The maximum size of a partial spread in a finite vector space

Esmeralda Năstase
Xavier University

Joint work with Papa Sissokho

June 12, 2017
- \(V = V(n, q) \) the \textit{vector space} of dimension \(n \) over GF\((q)\).

- A \textit{partial} \(t \)-\textit{spread} of \(V \) is a collection of subspaces \(\{W_1, \ldots, W_k\} \subseteq V \) s.t.

 - \(\text{dim}(W_1) = \ldots \text{dim}(W_k) = t \)

 - \(W_i \cap W_j = \{0\} \) for \(i \neq j \).
- $V = V(n, q)$ the vector space of dimension n over $\text{GF}(q)$.

- A partial t-spread of V is a collection of subspaces $\{W_1, \ldots, W_k\} \subseteq V$ s.t.
 - $\dim(W_1) = \ldots \dim(W_k) = t$
 - $W_i \cap W_j = \{0\}$ for $i \neq j$.

- If $W_1 \cup \cdots \cup W_k$ contains all the vectors of V, then it is called a t-spread.
\(V = V(n, q) \) the vector space of dimension \(n \) over GF\((q)\).

A partial \(t \)-spread of \(V \) is a collection of subspaces \(\{W_1, \ldots, W_k\} \subseteq V \) s.t.

- \(\dim(W_1) = \ldots = \dim(W_k) = t \)
- \(W_i \cap W_j = \{0\} \) for \(i \neq j \).

If \(W_1 \cup \ldots \cup W_k \) contains all the vectors of \(V \), then it is called a \(t \)-spread.

André (1954), Segre (1964)- A \(t \)-spread of \(V \) exists if and only if \(t \mid n \).
Question

- What is the maximum size of a partial t-spread of V?
Applications

- error-correcting codes
- orthogonal arrays
- \((s, k, \lambda)\)-nets
- subspace codes
Let $\mu_q(n, t) =$ maximum size of a partial t-spread of V, and let

$$\ell_q(n, t) = \frac{q^n - q^{t+r}}{q^t - 1}.$$

Conjecture (Hong and Patel, 1972)

Let $n = kt + r$, and $0 \leq r < t$. Then

$$\mu_q(n, t) = \frac{q^n - q^{t+r}}{q^t - 1} + 1 = \ell_q(n, t) + 1.$$
Theorem (Hong and Patel, 1972; Beutelspacher, 1975)

Let \(n = kt + r \), and \(0 \leq r < t \). Then

\[
\mu_q(n, t) \geq \frac{q^n - q^{t+r}}{q^t - 1} + 1 = \ell_q(n, t) + 1.
\]
Theorem (Drake and Freeman, 1979)

Let $n = kt + r$, and $0 \leq r < t$. Then

$$\mu_q(n, t) \leq \frac{q^n - q^r}{q^t - 1} - \lfloor \omega \rfloor - 1 = \ell_q(n, t) + q^r - \lfloor \omega \rfloor - 1,$$

where

$$2\omega = \sqrt{4q^t(q^t - q^r) + 1} - (2q^t - 2q^r + 1).$$
Theorem (André, 1954, Segre, 1964 \((r = 0)\); Hong and Patel, 1972 \((r = 1, q = 2)\); Beutelspacher, 1975 \((r = 1, q > 2)\))

Let \(n = kt + r\), and \(r \in \{0, 1\}\). Then

\[
\mu_q(n, t) = \frac{q^n - q^{t+r}}{q^t - 1} + 1 = \ell_q(n, t) + 1.
\]
Theorem (El-Zanati, Jordon, Seelinger, Sissokho, and Spence, 2012)

If \(r = 2, \ t = 3, \) and \(q = 2, \) then

\[
\mu_2(n, 3) = \frac{2^n - 2^5}{7} + 2 = \ell_2(n, 3) + 2.
\]
Theorem (El-Zanati, Jordon, Seelinger, Sissokho, and Spence, 2012)

If \(r = 2, \ t = 3, \) and \(q = 2, \) then

\[
\mu_2(n, 3) = \frac{2^n - 2^5}{7} + 2 = \ell_2(n, 3) + 2.
\]

Theorem (Kurz, 2016)

If \(t > 3 \) and \(q = r = 2, \) then

\[
\mu_2(n, t) = \frac{2^n - 2^{t+2}}{2t - 1} + 1 = \ell_2(n, t) + 1.
\]
Theorem (N., Sissokho, 2017+)

Let \(n = kt + r \), and \(0 \leq r < t \). If \(t > \frac{q^r - 1}{q - 1} \), then

\[
\mu_q(n, t) = \frac{q^n - q^{t+r}}{q^t - 1} + 1 = \ell_q(n, t) + 1.
\]
A **subspace partition** or **partition** \(\mathcal{P} \) of \(V \), is a collection of subspaces \(\{ W_1, \ldots, W_k \} \) s.t.

