities denoted by circumflexes:

h = lsĥ ,

E = WÊ , w = Wŵ ,

n = n0(0)n̂ ,

ψ = lrψ̂ and t =
lr
W
t̂ (72)

Substituting these expressions into (66) and (67)
and recognizing that ŵ0 = 1 leads to

∂ĥ1(t̂)

∂t̂
− αlrĥ‘(t̂) =

lr
ls
Ê1(t̂) and (73)

∂n̂1(ψ̂, t̂)

∂t̂
=
∂n̂1(ψ̂, t̂)

∂ψ̂
+(αls−1)ĥ1(t̂)e−ψ̂ . (74)

Inspired by the form of the step response given
by (55) we assume that

Ê1(t̂) = ÂÊ1
eiω̂t̂ ,

ĥ1(t̂) = Âĥ1e
iω̂t̂ and

n̂1(ψ̂, t̂) = Ân̂1e
iω̂t̂e−ψ̂ , (75)

with dimensionless frequency ω̂ = (lr/W )ω and
imaginary number defined by i2 = −1. Substi-
tuting these expressions into (69) and (70) then
leads to the frequency response functions,

Fĥ1,Ê1
(ω̂) =

lr/ls
−αls + iω̂

and (76)

Fn̂1(0),ĥ1
(ω̂) =

αls − 1

1 + iω̂
, (77)

where the first subscript denotes the response
and the second subscript denotes the forcing
quantity. Moreover we can combine (72) and (73)
to give the frequency response function relating
the cosmogenic radionuclide concentration to the
erosion rate. Namely,

Fn̂1(0),Ê1
(ω̂) =

(1− αls)(lr/ls)
αls + ω̂2 − i(1− αls)ω̂

. (78)

These have the gain and phase functions

Gĥ1,Ê1
(ω̂) =

lr/ls√
α2l2s + ω̂2

, (79)

φĥ1,Ê1
(ω̂) = tan−1

(
ω̂

αls

)
, (80)

Gn̂1(0),ĥ1
(ω̂) =

αls − 1√
1 + ω̂2

, (81)

φn̂1,ĥ1
(ω̂) = tan−1(−ω̂) , (82)

Gn̂1(0),Ê1
(ω̂) =

(1− αls)(lr/ls)√
(αls + ω̂2)2 + (1− αls)2ω̂2

and (83)

φn̂1(0),Ê1
(ω̂) = tan−1

[
(1− αls)ω̂
αls + ω̂2

]
. (84)

The frequency response, gain and phase func-
tions representing the situation in which the rate
of soil production is independent of soil thickness
are obtained by setting α = 0.

The forms of the gain functions (75), (77)
and (79) reveal that each of the frequency re-
sponse functions, (72), (73) and (74), represents
a low-pass filter. That is, high-frequency vari-
ations in the forcing quantity are attenuated
in the response signal, and the lowest frequen-
cies are “passed” without attenuation. This
means that low-frequency variations yield re-
sponses with high fidelity such that quasi-steady
conditions are maintained.

D: Effect of covariance between the
concentration n(η) and the thickness h

From a statistics perspective, the expression
(22), reproduced as (40), may involve an impor-
tant effect due to a finite covariance between the
radionuclide atom concentration n(η) and the
soil thickness h. To illustrate this point, suppose
on purely empirical grounds that n(η) varies ex-
ponentially with h as

n(η) ∼ e−h/ln , (85)

where ln is an e-folding length. Now (22) may
be expressed as

w ∼ e−(1/ls−1/ln)h . (86)
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Taking logarithms,

lnw ∼ −
(

1

ls
− 1

ln

)
h . (87)

This means that the magnitude of the expected
empirical slope 1/ls is reduced by 1/ln due to
the negative covariance between n(η) and h.
More generally, without reference to the specific
form of the relationship between n(η) and h, a
negative covariance between these quantities re-
duces the magnitude of the expected slope, and
a positive covariance increases the magnitude
of the expected slope. As a point of reference
the data of Heimsath et al. (2005) for Point
Reyes, California, indicate that n(η) and h are
uncorrelated. Similarly, the expected slope can
be influenced by a finite covariance between the
surface production rate Pζ and the thickness h.
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