What Counts as STEM Careers Matters: Gender and Motivational Predictors Vary by Definition

Rebecca Adler

Collaborators: Mingkai (Danny) Xu \& Dr. Bethany Rittle-Johnson

Outline

Background

Research questions

Current study
methods and results

Implications

Background

- STEM: Science, technology, engineering, and mathematics

Breiner et al., 2012; Heilbronner, 2013; LaForce et al., 2017

Does it matter what counts as STEM?

Situated Expectancy-value theory (SEVT)

(STEM) Career interest

- SEVT originally adapted to explain gender differences
- On average, (White) girls have lower levels of math expectancies of success, interest, and utility value

Differences in predictors by definition: Gottlieb, 2018

- Math utility only predictive of STEM; Science utility only predictive of STEM +M
Odds of planning a STEM/STEM +M career in $9^{\text {th }}$ grade at the BA level, compared to White boys

STEM STEM+M

White girls
 .79**
 2.57***
 Black girls .45** $2.92^{* * *}$

Research Questions: Does it matter what counts as STEM?

- What predicts traditional-STEM career interest?
- What predicts STEM+M career interest?
- i.e., Are there different predictors by definition? Especially interested in motivation
- Based on Gottlieb (2018), we expect varying predictors by definition

Does it matter what counts as STEM?

Method

- Participants ($\mathrm{n}=455$) are part of a longitudinal study looking at math achievement and STEM interest of students in the Southeastern US
- Current work is looking at primarily concurrent relations in $10^{\text {th }}$ grade
- Majority of students come from families with limited resources, attending schools in the Nashville metropolitan area
- 79\% of sample is Black, 9% non-White Hispanic

Predictors

- Math achievement measured in 9th grade (Woodcock-Johnson quantitative concepts, KeyMath: numeration, algebra, geometry subtests)
- Trends in International Mathematics and Science Study measure of math and science motivation ($10^{\text {th }}$ grade):
- Expectancies of success: "Math is not one of my strengths" (9 items)
- Utility value: "I would like a job that uses math" (6 items)
- Interest: "I enjoy learning math"
(5 items)
- 1 to 4 likert scale

Connolly, 2007; Martin et al., 2012; Mullis et al., 2021; Woodcock et al., 2001

Outcomes ($10^{\text {th }}$ grade interview)

STEM
 STEM+M

CHEMIST
 ENGINEER

DOCTOR

Gender differences in STEM/STEM+M career interest
1

Does it matter what counts as STEM?

Logistic regression results: Predictors

	Traditional STEM interest	STEM+M interest
Predictor	Exp(B) (SE)	$\operatorname{Exp}(\mathrm{B})(\mathrm{SE})$
Math Expectancies of Success	1.67	1.50
Math Interest	.86	.68
Math Utility	1.12	1.32
Science Expectancies of Success	1.22	.90
Science Interest	1.31	1.34
$9^{\text {th }}$ grade math achievement	1.44	1.24

Implications

- Found different gender differences in career interest by definition
- Surprising that only one motivation construct was related to STEM/STEM+M career interest given decades of past research (though past research is mostly with White, middle-class students)
- we found similar null relations when using 6 th grade math motivation predicting 10th grade career interest, from both variable-centered and person-centered approaches
- Also conducted focus groups with subset of students, and found mismatch between students' career interests and their perceived utility of math
- Interest in STEM drastically changed by definition-from 13\% to 42\%--and gender differences also flipped when expanding to include medical careers
- How can we get more students, especially girls and marginalized students, interested in traditional STEM careers?

Implications

- Improving students' utility value for science seems like a particularly important target if one considers careers in medicine to be STEM careers
- Past utility-value interventions successful at increasing science utility, STEM career interest, course enrollments, and math and science ACT scores (Rozek et al., 2017; Shin et al., 2022)
- Need for more motivation research, and theory-building, with marginalized students

Thank you!

Dr. Bethany Rittle-Johnson

Danny Xu

Children's learning lab
NSF

Full logistic regression results

	Traditional-STEM Interest			STEM+Medicine interest		
Predictor	Estimate	$S E$	$\operatorname{Exp}(\mathrm{~B})$	Estimate	$S E$	$\operatorname{Exp}(\mathrm{~B})$
Math Expectancies of Success	.515	.332	1.67	.408	.22	1.50
Math Interest	-.149	.354	.862	-.389	.24	.68
Math Utility	.115	.396	1.12	.274	.25	1.32
Science Expectancies of Success	.197	.325	1.22	-.107	.22	.90
Science Interest	.268	.312	1.31	.290	.21	1.34
Science Utilitv	.267	.270	$\underline{1.31}$	$.585 \% \% \%$.182	1.8
9th grade math achievement	.363	.189	1.437	.216	.132	1.24

