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1 Initial remarks

The idea of a statistical moment comes from
physics. Recall that there are two important mo-
ments used to describe rigid bodies: the first mo-
ment of area (sometimes incorrectly referred to
as the first moment of inertia), and the moment
of inertia (also referred to as the second moment
of area or the rotational inertia). The first mo-
ment of area describes how the shape of an object
is distributed relative to a coordinate axis, and
the moment of inertia describes the tendency of
an object to resist angular acceleration about an
axis of rotation. Our objective is to show that
the first and second moments of a probability
distribution — its mean and variance — in fact
are defined in a manner that is entirely consis-
tent with the definitions of the first and second
moments of area associated with rigid bodies,
thus leading to the use of the term “moment” in
probability and statistics.

2 The first moment (mean)

Consider a rigid but massless lever arm upon
which we place small cubes, each with massm, at
arbitrary distances x from the origin x = 0 (Fig-
ure 1). A fulcrum is placed beneath the lever
arm at the origin. Gravity is acting downward,
normal to the lever arm. In order to keep the
lever arm stable we apply an upward force F+

to the lever arm at an arbitrary distance x from
the fulcrum. (This force is merely an artifice to
keep the physics right, but does not enter into
our calculations.)

Suppose that we place N cubes on the lever
arm. Let us denote the distance of the ith cube

Figure 1: Definition diagram of lever arm with
cubes, each of mass m, placed at distances xi
from the origin x = 0. The fulcrum is initially
located at this position.

as xi. In turn, let us calculate the torque on the
lever arm about the origin produced by the ith
cube. This is

τi = Fzxi = −mgxi . (1)

This says that the torque τi is equal to the
force Fz defined by the weight of the cube times
the distance xi of the lever arm that this force
is acting on. In turn, the weight of the cube
Fz = −mg, where g is the acceleration due to
gravity. The negative sign indicates that this
force is acting downward in the gravitational
field. This also means that the torque τi is nega-
tive, implying that it is tending to produce clock-
wise rotation of the lever arm about the fulcrum.

Let us now calculate the total torque on the
lever arm due to the N cubes. This is

τ =
N∑
i=1

τi = Fz

N∑
i=1

xi = −mg
N∑
i=1

xi . (2)

With reference to Figure 1, the cubes resting on
the lever arm produce a finite negative torque
about the origin x = 0, tending to make the
lever arm undergo clockwise rotation. Indeed,
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the force F+ must provide a torque of equal mag-
nitude and of opposite sign to keep the lever arm
from rotating.

Let us now imagine placing the fulcrum at a
finite distance from the origin such that some of
the cubes are to the left of the fulcrum and some
are to the right of it. Let us define the position
of the fulcrum as x0. Cubes at positions xi > x0
will provide a negative (clockwise) torque about
the position x0, and cubes at positions xi < x0
will provide a positive (counterclockwise) torque
about the position x0. Let us again calculate the
torque produced by the ith cube. This is

τi = −mg(xi − x0) . (3)

Notice that the quantity xi − x0 is the length of
the lever arm that the force −mg is acting on,
with respect to the position x0 of the fulcrum.
If xi > x0, then the torque τi is negative. If
xi < x0, then the torque is positive.

Let us again calculate the total torque on the
lever arm due to the N cubes. This is

τ =
N∑
i=1

τi = −mg
N∑
i=1

(xi − x0) . (4)

We may then distribute the second sum in (4)
giving

τ = −mg
N∑
i=1

xi +mg
N∑
i=1

x0 . (5)

Because x0 is a fixed value, this becomes

τ = −mg
N∑
i=1

xi +mgNx0 . (6)

Let us now suppose that we placed the fulcrum
at the specific position x0 such that the positive
torque produced by the cubes to the left of x0
is exactly balanced by the negative torque pro-
duced by the cubes to the right of x0. This is
the same as saying that the total torque τ = 0.
Now (6) becomes

0 = −mg
N∑
i=1

xi +mgNx0 . (7)

With a little algebra we then discover that

x0 =
1

N

N∑
i=1

xi . (8)

Thus, the position x0, which represents the cen-
ter of mass of the cubes, is precisely the same as
the mean position of the cubes, that is,

x0 = x =
1

N

N∑
i=1

xi . (9)

In physics terms, this is the first moment of the
system.

Let us now turn to the definition of the first
moment (the mean) of a probability density func-
tion. Consider the probability density function
fx(x) of the random variable x with mean µx.
By definition ∫ ∞

−∞
fx(x) dx = 1 . (10)

Letting N denote a great number of the values
of x, then (10) may be restated as∫ ∞

−∞
nx(x) dx = N . (11)

where nx(x) = Nfx(x) is the number density.
Then, for example, nx(x)dx is the number of
values of x falling within the small interval x to
x+ dx, that is, the number of cubes within this
interval. Because N is arbitrarily large, here we
are imagining the cubes as being tiny — in effect
point masses.

The small amount of torque dτ about x = 0
due to the cubes within the interval x to x+ dx
is

dτ = −mgxnx(x) dx . (12)

The total torque is

τ =

∫ ∞
−∞

dτ = −mg
∫ ∞
−∞

xnx(x) dx . (13)

With reference to Figure 2, the cubes resting on
the lever arm produce a finite negative torque
about the origin x = 0.