- \(V = W_1 \cup \cdots \cup W_k \)
- \(W_i \cap W_j = \{0\} \) for \(i \neq j \).

Let \(\mathcal{P} \) be any partition of \(V \). We say \(\mathcal{P} \) has **type** \([t^{n_t}, \ldots, 1^{n_1}]\), if there are \(n_i > 0 \) subspaces of \(\dim i \) in \(\mathcal{P} \), and \(1 < \cdots < t \).
Lemma 1 - (Heden and Lehmann, 2013)
Let \mathcal{P} be a partition of V of type $[t^{n_t}, \ldots, 1^{n_1}]$ and let $b_{H,i}$ be the number of i-subspaces in \mathcal{P} that are in a hyperplane H of V. Then

$$|\mathcal{P}| = 1 + \sum_{i=1}^{t} b_{H,i} q^i$$
Lemma 2 - (Heden and Lehmann, 2013)

Let P be a partition of V of type $[t^{n_t}, \ldots, 1^{n_1}]$ and let $b_{H,i}$ be the number of i-subspaces in P that are in a hyperplane H of V. Then

1. $\sum_{H \in \mathcal{H}} H = \frac{q^n - 1}{q - 1}$

2. $\sum_{H \in \mathcal{H}} b_{H,i} H = n_i \frac{q^{n-i} - 1}{q - 1}$
Main Lemma - (N. and Sissokho, 2017+)

Let $n = kt + r$, and $0 \leq r < t$. If $t > \frac{q^r - 1}{q - 1}$, then

$$\mu_q(n, t) \leq \frac{q^n - q^{t+r}}{q^t - 1} + 1 = \ell_q(n, t) + 1.$$
For any integer $i \geq 1$, let $\Theta_i = \frac{q^i - 1}{q - 1}$ and $\delta_i = \frac{q^i - 2q^{i-1} + 1}{q - 1}$. Then

\blacktriangleright $0 < \delta_i < q^{i-1}$ and $\frac{\delta_i}{q} < \delta_{i-1}$.

E. Năstase

The maximum size of a partial spread in a finite vector space
For any integer $i \geq 1$, let $\Theta_i = \frac{q^i - 1}{q - 1}$ and $\delta_i = \frac{q^i - 2q^{i-1} + 1}{q - 1}$.

Then

- $0 < \delta_i < q^{i-1}$ and $\frac{\delta_i}{q} < \delta_{i-1}$.

Proof Sketch:

- Assume that $\mu_q(n, t) > \ell_q(n, t) + 1$. Then V has a partial t-spread of size $\ell_q(n, t) + 2$.
For any integer $i \geq 1$, let $\Theta_i = \frac{q^i - 1}{q - 1}$ and $\delta_i = \frac{q^i - 2q^{i-1} + 1}{q - 1}$.

Then

∇ $0 < \delta_i < q^{i-1}$ and $\frac{\delta_i}{q} < \delta_{i-1}$.

Proof Sketch:

∇ Assume that $\mu_q(n, t) > \ell_q(n, t) + 1$. Then V has a partial t-spread of size $\ell_q(n, t) + 2$.

∇ $\exists P_0$ of $V(n, q)$ of type $[t^{n_t}, 1^{n_1}]$, where

\[
\begin{align*}
n_t &= \ell_q(n, t) + 2 \\
n_1 &= \left(\frac{q^r - 1}{q - 1} - 1\right)q^t + \frac{q^{t+1} - 2q^t + 1}{q - 1} = (\Theta_r - 1)q^t + \delta_{t+1}.
\end{align*}
\]
We use induction on j, for $0 \leq j \leq \Theta_r - 1$:

- **Base Case:** $H_0 = V(n, q)$ and $\mathcal{P}_0 = \{H_0\}$
We use induction on j, for $0 \leq j \leq \Theta_r - 1$:

- **Base Case:** $H_0 = V(n, q)$ and $\mathcal{P}_0 = \{H_0\}$
- **Inductive Step:** there exists \mathcal{P}_j of $H_j \cong V(n - j, q)$ of type

$$[t^{m_{j,t}}, (t - 1)^{m_{j,t-1}}, \ldots, (t - j)^{m_{j,t-j}}, 1^{m_{j,1}}],$$

where $m_{j,t}, \ldots, m_{j,t-j}, m_{j,1}$, and c_j are nonnegative integers s.t.

