Publications
Published and submitted papers
- Nazarov, A. I.; Reznikov, A. B. On the existence of an extremal function in critical
Sobolev trace embedding theorem J. Funct. Anal. 258 (2010), no. 11, 3906–3921; - Nazarov A., Reznikov A., Attainability of inma in the critical Sobolev trace embedding
theorem on manifolds | American Mathematical Society Translations — Series
2 Advances in the Mathematical Sciences 2010; 252 pp; hardcover Volume: 229; - Reznikov, Alexander Sharp constants in the Paneyah-Logvinenko-Sereda theorem
C. R. Math. Acad. Sci. Paris 348 (2010), no. 3-4, 141–144; - Reznikov, Alexander Sharp weak type estimates for weights in the class Ap1;p2 , Rev.
Mat. Iberoam. 29 (2013), no. 2, 433{478; doi 10.4171/rmi/726; arXiv:1105.4848v1; - Nazarov F., Reznikov A., Volberg A. The proof of A2 conjecture in a geometrically
doubling metric space, Indiana Univ. Math. J. 62 (2013), no. 5, 1503–1533;
arXiv:1106.1342; - Nazarov, F., Reznikov, A., Treil, S., Volberg, A. A Bellman function proof of the L2
bump conjecture, J. Anal. Math. 121 (2013), 255–277 arXiv:1202.2406; - Beznosova O., Reznikov A. Equivalent denitions of dyadic Muckenhoupt and Reverse
Holder classes in terms of Carleson sequences, weak classes, and comparability
of dyadic Llog L and A1 constants, Rev. Mat. Iberoam. 30 (2014), no. 4,
1191–1236; arXiv:1201.0520; - Rey G., Reznikov A., Extremizers and sharp weak-type estimates for positive dyadic
shifts, Adv. Math. 254 (2014), 706–729; arXiv:1311.2046; - Cruz-Uribe D., Reznikov A., Volberg A. Logarithmic bump conditions and the two
weight boundedness of Calderon-Zygmund operators, Adv. Math. 255 (2014), 706–
729; arXiv:1112.0676; - Beznosova O., Reznikov A. Sharp estimates involving A1 and Llog L constants,
and their applications to PDE, St. Petersburg Math. J. 26 (2015), no. 1, 27–47
arXiv:1107.1885; - Eiderman V., Reznikov A., Volberg V., Almost-additivity of analytic capacity and
Cauchy independent measures, arXiv:1401.0407; accepted to Journal d’Analyse Mathe-
matique; - Reznikov A., Saff E. B. The covering radius of randomly distributed points on a
manifold, arXiv:1504.03029; accepted to International Math Research Notices. - Brauchart J.S., Reznikov A.B., Saff E.B., Sloan I.H., Wang, Y.G., Womersley R.S. Random
Point Sets on the Sphere|Hole Radii, Covering, and Separation, arXiv:1512.07470,
accepted to Experimental Mathematics. - Reznikov A., Saff E.B., Vlasiuk O.V. A minimum principle for potentials with application
to Chebyshev constants, arxiv:1607.07283, submitted to Potential Analysis. - Borodachov S.V., Hardin D.P., Reznikov A., Saff E.B. Optimal discrete measures for
Riesz potentials, arXiv:1606.04128, submitted to Transactions of AMS.
Preprints
- Reznikov A., Vasyunin V., Volberg A. An observation: cut-o of the weight w does not increase the Ap1;p2-“norm” of w arXiv:1008.3635;
- Nazarov F., Reznikov A., Vasyunin V., Volberg V. A Bellman function counterexample to the A1 conjecture: the blow-up of the weak norm estimates of weighted singular operators, 2010, arXiv:1506.04710;
- Reznikov A., Treil S., Volberg A. A sharp estimate of weighted dyadic shifts of complexity 0 and 1, arXiv:1104.5347;
- Reznikov A., Volberg A. Random “dyadic” lattice in geometrically doubling metric space and A2 conjecture, arXiv:1103.5246;
- Nazarov, F., Reznikov, A., Treil, S., Volberg, A. Carleson–Buckley measures beyond the scope of A1 and their applications, arXiv:1202.2931;
- Nazarov F., Reznikov A., Volberg A. Bellman approach to the one-sided bumping for weighted estimates of Calderon–Zygmund operators, arXiv:1306.2653.
Connect with Vanderbilt
©2025 Vanderbilt University ·
Site Development: University Web Communications