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Abstract—Sharing individual-level pandemic data is essential
for accelerating the understanding of a disease. For example,
COVID-19 data have been widely collected to support public
health surveillance and research. In the United States, these data
need to be de-identified before being released to the public due to
privacy concerns. However, current data publishing approaches
for individual-level pandemic data, such as those adopted by the
U.S. Centers for Disease Control and Prevention (CDC), have not
flexed over time to account for the dynamic nature of infection
rates. Thus, the policies generated by these strategies may either
raise privacy risks or impair the data utility (or usability).
To optimize the tradeoff between privacy risk and data utility,
we introduce a game theoretic model that adaptively generates
policies to publish individual-level COVID-19 data according to
infection dynamics. We model the data publishing process as a
two-player Stackelberg game between a data publisher and a data
recipient and then search for the best strategy for the publisher.
In this game, we consider 1) the average accuracy of predicting
future case counts for all demographic groups, and 2) the mutual
information between the original data and the released data. We
use COVID-19 case data from Vanderbilt University Medical
Center from March 2020 to December 2021 to demonstrate our
model and evaluate its effectiveness. The experimental results
show that our game theoretic model outperforms all baseline
approaches, including those adopted by CDC, while maintaining
low privacy risk.

Index Terms—COVID-19, game theory, pandemic data, case
prediction, data sharing, privacy-preserving data publishing

I. INTRODUCTION

The COVID-19 pandemic has highlighted the importance of
publishing infectious disease data for surveillance and trend
analyses [1]. Individual-level data publication is the release
of characteristics of COVID-19 patients, such as age, gender,
race, and geographic area, to the public. Sharing data in a
timely manner can support a wide variety of public health
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research endeavors, such as modeling disease transmission
and understanding the biological mechanisms behind infec-
tion [2]. Such data sharing can support investigations into
disease spread and methods of disease prevention [3] as well
as health disparities and equity in demographic groups [4].
In recognition of such benefits, various organizations have
worked to broaden access to large epidemiological datasets,
such as the U.S. Centers for Disease Control and Prevention’s
(CDC) US COVID-19 Case Surveillance datasets [5]. While
advances in surveillance have led to rapid growth in the
management and treatment of the disease over the past few
years, public data sharing on a wide scale remains limited
[6], partly due to privacy concerns. Many organizations have
only published total case counts in a given US state or county
rather than the details of patient-level features. In the United
States, the Health Insurance Portability and Accountability
Act of 1996 (HIPAA) governs how organizations may publish
individual-level health data, also known as patient-level data
[7]. Under HIPAA, an organization is permitted to publicly
share patient-level data only when it is de-identified, that
is, when “there is no reasonable basis to believe that the
information can be used to identify an individual.” However,
transforming data into a de-identified form requires more than
just removing identifiers like a person’s name or address.
Numerous demonstration attacks have shown that, with the
right background knowledge, a data recipient can leverage
seemingly de-identified information in the data, such as age,
gender, race, and/or ZIP code, to re-identify the individuals to
whom the data corresponds using population data [8].

The CDC uses generalization and suppression techniques
[9] to mitigate risk, when publishing individual-level COVID-
19 data, where information, such as age, gender, race, and/or
ZIP code is generalized (i.e., published with a coarser gran-
ularity) or removed from a record [10]. However, the CDC’s
data publishing approaches do not take the dynamic nature
of a pandemic into account, nor does it have much flexibility
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as data are either generalized or suppressed. When working
with a dynamic pandemic dataset that would benefit from
regular updates or revision, the policy would benefit from
being flexible, which requires it to be determined according
to the time of the data release and data itself. In 2022, Brown
et al. [11] introduced an approach that can maximize privacy
and utility by dynamically adjusting case reporting policy in
near-real time when reporting individual-level pandemic data;
however, they did not formally measure data utility in their
framework. In a subsequent study [4], Brown et al. formally
evaluated the data utility in dynamic de-identification policies
to make it clear if the resulting data is expected to be helpful
for the anticipated end users. In both studies [4], [11], Brown et
al. modelled a data recipient that receives the data and utilizes
it to re-identify individuals. This attempt of re-identification
is labeled an “attack.” In this adversarial model, they did not
consider the rationality of the data recipient, where the data
recipient would only attack the data if they expect the benefit
they would receive from an attack would outweigh the costs of
an attack. More specifically, they only consider the worst-case
scenario in which the adversary in their model always attacks.
This is problematic because in real scenario, an adversary will
unlikely to attack if the cost of attack is too high. Thus, it can
lead to an over-estimation of the privacy risk of the released
dataset, which could lead to less data being shared.

