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ABSTRACT
Emerging scientific endeavors are creating big data 

repositories from millions of individuals.  Sharing data in a 
privacy-respecting manner could lead to important 
discoveries, but high-profile demonstrations show that links 
between de-identified genomic data and named persons can 
sometimes be reestablished.  Such re-identification attacks 
have focused on worst-case scenarios and spurred the 
adoption of data sharing practices that unnecessarily impede 
research.  To mitigate concerns, organizations have 
traditionally relied upon legal deterrents, like data use 
agreements, and are considering suppressing or adding noise 
to genomic variants.



ABSTRACT (CONT)
In this report, we use a game theoretic lens to develop 

more effective, quantifiable protections for genomic data 
sharing.  This is a fundamentally different approach because 
it accounts for adversarial behavior and capabilities and 
tailors protections to anticipated recipients with reasonable 
resources.



ABSTRACT (CONT)
We demonstrate this approach with a public resource with 

genomic summary data from over 8000 individuals and show 
risks can be balanced against utility more effectively than 
traditional approaches.  We further show the generalizability 
of this framework by applying it to other genomic data 
collection and sharing endeavors. Recognizing that such 
models are dependent on a variety of parameters, we 
perform extensive sensitivity analyses to show that our 
findings are robust to their fluctuations.



BACKGROUND
 Why the genomic data should be shared？Sharing genomic 

data is beneficial to us.
o Tests based on genomic data assists

• Diagnosis of diseases - that are cl inically actionable
• Establishment of more effective drug regimens

o Genomic data sharing
• Accelerates the discovery of new associations
• Especially for rare diseases

o NIH-funded investigators are expected to share
• Genomic data from studies to NIH Database of Genotypes and 

Phenotypes (dbGaP)
• Data must be de-identif ied



International HapMap Project 
(269 individuals)

BIG GENOMIC DATA ERA 

2018

1000 Genomes Project 
(2,504 individuals)

NIH All of Us Research Program
(~316,000 sbujects enrolled

now, aims at 1,000,000 subjects)



PRIVACY RISK OF SHARING SUMMARY 
STATISTICS

• Sharing individual-level genomic data is useful, but risky

• Sharing allele (variant of genomic region) frequencies about a 
pool of genomes is still useful, but also (less) risky 

• In 2008, Homer introduced an attack… 

Homer N, et al. PLoS Genetics. 2008; 4(8): e1000167. 



The attacker knows:
• The genome of the target (her set of genomic variants) 

- 𝑌𝑌𝑖𝑖𝑖𝑖
• The allele frequencies of the Mixture he’s attacking - 𝑀𝑀𝑗𝑗

• Population allele frequencies - 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗

Figure from: Homer N, et al. PLoS Genetics. 2008; 4(8): e1000167. 

Homer’s attack in a nutshell



• Sharing individual-level genomic data is useful, but risky

• Sharing allele (variant of genomic region) frequencies about a pool of 
genomes is useful, but also (less) risky 

• In 2008, Homer introduced an attack1… 

… that led the NIH to removing summary statistics from dbGaP

• And more powerful attacks have emerged (e.g., Wang2, Sankararaman3)
• Technical countermeasures include SNP suppression, noise addition, etc.
• Legal deterrence includes data use agreement (DUA) and penalty

PRIVACY RISK OF SHARING SUMMARY 
STATISTICS

1Homer N, et al. PLoS Genetics. 2008; 4(8): e1000167. 
2Wang R, et al. ACM CCS ‘16. 2009: 534-544.
3Sankararaman S, et al. Nature Genetics. 2009: 965-967.



OBJECTIVES
• Risk assessment based on an adversarial model

Possible ≠ Probable
The attacker is often driven by (economic) incentives
A portion of the data can be shared with an acceptable risk level

• Risk mitigation combining both technical and legal 
deterrences

• Find the best strategy for the data sharer with a 
perfect trade-off between sharing utility and 
privacy risk
Data sharer is also driven by (economic) incentives

$ $



METHODS
• Model the genomic data sharing process as a one-shot 

Stackelberg (leader-follower) game between the data 
sharer and the data recipient

• The genomic data sharing process and the game model
• An illustration of the strategy profile
• Search the data sharer’s strategy space using genetic 

algorithm



GENOMIC DATA SHARING PROCESS



GENOMIC DATA SHARING PROCESS

.
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SEARCH FOR THE DATA SHARER’S BEST STRATEGY

An il lustration of the strategy profi le

• Genetic Algorithm is introduced to search the strategy space



EXPERIMENTS
• Dataset

• 8194 individuals in Sequence 
and Phenotype Integration 
Exchange (SPHINX)

• The Electronic Medical Records 
and Genomics –
Pharmacogenomics (eMERGE-
PGx) project was a multi-center 
pilot of implementing 
pharmacogenetic sequencing in 
clinical practice to improve 
health care. 

https://www.emergesphinx.org/



EXPERIMENTS
• Dataset

8,194 individuals in SPHINX
2,504 individuals in 1000 Genome Project
2,500 statistically independent SNPs to publish (total of 51,826 SNPs)

• Valuation settings:
$45,000 for grant dollars (or the maximal benefit to the sharer)
$360 for the benefit to the attacker for each successfully detected 

individual
$180 for the expected penalty to the attacker per record
$60 for the attacker’s accessing cost per record



SPHINX POLICY ANALYSIS
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CONCLUSIONS
• Findings

 The game-theoretic solution achieves the highest payoff for the data 
sharer

 The no-attack variation of the game can achieve a payoff higher than the 
state-of-the-art SNP-suppression strategy while el iminating privacy risk

 The game theoretic solution is not sensit ive to the changes of key 
parameters such as the penalty and the prior probabil ity

• Future Directions
 Valuation
Multiple adversaries
 Irrational adversaries
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