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1. Other Robustness Tests

In this section, we present the details of the robustness tests we highlight in Section 6.4 of the

paper.

1.1. Presence of a Zero-Demand Product in the Retailer’s Equilibrium Assort-

ment

As Section 4.2 of the paper demonstrates, if the retailer commits to offering high product

variety, the first manufacturer’s product has zero demand when v1
v1+v2

∈ [0, 1− v̄], and the second

manufacturer’s product has zero demand when v1
v1+v2

∈ [v̄, 1]. In Section 4.3 of the paper, we assume

that v1
v1+v2

∈ (1−v̄, v̄) (equivalently, q1
2q1−q2

< q1−c1
q2−c2

< 2q1−q2
q2

) for ease of exposition. This assumption

is sufficient to ensure that the retailer does not carry a zero-demand product at equilibrium. In

this section, we remove this assumption and allow v1
v1+v2

∈ [0, 1] to consider the possibility that

the retailer’s equilibrium assortment includes a zero-demand product. Revisiting Section 4.2 of the

paper, the retailer may have an incentive to a carry a zero-demand product because a zero-demand

product creates a price pressure on the other product when v1
v1+v2

∈
(

q2
4q1+q2

, 1− v̄
]
∪
[
v̄, 4q1

4q1+q2

)
.

Removing the assumption that q1
2q1−q2

< q1−c1
q2−c2

< 2q1−q2
q2

expands the set of feasible parameter

values to from Ω (defined in Section 4.3 of the paper) to Ω̂ ≡ {(q1, q2, c1, c2,K) ∈ R5|0 ≤ K ≤
max{ (q1−c1)2

16q1
, (q2−c2)2

16q2
}, q1 > c1 ≥ 0, q2 > c2 ≥ 0}. When ω ∈ Ω̂, the retailer’s subgame equilibrium

profits for |A| = 1 and |A| = 2 are

Π|1|
r =


3v2/16−K if v1

v1+v2
∈ [0, 3/7],

v1/4−K if v1
v1+v2

∈ (3/7, 1/2),

v2/4−K if v1
v1+v2

∈ [1/2, 4/7),

3v1/16−K if v1
v1+v2

∈ [4/7, 1],

(1)

and

Π|2|
r =



v2
16 − 2K if v1

v1+v2
∈
[
0, q2

4q1+q2

]
,

q1v1
4q2

− 2K if v1
v1+v2

∈
(

q2
4q1+q2

, 1− v̄
]
,

v12 +
min{((2q1−q2)

√
q1v1−q1

√
q2v2)2,((2q1−q2)

√
q1v2−q1

√
q2v1)2}

(q1−q2)(4q1−q2)2
− 2K if v1

v1+v2
∈ (1− v̄, v̄),

q1v2
4q2

− 2K if v1
v1+v2

∈
[
v̄, 4q1

4q1+q2

)
,

v1
16 − 2K if v1

v1+v2
∈
[

4q1
4q1+q2

, 1
]
,

(2)
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respectively. Accordingly, the retailer compares two piecewise functions, Π
|1|
r and Π

|2|
r , and sets

|A∗| = 1 if Π
|1|
r ≥ Π

|2|
r and |A∗| = 2 otherwise.

Expanding the parameter set from Ω to Ω̂ also affects the benchmark model in which the retailer

does not charge slotting fees. Specifically, the retailer’s subgame equilibrium profits for |A| = 1 and

|A| = 2 in the benchmark model are

Π̄|1|
r =


v2/16−K if v1

v1+v2
∈ [0, 1/5],

v1/4−K if v1
v1+v2

∈ (1/5, 1/2),

v2/4−K if v1
v1+v2

∈ [1/2, 4/5),

v1/16−K if v1
v1+v2

∈ [4/5, 1],

(3)

and

Π̄|2|
r =



v2
16 − 2K if v1

v1+v2
∈
[
0, q2

4q1+q2

]
,

q1v1
4q2

− 2K if v1
v1+v2

∈
(

q2
4q1+q2

, 1− v̄
]
,

v12 if v1
v1+v2

∈ (1− v̄, v̄),

q1v2
4q2

− 2K if v1
v1+v2

∈
[
v̄, 4q1

4q1+q2

)
,

v1
16 − 2K if v1

v1+v2
∈
[

4q1
4q1+q2

, 1
]
,

(4)

respectively. Accordingly, the retailer sets |Ā| = 1 if Π̄
|1|
r ≥ Π̄

|2|
r and |Ā| = 2 otherwise.