In this paper, we introduce a game theoretic model that
adaptively generates policies to publicly share de-identified
individual-level pandemic data in a privacy-preserving manner.
We model the data sharing process as a two-player Stackelberg
game between a data publisher and a data recipient and then
recommend an optimal policy for the data publisher on a
consistent schedule. Additionally, the payoff functions in the
game theoretic model formally models and integrates data
utility and data privacy measures.

II. RELATED WORK

A. Game Theory for Sharing Health Data with Privacy

Several privacy-preserving algorithms have been developed
to support the dissemination of sensitive health data. Game
theoretic models have been used in a variety of privacy
problems related to health data [12], [13] and have also been
applied to privacy-preserving health data publishing [14]–[16]
recently. For health data, there is the privacy risk that an
attacker could use available population data to identify an
individual based on features like age, gender, race, and/or
ZIP code [17]. But releasing these attributes has utility by
promoting trend analyses and better healthcare surveillance.
These models are based on principles from game theory to
search for the optimal publishing policy with the best tradeoff
between lowering privacy risk and publishing useful data from
a set of varying publishing policies in a systematic manner in
order to serve the data publisher. Each policy translates into a
different amount of corresponding risk and utility.

Similar to our model, these models [14]–[16] represent the
data publishing process as a Stackelberg game, a game in
which one player, the leader, makes an action to which the

second player, the follower, makes another action as a result
of the leader’s action. Essentially, the publisher of the data
is the leader and chooses a policy to publish data. Then, the
recipient may decide whether to attack or not. Notably, not
all recipients will attempt to try and compromise the privacy
of people. The previous models assumed the existence of a
”malicious” data recipient who would attempt to attack for
expected benefit. We made the same assumption. In addition,
we try to measure how ”benign” data recipients may use the
data to benefit society. Thus, instead of measuring data utility
based solely on information entropy [14], we measure it using
mutual information and the accuracy of predicting future case
counts, representing one type of downstream uses of the data.

B. Publishing Individual-Level Pandemic Data with Privacy

There are several prior studies that provide guidance into
privacy-preserving methods for publishing data from electronic
health records [18], but there is limited research on privacy-
preserving algorithms for publishing dynamic and time-critical
datasets [19]. COVID-19 data ideally would be published on
a consistent schedule, as a pandemic is on-going and the data
is dynamic. Moreover, COVID-19 data should be published as
early as possible to ensure rapid usage.

In 2021, Lee et al. described the CDC’s approach to publish
two versions of individual-level COVID-19 data [10]. Their
approach is based on the k-anonymity privacy model [17]. k-
anonymity is a property of dataset that requires each record
match other k − 1 records in the dataset on a set of quasi-
identifying (QID) features such as age, gender, and race [17].
The approach works as follows: when there are less than k
individuals who all have the same features, one of the features
is generalized or suppressed [17] so that there are no longer
less than k individuals with the same features. The publicly-
accessible version includes fewer features and was generalized
or suppressed to satisfy 11-anonymity . The restricted version
includes more features and satisfies 5-anonymity. Our game
theoretic model also uses generalization and/or suppression,
but our model does not guarantee that the released dataset
satisfies k-anonymity.

