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In a separate essay1 I describe the well known
“uncertainty principle” of a Poisson point pro-
cess. Here I offer a delightful example of this
principle involving bed load transport, with im-
portant practical as well as theoretical implica-
tions. This example involves data that Madeline
Allen and Shawn Chartrand are analyzing for a
forthcoming paper.

Here is the essence of the uncertainty princi-
ple. Consider a finite interval (0, t] of time and
let N = 0, 1, 2, 3, . . . denote the possible number
of Poisson events located within this interval for
a fixed rate constant λ. The probability of the
number of events N is described by a discrete
Poisson distribution, namely,

fN (N ;λ, t) =
(λt)N

N !
e−λt , (1)

with mean µN = λt and variance σ2N = λt. This
is the normal manner in which the Poisson dis-
tribution is presented. Namely, the Poisson rate
λ and the interval t are precisely known, and the
number N is then distributed according to (1).

Notice that (1) is like a mixed discrete-
continuous joint distribution of N and λ (Figure
1). If instead of specifying the rate λ we spec-
ify the number of events N occurring within the
interval t, then we do not necessarily know the
value of λ. Indeed, a specific number of events N
within an interval t can occur with finite prob-
ability for any value of λ > 0. As shown in the
separate essay,1 for a specified number of events
N within t the rate λ is described by a continu-

1https://my.vanderbilt.edu/davidjonfurbish/files/
2013/06/Uncertainty-Principle.pdf

Figure 1: Joint variation of n and λ with Poisson
distribution fn(n; s, λ).

ous gamma distribution,

fλ(λ; t,N) =
t(tλ)N

N !
e−tλ , (2)

with support (0,∞), mean µλ = (N+1)/t, mode
Mo = N/t and variance σ2λ = (N + 1)/t2.

If for an interval t the Poisson rate λ is known
then the number of events N occurring within t
only can be specified with uncertainty according
to (1). In contrast, if the number N is known
then the rate λ only can be specified with uncer-
tainty according to (2). This is the uncertainty
principle of a Poisson point process.

Consider an experiment in which gravel parti-
cles transported as bed load are counted as they
cross the end of a flume. The number of particles
N(t) that cross by time t is a random variable.
Suppose that we suspect the counting process
N(t) is Poissonian. Then, if the Poisson rate λ
is specified, we ought to see the number N(t)
distributed according to (1) for any specified in-
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terval t. But how do we know the rate λ? From
an experimental perspective, we must estimate
this rate; and the best estimate is the total num-
ber of crossing events N(t) observed over the to-
tal time t of the experiment. Thus, we estimate
λ = N(t)/t, which is the mode of (2).

But wait. We specified the total time t, then
measured the number N(t) to give N(t)/t. If we
repeated the experiment in precisely the same
manner a great number of times for exactly the
same total time t, then almost certainly we would
observe different values of N(t) distributed ac-
cording to (1). But from these we would calcu-
late a distribution of empirical rates N(t)/t. So
how do we know that the rate we estimated from
our one experiment using a single value N(t) is
the correct underlying rate of the Poisson pro-
cess? In fact, we don’t.

Consider Figure 2. This shows a single mea-
sured realization of the number of crossing events
N(t) for one particle size in a gravel mixture
under steady transport conditions. From this,
Madeline and Shawn estimate a nominal Poisson
rate λ. Note that the stochastic structure of this
measured realization may not be strictly Poisso-
nian (it likely represents an inhomogeneous re-
newal process or a compound Poisson process).
Nonetheless, it suffices to illustrate the next few
points. Figure 2 also shows a great number of
simulated realizations of a Poisson process as-
suming λ is know with certainty and is equal to
the experimentally estimated rate. Then com-
pare these realizations for fixed λ with the great
number of realizations for which the rate λ is
not fixed, but instead is specified according to
(2). The difference in the dispersion of the re-
alizations with and without uncertainty about
the expected rate, which actually is an estimate
of the unknown underlying rate, is particularly
clear in the box-and-whisker plots. Moreover,
this uncertainty in the expected rate exists for
other possible processes, not just Poisson pro-
cesses. We still do not know the underlying true
rate, and we can never know it.

Consider the practical problem of using a
portable bed load sampler. Like transport in
flume experiments, the stochastic structure of
the number of particles N(t) entering the sam-

Figure 2: Plot of (red line) measured realization
together with simulated realizations of a Poisson
process with (blue-green) fixed rate λ and (red-
purple) variable rates λ, and associated box-and-
whisker plots based on 10 000 realizations show-
ing larger dispersion about expected values with
uncertain λ.

pler orifice is likely more complicated (noisier)
than a Poisson process. Nonetheless, a measured
realization during a specified interval t must be
viewed as one of an infinite set of possible realiza-
tions, each entirely consistent with the physics
involved, as depicted by the simulated realiza-
tions in Figure 2. This means that there can be
decided uncertainty in estimates of the particle
flux, N(t)/t. We address this topic in our forth-
coming paper, and illustrate the uncertainty as-
sociated with specific sampling intervals.
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