We numerically analyze the prevalence and impact of the cases in which the retailer carries a

zero-demand product at equilibrium. We generate unique scenarios (parameter combinations) as

follows: We vary q2 between 1 and 10 in increments of 1. For a given q2, we set q1 = γq2 and vary

γ between 1.1 and 2 in increments of 0.1. For a given (q1, q2), We vary v1 between 0.01 and 0.99 in

increments of 0.01. Furthermore, we set v1 + v2 = 1 so that v2 also varies between 1 − v̄ and v̄ in

increments of 0.01. For a given (v1, v2), we vary K between 0 and min{v1/16, v2/16} in increments

of 0.001. Because vl = (ql − cl)
2/ql for l = 1, 2, a given (ql, vl) implies that we set cl = ql −

√
qlvl.

These parameter combinations lead to 161,500 unique scenarios, where the ranges we pick for v1,

v2, and K ensure that each scenario is an element of our new parameter set, Ω̂. The only difference

between this numerical study and the one we have in Section 5.3 of the paper is that we vary v1

and v2 between 0.01 and 0.99 in this study, whereas we vary v1 and v2 between 1 − v̄ and v̄ in

Section 5.3 of the paper.

The retailer sets |A∗| = 2 and carries a zero-demand product in only 0.26% of the scenarios (420

scenarios) we analyze. That is, it is rare for the retailer to carry a zero-demand product to exert

wholesale price pressure on the other product in its assortment. Intuitively, when v1
v1+v2

∈ [0, 1− v̄]

or v1
v1+v2

∈ [v̄, 1], the retailer faces a tradeoff between carrying a zero-demand product to potentially
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create price pressure on the other product in its assortment and dropping the zero-demand product

from its assortment to lower its operational cost from 2K to K and potentially collecting a slotting

fee from the manufacturer that stays in the assortment. In most cases, dropping the zero-demand

product from the assortment makes the retailer better off, which is why the retailer rarely carries

a zero-demand product in its equilibrium assortment.

Slotting fees emerge in 81.31% of the scenarios we analyze, while the retailer sets S∗ = 0 in the

remaining scenarios. In addition, slotting fees continue to create a category expansion, a competition

exclusion, or a rent extraction effect. Last, the average profit increases in the competitive exclusion,

rent extraction, and category expansion regions are 0.0536, 0.0332, and 0.0057, respectively. That

is, the retailer benefits the most (least) from slotting fees in the competitive exclusion (category

expansion) region. In light of these findings, we conclude that our main insights continue to hold

when we expand our parameter set from Ω to Ω̂ to consider the rare possibility that the retailer

carries a zero-demand product in its equilibrium assortment.

1.2. Retailer’s Assortment Size Announcement

We model the strategic interactions between the retailer and the two manufacturers as a three-

stage game in which the retailer announces product variety, A, and slotting, S, to the manufacturers

in the first stage. In this section, we study an alternative setting in which the retailer does not

commit to an assortment size in the first stage. Accordingly, we study a three-stage game in which

the retailer determines the slotting fee in the first stage, the manufacturers make participation

and wholesale price decisions in the second stage, and the retailer makes assortment and pricing

decisions in the last stage. The benchmark model in this alternative setting is a two-stage game

in which the manufacturers determine wholesale prices in the first stage and the retailer makes

assortment and retail pricing decisions in the second stage.

We consider the benchmark model first for ease of exposition. When S = 0, both manufacturers

participate because they can always ensure that they make a non-negative profit by setting their

wholesale prices to their unit costs. For given wholesale prices (w1, w2), the retailer sets p̃i =

(qi + wi)/2 for i ∈ A. Accordingly, for a given assortment A, let Π̄A
r ≡

∑
i∈A(p̃i − wi)z̃i − K|A|

denote the retailer’s profit in the benchmark model. In the last stage, the retailer compares Π̄
{1}
r (w1),

Π̄
{2}
r (w2), and Π̄

{1,2}
r (w1, w2) to pick the assortment that maximizes its profit. In the first stage,

each manufacturer sets its wholesale price in anticipation of (i) the other manufacturer’s wholesale

price and (ii) the retailer’s optimal assortment decision. The retailer’s assortment decision creates

discontinuities in the manufacturers’ objective functions. For example, a small increase in w1 may

force the retailer to switch its assortment from A = {1, 2} to A = {2}. Consequently, a wholesale

price equilibrium may not exist in the first stage of the game.