In 2022, Brown et al. introduced a framework to dynami-
cally adapt de-identification polices for near-real time sharing
of patient-level surveillance data via simulation [11]. It was
shown that dynamically changing case-reporting policy leads
to more data dissemination while maintaining low privacy risk.
In a subsequent study, Brown et al. evaluated the data utility in
dynamic de-identification policies in terms of the effectiveness
and fairness of outbreak detection among demographic groups
[4]. Similarly, in this work, our model can generate dynamic
policies to maximize data utility and privacy. By contrast, we
measured the data utility quantitatively, considered a ratio-
nal adversarial model, and used a real-world individual-level
COVID-19 dataset in evaluation experiments. When evaluating
the data utility, we considered both the general data quality
based on mutual information and the accuracy of the prediction
of case counts among demographic groups.
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Fig. 1. An example illustrating data structures in the publishing and
the attacking scenarios. The original COVID-19 case dataset is a list of
records that each contains the quasi-identifier values (year of birth, gender,
and ZIP code) and the date of positive diagnosis. The published dataset on
1/1/21 contains generalized values with 5-year bins, gender values removed,
and exact ZIP codes. Because the values are generalized, there is less risk of
re-identification compared to the original dataset. This example shows how
different generalization policies can be applied to different days.

III. METHODS

When deciding how to publish COVID-19 case data, it is
important to consider how this data can be utilized. While
publishing individual-level COVID-19 case data has several
benefits to most data recipients, such as understanding the
nature of the pandemic and the future of the ongoing virus,
there may also be malevolent data recipients that seek to
leverage external datasets to re-identify de-identified COVID-
19 case data. Fig. 1 shows how published de-identified data
can be linked to an exact identified individual in an external
population dataset based on shared feature values. In this
example, we can see how if the original de-identified dataset
D were to be published, a data recipient could re-identify the
female born in 1966 in ZIP code 37221 as Alice in the external
population dataset. However, by modifying the publicly shared
dataset S by binning the feature values into broader ranges,
there is less risk of accurately linking the record to a specific
individual; there are more individuals with matching features,
thereby lowering the chance of an attacker successfully re-
identifying any individual. This method of coarsening the data
into broader concepts is known as generalization [9]. A policy
that publishes data via generalization is called a generalization
policy. In this work, a generalization policy, g, applies rules
of binning the data to a set of data records.

We assume the data publisher only chooses amongst gen-
eralization policies for simplicity of comparison between the
different policies and approaches. In this work, a record means
a row of feature values that corresponds to a patient. Each
record has a set of quasi-identifiers (QID), which are identifiers
that are not explicitly identifiable like a patient’s name or
address but can be combined to identify an individual. Each
policy has a unique level of generalization for each QID

Fig. 2. The generalization hierarchies for three features used in this
paper: (1) year of birth, (2) gender, and (3) ZIP code. This hierarchical
representation shows the specific bin sizes for each of the features and how
the data can be more generalized as the bins become larger. A generalization
policy is represented as a unique level of generalization for each feature.

features and is represented by a vector according to the level
of generalization in the order of QID features. For instance, if
the three QID features are (1) year of birth, (2) gender, and (3)
ZIP code, whose generalization hierachies are shown in Fig. 2,
then the generalization policy ⟨1, 1, 0⟩ means 5-year age bins,
no specific gender, and original ZIP codes. For each day of
data release, we select the policy based with the highest payoff
for the data publisher among the total set of generalization
policies. To calculate the payoff, we first calculate the risk
and utility of the data published according to the generalization
policy.

We use a measure of risk called marketer risk [20] that
has been used in various privacy polices [11], [14], [16]. The
marketer risk r for policy g is calculated as the probability
of correctly linking each record in the dataset D to the
corresponding identified record in the population and taking
the average across all records. The ith record of the dataset
D is represented as di. The total number of records in the
dataset D is n. Thus, the privacy risk of a dataset, given a
generalization policy, can be represented as follows:

r(D, g) =
1

n

n∑
i=1

1

ϕ(di, g)
(1)

where ϕ(di, g) is the number of individuals in the population
that match record di when record di is generalized according
to generalization policy g.