As before, let us now choose the position x0
such that the total torque about this position is
zero. We thus rewrite (13) as

τ =

∫ ∞
−∞

dτ = −mg
∫ ∞
−∞

(x−x0)nx(x) dx . (14)
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Figure 2: Example of number density function
nx(x) = Nfx(x).

In turn, setting τ = 0 and distributing the inte-
gral,

0 = −mg
∫ ∞
−∞

xnx(x) dx

+mgx0

∫ ∞
−∞

nx(x) dx . (15)

Using (11) this becomes∫ ∞
−∞

xnx(x) dx = Nx0 . (16)

Dividing both sides of (16) by N and using the
fact that fx(x) = (1/N)nx(x),

x0 = µx =

∫ ∞
−∞

xfx(x) dx . (17)

Thus, the position x0, which represents the cen-
ter of mass of the cubes, is precisely the same as
their mean position, that is, the first moment of
the distribution fx(x).

3 The second moment
(variance)

Now that we have defined the first statistical
moment (the mean) in physical terms, let us
similarly define the second statistical moment
(the variance) in terms of the moment of iner-
tia. Once again we appeal to our lever arm upon
which we place small cubes, each with mass m,
at distances xi from the origin.

We now know that the first moment, x0 = x,
represents the center of mass such that the total

toque τ about the fulcrum is zero and the sys-
tem has no tendency to rotate. What we now
need to imagine is a measure of the resistance of
the system to being rotated about the fulcrum
when a torque is applied to the system, indepen-
dently of the gravitational field. This involves
the rotational inertia (or moment of inertia).

With respect to rotation about the fulcrum
positioned at x0, the inertial moment of the ith
cube is

Ii = m(xi − x0)
2 . (18)

The total inertial moment is

I =
N∑
i=1

Ii = m
N∑
i=1

(xi − x0)
2 . (19)

Let us use divide (19) by mN to give

I

Nm
=

1

N

N∑
i=1

(xi − x0)
2 . (20)

In turn, recalling that the first moment x0 = x,
this becomes

I

Nm
= s2x =

1

N

N∑
i=1

(xi − x)2 . (21)

Note that the product Nm is the total mass of
the system. The variance s2x thus may be inter-
preted as the total inertial moment per system
mass. And, we are free to set Nm = 1.

Consider two separate lever arms with cubes
attached to each at various positions xi, where
in the first case the cubes are concentrated close
to the mean position x, and in the second case
the cubes are relatively far away from the mean
position. This is the same as saying that the
variance is small in the first case and large in
the second case. Now imagine trying to spin the
lever arms about their center of mass (the mean
position). Clearly it will be easier to spin the
first lever arm with the smaller variance, that is,
with the smaller moment of inertia.

Let us now turn to the definition of the sec-
ond moment (the variance) of a probability den-
sity function. With respect to rotation about the
fulcrum positioned at x0 = µx, the small inertial
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moment of cubes located within the interval x to
x+ dx is

dI = m(x− µx)2nx(x)dx . (22)

The total inertial moment is

I =

∫ ∞
−∞

dI = m

∫ ∞
−∞

(x− µx)2nx(x)dx . (23)

Dividing by Nm,

I

Nm
= σ2x =

∫ ∞
−∞

(x− µx)2fx(x)dx , (24)

which is the continuous version of (21) above.
And again, we are free to set Nm = 1.

4 Symmetry

In learning probability and statistics we are fre-
quently asked for good reasons to think about
the Gaussian distribution and its properties. It
is easy to envision that the mean of this symmet-
rical distribution represents its center of “mass,”
and to grasp the idea that half of the probability
represented by the Gaussian distribution falls to
the left of the mean and half falls to its right.
Based on our interpretation above, the torque
of the system (distribution) measured about the
mean is zero. But now let us briefly consider an
asymmetrical distribution, the exponential dis-
tribution, whose number density is depicted in
Figure 2.

Recall that the exponential distribution is
given by

fx(x) =
1

µx
e−x/µx , (25)

with mean µx. Much of the probability repre-
sented by this distribution is concentrated near
the origin (x = 0). The cumulative distribution
function is

Fx(x) = 1 − e−x/µx . (26)

By setting x = µx we have

Fx(x) = 1 − e−1 , (27)

which tells us that about 63% of the probability
falls to the left of the mean and about 37% falls

to its right — in sharp contrast to a symmetri-
cal distribution. Nonetheless, our interpretation
that the position given by the mean coincides
with a condition of zero torque measured about
this position holds. Recall that torque is the
product of a force and a lever arm. Again imag-
ining that the probability associated with fx(x)
is represented by a great number of point masses,
then to the left of the mean the lever arms x−µx
associated with these masses are relatively short,
but the number of point masses is large. To the
right of the mean there are fewer point masses,
but their associated lever arms x − µx are rela-
tively large. Indeed, the magnitude of the largest
lever arm to the left of the mean is µx, and the
largest lever arm to the right of the mean ap-
proaches infinity! All is in good order.
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