We numerically analyze this alternative setting in two steps. First, we analyze the benchmark

model and identify the scenarios in which a wholesale price equilibrium exists. Then, we limit our
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attention to those cases and solve our main model in which the retailer sets its slotting fee in the

first stage. We generate unique scenarios (parameter combinations) based on the setup we used in

Section 1.1 in the appendix of this response letter. Specifically, we vary q2 between 1 and 10 in

increments of 1. For a given q2, we set q1 = γq2 and vary γ between 1.1 and 2 in increments of 0.1.

For a given (q1, q2), We vary v1 between 0.01 and 0.99 in increments of 0.01. Furthermore, we set

v1 + v2 = 1 so that v2 also varies between 1 − v̄ and v̄ in increments of 0.01. For a given (v1, v2),

we vary K between 0 and min{v1/16, v2/16} in increments of 0.001. Because vl = (ql − cl)
2/ql for

l = 1, 2, a given (ql, vl) implies that we set cl = ql −
√
qlvl. These parameter combinations lead to

161,500 unique scenarios.

A wholesale price equilibrium does not exist in 9.6% of the scenarios we analyze. Consistent with

the observation Heese and Mart́ınez-de Albéniz (2018) make, a wholesale price equilibrium exits

for relatively small and relatively large K values because the retailer carries both products when

K is relatively small and only one product when K is relatively large. However, an equilibrium

may not exist for medium K values because the retailer goes back and forth between carrying

both products vs. only one product, depending on the manufacturers’ wholesale price offers, which

in turn prevents the manufacturers from reaching a wholesale price equilibrium. In addition, not

committing to an assortment size makes the retailer worse off by eliminating one of the levers it

can use to control the intensity of manufacturer competition.

The retailer charges a slotting fee in 70.2% of the scenarios in which a wholesale price equilibrium

exists in the benchmark model. In other words, the retailer sets S∗ = 0 in the remaining 29.8%

of the scenarios with a wholesale price equilibrium. Slotting fees continue to create a category

expansion, a competition exclusion, or a rent extraction effect. In addition, the average profit

increases in the competitive exclusion, rent extraction, and category expansion regions are 0.0301,

0.0239, and 0.0036, respectively. That is, the retailer benefits the most (least) from slotting fees in

the competitive exclusion (category expansion) region. On the basis of these findings, we conclude

that our main insights remain valid when the retailer does not make an assortment size commitment

in the first stage of the game.

1.3. Multinomial Logit Demand Model

In our study, we use the vertical differentiation model to formulate consumer demand. In this

section, we consider an alternative setting in which we use the multinomial logit (MNL) model to

formulate consumer demand. This alternative setting allows us to test the robustness of our insights

with respect to the way we model consumer preferences.

Let Ui ≡ ui − pi + ξi denote the random utility of product i, where ui is the expected utility,

pi is the retail price, ξi is a Gumbel random variable with the scale parameter µ. Accordingly, let

vi ≡ exp((ui−pi)/µ) denote the attractiveness of product i. Without loss of generality, we continue

to normalize the market size to one. Accordingly, when A = {1, 2}, the demand for product i = 1, 2
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is zi(p1, p2) =
vi(pi)

v0+v1(p1)+v2(p2)
, where v0 is the attractiveness of the no-purchase option. When the

retailer carries only product i in its assortment (i.e., when A = {i}), the demands for product i and

j ̸= i are zi(pi) =
vi(pi)

v0+vi(pi)
and zj = 0, respectively. Let ci, mi, and ri denote the unit production

cost, manufacturer markup, and retailer markup for product i, respectively. Accordingly, we can

write the retail price of product i as pi = ri+mi+ci. Hereinafter, without loss of generality, we use

indices i and j such that manufacturer i has a higher base attractiveness (i.e., ui − ci ≥ uj − cj).