The utility u for a policy will be calculated is the weighted
sum of two different measures. The first is mutual information,
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which is a measure of the similarity between the original
dataset and the generalized dataset. This is similar to an estab-
lished measure based on the loss of information entropy used
by Wan et al. in their model [14]. Intuitively, as the original
dataset and the generalized dataset become more dissimilar,
the generalized dataset will be less useful. To compute the
mutual information, we generate a list of numbers from each
of the two datasets. The original dataset has the number of
cases for each combination of feature values. The generalized
dataset also has the number of cases for each combination
of feature values, which can be generalized values. Then, we
compare the values of counts between the original dataset and
the generalized dataset to compute the mutual information:

u(D, g) = I(d, S(D, g)) (2)

where u is the utility function, I is the mutual information
function, and S(D, g) is the publicly shared dataset according
to generalization policy g given the initial dataset D.

I(D0, D1) = H(D0) +H(D1)−H(D0, D1) (3)

where H is the information entropy function.
For our second metric for data utility, we consider common

uses of COVID-19 data in the public health sphere and the
motivations of publishing COVID-19 data. Researchers have
found that significant life-saving response efforts were taken
due to epidemiological modeling based on open data, under-
scoring the importance of understanding trends in data and
patient-level information to predict future outbreaks [21] [22].
Overall, the use of data-sharing of outbreak data is primarily
analyzing current trends among the patient population and
utilizing this information to forecast future trends. Woolhouse
et al. state that the most critical component of outbreak
management is the dissemination of data in a manner that
allows for modeling future outbreak behavior [3].

The second utility measure corresponds to the accuracy of
the COVID-19 case count predictions for the next day of
data release. Given that one of the primary uses of COVID-
19 data, or any outbreak data, is to forecast and predict
case count distributions, we use accuracy of predicting case
counts as a measure of data utility in our model. Accuracy
of case count prediction is a metric that will allow for data-
dependent selection of generalization policies that accounts
for the dynamic nature of COVID-19 data publication. First,
we generalize the data according to a generalization policy
g for a given day. Then, we de-generalize the values in a
sense by imputing values according to the distributions of
values for each QID in the population dataset (see Fig.3).
After imputing values for each record and calculating the
counts for each demographic group for the given day, we
use these counts along with the previous tp days’ counts to
develop a sequence of time series for each demographic group
and then use the Random Forest Regressor in Scikit-learn, a
machine learning package in Python, to predict the counts for
the next day. We utilize the Random Forest Regressor due to
the sparsity of features, as in the low number of QID, when
predicting future case counts. To calculate the utility, we find

Fig. 3. An example illustrating the imputation process. To predict counts
for each demographic group from the shared dataset, we must work with
generalized values. To do so, we impute values from the generalized records
by imputing according to the proportion of each QID value in the external
population dataset.

the average relative error of the case count predictions for the
next day based on the selection of the generalization policy g
across all demographic groups M in the dataset D. For the ith

demographic group mi in M , we compare the predicted count
np(i) and actual count na(i). We further denote the number of
total demographic groups as nM . Thus, the utility of a dataset,
given a generalization policy, can be represented as follows:

u(D, g) = 1− 1

nM

nM∑
i=1

na − np

np
(4)

We then simulate a Stackelberg game. First, the publisher,
who is the leader, publishes the data according to a gen-
eralization policy and then the data recipient, the follower,
decides whether to attack the data (i.e., re-identify the pub-
lished records). Here, we assume that the publisher knows the
adversary has access to a population dataset with identifying
features (e.g., name) and a set of QID features (e.g., age,
gender and ZIP code). To facilitate the publisher to update
a pandemic dataset on a daily basis, the Stackelberg game
need to be modelled and solved for each day of data release.

We use the payoff measure to assess each of the data
publisher’s strategy, which is a generalization policy. The
publisher’s payoff is a function of both players’ strategy sets
and the dataset to be generalized. It is dependent upon several
key models including the adversarial model, the privacy model
and the utility model. In this case, the publisher’s payoff P is
the publisher’s expected gain G from publishing the dataset
D in the manner dictated by the generalization policy g minus
the expected loss L due to any successful privacy attacks.

P (D, g) = E[G(D, g)]− E[L(D, g)] (5)

The expected gain G is calculated by multiplying the utility
u of publishing the data by the constant parameter β that
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represents the benefit that the publisher receives by sharing
the record in its original form. Clearly, the expected gain of
publishing data increases when the data has higher utility.