$$\sum_{i=t-j}^{t} m_{j,i} = n_t = \ell_q(n, t) + 2,$$

and

$$m_{j,1} = c_j q^{t-j} + \delta_{t+1-j}, \text{ and } 0 \leq c_j \leq \Theta_r - 1 - j.$$
Using Lemma 2,

\[b_{avg,1} = \frac{\sum_{H \in \mathcal{H}} b_{H,1}}{\sum_{H \in \mathcal{H}} H} \] < \frac{c_j q^{t-j} + \delta_{t+1-j}}{q} < c_j q^{t-j-1} + \delta_{t-j}. \]
Using Lemma 2,

\[
\beta_{avg,1} = \frac{\sum_{H \in \mathcal{H}} b_{H,1} H}{\sum_{H \in \mathcal{H}} H} < \frac{c_j q^{t-j} + \delta_{t+1-j}}{q} < c_j q^{t-j-1} + \delta_{t-j}.
\]

\[\implies \exists \text{ a hyperplane } H_{j+1} \text{ of } H_j \text{ with }\]

\[
b_{H_{j+1},1} \leq \beta_{avg,1} < c_j q^{t-j-1} + \delta_{t-j},
\]
Using Lemma 2,

\[b_{\text{avg},1} = \frac{\sum_{H \in \mathcal{H}} b_{H,1} H}{\sum_{H \in \mathcal{H}} H} < \frac{c_j q^{t-j} + \delta_{t+1-j}}{q} < c_j q^{t-j-1} + \delta_{t-j}. \]

\[\implies \exists \text{ a hyperplane } H_{j+1} \text{ of } H_j \text{ with } \]

\[b_{H_{j+1},1} \leq b_{\text{avg},1} < c_j q^{t-j-1} + \delta_{t-j}, \]

and applying Lemma 1,

\[m_{j+1,1} = b_{H_{j+1},1} = c_{j+1} q^{t-j-1} + \delta_{t-j}, \text{ and } 0 \leq c_{j+1} \leq \Theta_r - 2 - j. \]
Thus, we let \mathcal{P}_{j+1} be the subspace partition of H_{j+1} defined by:

$$\mathcal{P}_{j+1} = \{ W \cap H_{j+1} : W \in \mathcal{P}_j \}.$$
Thus, we let \mathcal{P}_{j+1} be the subspace partition of H_{j+1} defined by:

$$\mathcal{P}_{j+1} = \{ W \cap H_{j+1} : W \in \mathcal{P}_j \}.$$

Therefore, \mathcal{P}_{j+1} is a subspace partition of H_{j+1} of type

$$[t^{m_{j+1,t}},(t-1)^{m_{j+1,t-1}}, \ldots, (t-j-1)^{m_{j+1,t-j-1}}, 1^{m_{j+1,1}}], \quad (1)$$

where $m_{j+1,t}, m_{j+1,t-1}, \ldots, m_{j+1,t-j-1}$ satisfy

$$\sum_{i=t-j-1}^{t} m_{j+1,i} = \sum_{i=t-j}^{t} m_{j,i} = n_t = \ell_q(n,t) + 2, \quad \text{and} \quad (2)$$

$$m_{j+1,1} = b_{H_{j+1,1}} = c_{j+1} q^{t-j-1} + \delta_{t-j}, \quad \text{and} \quad 0 \leq c_{j+1} \leq \Theta_r - 2 - j.$$
Final Step, \(j = \Theta_r - 1 \):

- \(c_{\Theta_r-1} = 0 \) and thus, \(m_{\Theta_r-1,1} = \delta_{t+2-\Theta_r} \) in \(\mathcal{P}_{\Theta_r-1} \) of \(H_{\Theta_r-1} \).
Final Step, $j = \Theta_r - 1$:

- $c_{\Theta_r - 1} = 0$ and thus, $m_{\Theta_r - 1, 1} = \delta_{t+2-\Theta_r}$ in $P_{\Theta_r - 1}$ of $H_{\Theta_r - 1}$.

- Using the averaging argument, there exists a hyperplane H^* of $H_{\Theta_r - 1}$ with

$$b_{H^*, 1} \leq b_{\text{avg}, 1} < \delta_{t+1-\Theta_r}.$$
Final Step, $j = \Theta_r - 1$:

- $c_{\Theta_r-1} = 0$ and thus, $m_{\Theta_r-1,1} = \delta_{t+2-\Theta_r}$ in \mathcal{P}_{Θ_r-1} of H_{Θ_r-1}.