When the retailer offers low product variety and sets A = {i}, it solves maxri≥0 rizi (pi(ri)) +

S − K in the last stage of the game. Let r̃i(mi) denote the retailer’s best response. When the

retailer sets |A| = 1, it needs to set its slotting fee, S, such that at least one manufacturer par-

ticipates. If the retailer sets S such that only manufacturer i participates, manufacturer i solves

maxmi≥0mizi (pi (r̃i(mi))) − S in the second stage of the game. By contrast, if the retailer sets S

such that both manufacturers participate, manufacturer i, which enters the retailer’s assortment

solves

max
mi≥0

mizi(r̃i(mi) +mi + ci)− S (5)

s.t. r̃i(mi)zi(r̃i(mi) +mi + ci) ≥ r̃j(mj)zj(r̃j(mj) +mj + cj) (6)

mjzj(r̃j(mj) +mj + cj)− S = 0, (7)

where Equation (6) ensures that the retailer sets A = {i} in the last stage, and Equation (7)

ensures that manufacturer j, which cannot enter the retailer’s assortment sets its markup based

on its zero-profit condition. Note that when S = 0, manufacturer j sets its markup to zero and

attempts to sell its product to the retailer at cost (i.e., sets wj = cj). This result is analogous to its

counterpart in a study of Heese and Mart́ınez-de Albéniz (2018), where the retailer announces its

assortment size but does not charge a slotting fee. In the first stage of the game, the retailer sets

its slotting fee to maximize its expected profit.

When the retailer offers high product variety (i.e., sets |A| = 2), it needs to set S to en-

sure participation from both manufacturers. In the last stage of the game, the retailer solves

max(r1,r2) r1z1(r1 + m1 + c1, r2 + m2 + c2) + r2z2(r1 + m1 + c1, r2 + m2 + c2) + 2S − 2K. In the

MNL model, it is optimal for the retailer to set the same margin for all products (e.g., Heese and

Mart́ınez-de Albéniz 2018). Let r̃|2|(m1,m2) denote the retailer’s best response. Accordingly, in the

second stage of the game, the manufacturers simultaneously solve

max
m1≥0

m1z1(r̃
|2| +m1 + c1, r̃

|2| +m2 + c2)− S, (8)

max
m2≥0

m2z2(r̃
|2| +m1 + c1, r̃

|2| +m2 + c2)− S. (9)

In the first stage of the game, the retailer sets its slotting fee such that it extracts the full surplus
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from manufacturer j.

Given the analytical complexity of strategic retail and wholesale price optimization in this

setting, we numerically characterize the equilibrium outcomes. Specifically, we set c1 = c2 = 0,

µ = 1, u2 = 1, and v0 = 1, and vary u1 between 1 and 3 in increments of 0.1 and K between 0 and

0.4 in increments of 0.025. Because u1−c1 ≥ u2−c2 in our numerical study, the retailer carries either

A = {1} or A = {1, 2} at equilibrium. Slotting fees emerge in 83.64% of the scenarios we analyze,

while the retailer sets S∗ = 0 in the remaining scenarios. Indeed, the retailer foregoes slotting fees

in cases when there is intense wholesale price competition for the single slot in its assortment. Such

cases emerge when (i) u1 is relatively small so that the first product is only slightly more attractive

than the second one and (ii) K is relatively high so that the retailer carries only one product in

its assortment. Comparing our main model with a benchmark model, which is a special case of the

model studied by Heese and Mart́ınez-de Albéniz (2018) with two products, reveals that slotting

fees create a category expansion, a competitive exclusion, or a rent extraction effect. Indeed, the

average increases in the retailer’s profit in the competitive exclusion, rent extraction, and category

expansion regions are 0.4929, 0.3380, and 0.1464, respectively. That is, slotting fees are most (least)

beneficial for the retailer in the competitive exclusion (category expansion) region. Based on these

findings, we conclude that our main insights continue to hold when we use the MNL model to

formulate consumer demand.

References

Heese H, Mart́ınez-de Albéniz V (2018) Effects of assortment breadth announcements on manufac-

turer competition. Manufacturing & Service Operations Management 20(2):302–316.

6


	Other Robustness Tests
	Presence of a Zero-Demand Product in the Retailer's Equilibrium Assortment
	Retailer's Assortment Size Announcement
	Multinomial Logit Demand Model