E[G(D, g)] = β ∗ u(D, g) (6)

The expected loss L is calculated by the decision of whether
the attacker decides to attack 1attack and the product of the
risk r by the constant parameter λ which represents the pub-
lisher’s loss for one record due to a successful re-identification.
We model the data recipient as a rational attacker, such that
they only attempt re-identification if his or her associated
benefits exceed the costs. The benefits for the attacker are
posited to be equal to the loss that the publisher would
face (e.g., any fines levied for the privacy breach by federal
regulators).

E[L(D, g)] = 1attack(D, g) ∗ λ ∗ r(D, g) (7)

where

1attack(D, g) =

{
1, E[L] > C
0, E[L] ≤ C

(8)

given that C is a parameter that represents the adversary’s cost
to launch a re-identification attack towards one record.

Thus, the total payoff is calculated as

P (D, g) = β ∗ u(D, g)− 1attack(D, g) ∗ λ ∗ r(D, g) (9)

IV. RESULTS

A. Experimental Settings

1) Datasets
We use two datasets in our experiments. The Vanderbilt

University Medical Center (VUMC) COVID-19 dataset is
derived from a VUMC dataset contains all patient cases that
were treated at VUMC for COVID-19 from March 11, 2020
to December 19, 2021. It is composed of 9,632 records with
the following four features: year of birth, gender, 5-digit ZIP
code, and the date of positive diagnosis. The Nashville Voter
Registration dataset is derived from the latest Davidson County
Voter Registration list [23] in July 2021. It contains 337,681
records with the following four features: name, year of birth,
gender, and 5-digit ZIP code. The Nashville Voter Registration
dataset serves as a population dataset and is used to calculate
the marketer risk for patients in the VUMC dataset. For this
investigation, we focus on records with a ZIP code in the city
of Nashville for both datasets.

2) Parameter Settings
We compare our Game-theoretic approach with three other

data publishing approaches as baselines. The first is the No-
protection approach, where each record is published with its
original values at the end the corresponding date of diagnosis.

The second baseline is the CDC-based approach based on
a k-anonymity privacy model [10] which has been adopted by
CDC to release individual-level COVID-19 case data. CDC
updates data on a monthly basis [10]. Both the CDC-based
approach in our experiments and one of the actual CDC
approaches achieve 5-anonymity. However, the ways they

achieve 5-anonymity are different. We directely used the k-
anonymization algorithm from a off-the-shelf anonymization
software ARX [24], [25] instead of implementing the k-
anonymization algorithm used by Lee et al. [10].

The third baseline is the Dynamic approach, which is based
on the approach used by Brown et al. [11] to dynamically
adjust data generalization policy considering the marketer risk.
In their approach, all records in the released dataset have the
same generalization policy at each releasing time (daily or
weekly). We changed this setting by allowing each record
to have its own generalization policy. This change should
improve the performance of the Dynamic approach in terms of
the average payoff of patients. We set the acceptable threshold
for marketer risk as 0.01 as it was set in Brown et al.’s work
[11]. Note that, for all approaches, the generalization policy
for a record will not change once the record is released.

For the game theoretic model, we set β to $10, λ to $500
and C to $1. These parameters are set according to a practical
scenario as described in the following. The CDC received
27.77 billion dollars in total to prevent, prepare, and respond to
COVID-19 by 2021. We assume 5% of the budget is assigned
to decision makers in CDC for sharing the individual-level
data to the public or third-parties. The population of the US
is 308,745,538 in 2020 according to the US census [26]. On
May 2, 2022, the highest positive rate of COVID-19 tests in a
state among all states in the US was 46.3%. We assume that
46.3% of the US population will have the experience to be
tested positive at a certain point of time when the CDC stops
updating the dataset. We set β as the estimate of the average
budget for each record that will be included in the dataset.

β = $27.77× 109 × 0.05/308, 745, 538/0.463 ≈ $10 (10)

We assume the loss of the data publisher for each re-identified
record, λ, is proportional to the fine paid to a federal regulator
for a data breach as reported on the Office for Civil Rights’
Wall of Shame [14], [27]. As such, we set λ = $500 according
to the average fine per record. We set the cost of the adversary,
C, for accessing each identified record in the population
dataset to $1 (based on the discounted price for a report from
www.intelius.com).

