What Counts as STEM Careers Matters: Gender and Motivational Predictors Vary by Definition

Rebecca Adler Collaborators: Mingkai (Danny) Xu & Dr. Bethany Rittle-Johnson

Background

Research questions

Current study methods and results

Implications

Background

• STEM: Science, technology, engineering, and mathematics

Breiner et al., 2012; Heilbronner, 2013; LaForce et al., 2017

Situated Expectancy-value theory (SEVT)

- SEVT originally adapted to explain gender differences
- On average, (White) girls have lower levels of math expectancies of success, interest, and utility value

Eccles et al., 1983; Eccles & Wigfield, 2020; Guo et al., 2015; Jiang et al., 2020; Nagy et al., 2006, 2008; Wang, 2012

Differences in predictors by definition: Gottlieb, 2018

Math utility only predictive of STEM; Science utility only predictive of STEM+M

Odds of planning a STEM/STEM+M career in 9th grade at the BA level, compared to White boys

	STEM	STEM+M
White girls	.79**	2.57***
Black girls	.45**	2.92***

Research Questions: Does it matter what counts as STEM?

- What predicts traditional-STEM career interest?
- What predicts STEM+M career interest?
- i.e., Are there different predictors by definition? Especially interested in motivation
- Based on Gottlieb (2018), we expect varying predictors by definition

Method

- Participants (n = 455) are part of a longitudinal study looking at math achievement and STEM interest of students in the Southeastern US
- Current work is looking at primarily concurrent relations in 10th grade
- Majority of students come from families with limited resources, attending schools in the Nashville metropolitan area
- 79% of sample is Black, 9% non-White Hispanic

Predictors

- Math achievement measured in 9th grade (Woodcock-Johnson quantitative concepts, KeyMath: numeration, algebra, geometry subtests)
- Trends in International Mathematics and Science Study measure of math and science motivation (10th grade):
 - Expectancies of success: "Math is not one of my strengths" (9 items)
 - Utility value: "I would like a job that uses math" (6 items)
 - Interest: "I enjoy learning math" (5 items)
 - 1 to 4 likert scale

Connolly, 2007; Martin et al., 2012; Mullis et al., 2021; Woodcock et al., 2001

Outcomes (10th grade interview)

STEM STEM+M

DOCTOR CHEMIST ENGINEER

VET

Gender differences in STEM/STEM+M career interest

Logistic regression results: Predictors

	Traditional STEM interest	STEM+M interest		
Predictor	Exp(B) (SE)	Exp(B) (SE)		
Math Expectancies of Success	1.67	1.50		
Math Interest	.86	.68		
Math Utility	1.12	1.32		
Science Expectancies of Success	1.22	.90		
Science Interest	1.31	1.34		
9 th grade math achievement	1.44	1.24		

Controlling for parental education and income levels in 10th grade, and race 11

Implications

- Found different gender differences in career interest by definition
- Surprising that only one motivation construct was related to STEM/STEM+M career interest given decades of past research (though past research is mostly with White, middle-class students)
 - we found similar null relations when using 6th grade math motivation predicting 10th grade career interest, from both variable-centered and person-centered approaches
 - Also conducted focus groups with subset of students, and found mismatch between students' career interests and their perceived utility of math
- Interest in STEM drastically changed by definition—from 13% to 42%--and gender differences also flipped when expanding to include medical careers
 - How can we get more students, especially girls and marginalized students, interested in traditional STEM careers?

Implications

- Improving students' utility value for science seems like a particularly important target if one considers careers in medicine to be STEM careers
 - Past utility-value interventions successful at increasing science utility, STEM career interest, course enrollments, and math and science ACT scores (Rozek et al., 2017; Shin et al., 2022)
- Need for more motivation research, and theory-building, with marginalized students

Thank you!

Dr. Bethany Rittle-Johnson

Danny Xu

Children's learning lab

NSF

Full logistic regression results

	Traditional-STEM Interest			STEM+Medicine interest		
Predictor	Estimate	SE	Exp(B)	Estimate	SE	Exp(B)
Math Expectancies of Success	.515	.332	1.67	.408	.22	1.50
Math Interest	149	.354	.862	389	.24	.68
Math Utility	.115	.396	1.12	.274	.25	1.32
Science Expectancies of Success	.197	.325	1.22	107	.22	.90
Science Interest	.268	.312	1.31	.290	.21	1.34
<u>Science Utility</u>	<u>.267</u>	<u>.270</u>	<u>1.31</u>	<u>.585***</u>	<u>.182</u>	<u>1.8</u>
9th grade math achievement	.363	.189	1.437	.216	.132	1.24