- Using the averaging argument, there exists a hyperplane H^* of H_{Θ_r-1} with
 $$b_{H^*,1} \leq b_{\text{avg},1} < \delta_{t+1-\Theta_r}.$$

- Using Lemma 1 on the partition \mathcal{P}_{Θ_r-1} and the hyperplane H^* of H_{Θ_r-1} we obtain that
 $$b_{H^*,1} \geq \delta_{t+1-\Theta_r},$$

which is a contradiction.
Final Step, $j = \Theta_r - 1$:

- $c_{\Theta_r - 1} = 0$ and thus, $m_{\Theta_r - 1,1} = \delta_{t+2-\Theta_r}$ in $P_{\Theta_r - 1}$ of $H_{\Theta_r - 1}$.
- Using the averaging argument, there exists a hyperplane H^* of $H_{\Theta_r - 1}$ with
 \[b_{H^*,1} \leq b_{\text{avg},1} < \delta_{t+1-\Theta_r}. \]

- Using Lemma 1 on the partition $P_{\Theta_r - 1}$ and the hyperplane H^* of $H_{\Theta_r - 1}$ we obtain that
 \[b_{H^*,1} \geq \delta_{t+1-\Theta_r}, \]
 which is a contradiction.

\[\implies \mu_q(n, t) \leq \ell_q(n, t) + 1 \quad \square. \]
Theorem (N., Sissokho, 2017+)

Let $n = kt + r$, and $0 \leq r < t$. If $t > \frac{q^r - 1}{q - 1}$, then

$$\mu_q(n, t) = \frac{q^n - q^{t+r}}{q^t - 1} + 1 = \ell_q(n, t) + 1.$$
Theorem (N., Sissokho, 2017+)

Let \(n = kt + r \), and \(0 \leq r < t \). If \(t > \frac{q^r - 1}{q - 1} \), then

\[
\mu_q(n, t) = \frac{q^n - q^{t+r}}{q^t - 1} + 1 = \ell_q(n, t) + 1.
\]

Proof.

- \(r = 0 \): André’s, Segre’s Theorem.
Theorem (N., Sissokho, 2017+)

Let \(n = kt + r \), and \(0 \leq r < t \). If \(t > \frac{q^r - 1}{q - 1} \), then

\[
\mu_q(n, t) = \frac{q^n - q^{t+r}}{q^t - 1} + 1 = \ell_q(n, t) + 1.
\]

Proof.

- \(r = 0 \): André’s, Segre’s Theorem.
- \(r = 1 \): Hong and Patel’s, and Beutelspacher’s Theorem.
Theorem (N., Sissokho, 2017+)

Let $n = kt + r$, and $0 \leq r < t$. If $t > \frac{q^r - 1}{q - 1}$, then

$$\mu_q(n, t) = \frac{q^n - q^{t+r}}{q^t - 1} + 1 = \ell_q(n, t) + 1.$$

Proof.

- $r = 0$: André’s, Segre’s Theorem.
- $r = 1$: Hong and Patel’s, and Beutelspacher’s Theorem.
- $r \geq 2$: LB for $\mu_q(n, t)$, by Hong and Patel’s and Beutelspacher’s Theorem and UB for $\mu_q(n, t)$, by Main Lemma, are equal.
Theorem (N., Sissokho, 2017+)

Let \(n = kt + r \), and \(0 \leq r < t \). If \(r \geq 2 \) and \(t = \Theta_r \), then

\[
\mu_q(n, t) \leq \ell_q(n, t) + q.
\]
Hypergraphs

Let $\mathcal{H}_q(n, t)$ be the hypergraph whose vertices are the 1-subspaces of $V(n, q)$ and whose edges are its t-subspaces.
Hypergraphs

Let $\mathcal{H}_q(n, t)$ be the hypergraph whose vertices are the 1-subspaces of $V(n, q)$ and whose edges are its t-subspaces.

Then $\mathcal{H}_q(n, t)$ is a $(q^t - 1)/(q - 1)$-uniform hypergraph.
Let $\mathcal{H}_q(n, t)$ be the hypergraph whose vertices are the 1-subspaces of $V(n, q)$ and whose edges are its t-subspaces.

Then $\mathcal{H}_q(n, t)$ is a $(q^t - 1)/(q - 1)$-uniform hypergraph.

By our Theorem, if $n = kt + r$, $0 \leq r < t$, and $t > \frac{q^r - 1}{q - 1}$, then the maximum size of a matching in $\mathcal{H}_q(n, t)$ is

$$\frac{q^n - q^{t+r}}{q^t - 1} + 1 = \ell_q(n, t) + 1.$$
Question

What is the maximum size of a partial t-spread of V if $r \geq 2$ and $t \leq \frac{q^r - 1}{q - 1}$?
Thank you!