We used an off-the-shelf implementation of the Random
Forrest algorithm to simulate the downstream prediction task
to calculate the predictive utility. In addition, we set 21 days as
the minimal number of historical data points that are required
as the input of the prediction algorithm.

In our experiments, based on the available QID features in
the datasets, year of birth, gender, and ZIP code, we consider
a fixed set of 36 generalization policies that are represented
as vectors according to generalization hierarchies as shown in
Fig. 2, where we can see those three features have 6, 2, and
3 levels, respectively.

3) Evaluation Measures
In our experiments, we use the average of the daily average

payoff over 21 months as the main effectiveness measure (see
Eq. 9). In addition, we also calculate the average of the daily
average utility (or privacy) of records over 21 months (see
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Eqs. 2 and 4). The privacy of a released record is defined
as 1 minus the marketer risk [20] of that record (see Eq. 1).
The utility of all records released in one day is defined as the
number of records times a utility function based on predictive
utility and/or mutual information (see Eqs. 2 and 4).

B. Experiments with Mutual Information Only

In this set of experiments, we set the utility function as the
mutual information between original data and released data.

Fig. 4. The effectiveness measures of policies on each day considering
only mutual information in the utility measure. (A) Average payoff of the
data publisher. (B) Average data utility. (C) Average privacy.

The payoff of the data publisher averaged across all records
at the end of each day is shown in Fig. 4(A). It is evident
that the Game-theoretic approach achieves the best average
payoff for the data publisher on each day. The CDC-based
approach outperforms the other two baselines on most days;
however, the average payoff the CDC-based approach brings
to the data publisher is unstable due to the low frequency
of data publishing. The Dynamic approach outperforms the

No-protection approach on each day and outperforms the
CDC-based approach in limited days. For the entire published
dataset, the Game-theoretic approach brings 11.2% (109.7%)
more average payoff to the data publisher in comparison to
the CDC-based (No-protection) approach.

The data utility averaged across all existing records at
the end of each day is shown in Fig. 4(B). It is evident
that the Game-theoretic approach outperforms the CDC-based
approach on each day in terms of the average data utility
per record. The Dynamic approach outperforms the Game-
theoretic approach on each day. For the entire published
dataset, the Game-theoretic approach leads to 16.4% more
(9.1% less) average data utility in comparison to the CDC-
based (No-protection) approach.

The privacy averaged across all existing records at the end
of each day is shown in Fig. 4(C). It is evident that the
Game-theoretic approach outperforms the Dynamic and No-
protection approaches on each day in terms of the average data
privacy per record. The CDC-based approach outperforms the
Game-theoretic approach on each day. For the entire published
dataset, the Game-theoretic approach leads to 0.1% less (1.1%
more) average data privacy in comparison to the CDC-based
(No-protection) approach.

Fig. 5. The average effectiveness measures of policies over three long
periods of time considering only mutual information in the utility
measure.

The average effectiveness measures of policies averaged
across all days during a certain period of time (namely, the
first 7, 14, or 21 months) considering only mutual information
in the utility measure are shown in Fig. 5. It is evident that the
Game-theoretic approach outperforms all other approaches in
terms of the data publisher’s average daily payoff. In addition,
the Game-theoretic approach outperforms the Dynamic and
No-protection approaches in terms of the average daily privacy
and outperforms the CDC-based approach in terms of the
average daily utility. The Dynamic approach outperforms the
CDC-based approach over these three periods of time in terms
of the data publisher’s average daily payoff as well as the
average daily data utility. As the period of time in comparison
increases from 7 months to 21 months, the data publisher’s
average daily payoff decreases by using the Game-theoretic
approach or the Dynamic approach. Over the period of the 21
months presented in our dataset, the Game-theoretic approach
brings 24.9%, 17.8%, and 86.5% more average daily payoff to
the data publisher in comparison to the CDC-based approach,
Dynamic approach, No-protection approach, respectively.
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C. Experiments with Predictive Utility & Mutual Information
In this set of experiments, we set the utility function to

the average of 1) the mutual information between the original
data and the released data, and 2) the predictive utility which
is defined as the accuracy of the COVID-19 case count
predictions, given existing data.

Fig. 6. The effectiveness measures of policies on each day considering both
predictive utility and mutual information in utility measure. (A) Average
payoff of data publisher. (B) Average data utility. (C) Average privacy.

The average effectiveness measures of policies averaged
across all existing records at the end of each day with this
new utility function is shown in Fig. 6. The main obser-
vations remain the same with this utility function. For the
entire published dataset, the Game-theoretic approach brings
4.4% (352.9%) more average payoff to the data publisher in
comparison to the CDC-based (No-protection) approach, leads
to 8.4% more (7.7% less) average data utility in comparison to
the CDC-based (No-protection) approach, and leads to 0.02%
less (1.1% more) average data privacy in comparison to the
CDC-based (No-protection) approach.

Fig. 7. The average effectiveness measures of policies over three long
periods of time considering both predictive utility and mutual information
in the utility measure.

The average effectiveness measures of policies averaged
across all days during a certain period of time (namely, the
first 7, 14, or 21 months) considering both predictive utility
and mutual information in the utility measure are shown in
Fig. 7. It is evident that the Game-theoretic approach out-
performs all other approaches in terms of the data publisher’s
average daily payoff. In addition, the Game-theoretic approach
outperforms the Dynamic and No-protection approaches in
terms of the average daily privacy and outperforms the CDC-
based approach in terms of the average daily utility. The CDC-
based approach outperforms the Dynamic approach in terms
of the data publisher’s average daily payoff and vice versa
in terms of the average daily data utility. As the period of
time in comparison increase from 7 months to 21 months,
the data publisher’s average daily payoff increases by using
all approaches except the No-protection approach. Over the
period of the 21 months presented in our dataset, the Game-
theoretic approach brings 16.4%, 37.1%, and 265.5% more
average daily payoff to the data publisher in comparison to
the CDC-based approach, Dynamic approach, No-protection
approach, respectively.

V. DISCUSSION AND CONCLUSION

Our game theoretic model presents several notable take-
aways. First, it is effective to use a game theoretic model to op-
timize the tradeoff between privacy and utility when publishing
a pandemic dataset that needs to be updated on a regular basis.
Second, the policies recommended by our game theoretic
model tend to share much more data than those from the CDC-
based approach while maintaining low privacy risk. The CDC-
based approach, by contrast, is a more conservative approach
in our adversarial setting, where the adversary has limited
knowledge and makes rational attacking decisions. Third,
by considering an essential downstream analysis task using
published data (i.e., case count prediction using a machine
learning model), we demonstrate how a game theoretic model
can be tailored to a dynamic privacy-preserving data sharing
problem. Fourth, although health equity has not been explicitly
measured in our model, our model explicitly considers the data
utility across subpopulations such that the optimal policy out
of modeling can be regarded as ethical and fair.

Limitations exist in our model, which provide directions for
future improvement. First, this study focuses on an adversarial
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setting including one adversary and one type of privacy attack.
A natural extension of the work is to consider the possibility of
multiple adversaries and multiple types of adversarial models.
Second, our model requires that all records released on the
same day have the same generalization policy, reducing the
flexibility of choosing generalization policies. Removing this
constraint and adopting more efficient algorithms (such as
genetic algorithms) to explore a larger strategy space can
further improve the effectiveness of the game theoretic model.
Third, the prediction model for the case counts is based on
the Random Forest algorithm, which might be suboptimal
in prediction performance. Fourth, we remove demographic
features such as race and ethnicity from the set of quasi-
identifying features in our datasets because the Davidson
county voter registration list has a high missing rate for values
of these two features. This setting makes CDC-based approach
appears conservative in protecting privacy. In other words, the
scenario we considered might be less risky than the real-world
scenario. This can be resolved by testing on more datasets
with more available features and no or fewer missing values.
Finally, we obtained the population dataset from only one
source, which may not contain all the records in the patient
dataset. In the future, we should seek population data from
other sources (e.g., US census) as well for better evaluation.
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