The cost of comfort: what's it worth to avoid pain?

Karl E. Zelik and Arthur D. Kuo
University of Michigan
Net positive work must be done by muscles

<table>
<thead>
<tr>
<th>Net Positive Work</th>
<th>Active Muscles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Negative work can be done by muscles

<table>
<thead>
<tr>
<th></th>
<th>Net Positive Work</th>
<th>Net Negative Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Muscles</td>
<td>![Image of a person ascending stairs]</td>
<td>![Image of a person descending stairs]</td>
</tr>
</tbody>
</table>
Negative work can also be done passively
People can choose how to distribute neg. work\(^1\)

<table>
<thead>
<tr>
<th></th>
<th>Net Positive Work</th>
<th>Net Negative Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Muscles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive Soft Tissues</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Zatsiorsky & Prilutsky 1982
<table>
<thead>
<tr>
<th></th>
<th>Net Positive Work</th>
<th>Net Negative Work</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Muscles</td>
<td></td>
<td></td>
<td>Metabolic Energy</td>
</tr>
<tr>
<td>Passive Soft Tissues</td>
<td></td>
<td></td>
<td>Pain Risk of Injury</td>
</tr>
</tbody>
</table>
Preferred landing strategy is a compromise between these costs

Cost

- Metabolic Energy
- Pain Risk of Injury
How can we compare costs quantitatively?

Preferred landing strategy is a compromise between these costs
Distribution of work → how people value costs

Active Work

Passive Work

Cost

Metabolic Energy

Pain Risk of Injury

reduces
Distribution of work → how people value costs

- **Active Work**
- **Passive Work**

Cost
- Metabolic Energy
- Pain Risk of Injury

reduces
How do people choose to distribute work?
How do people choose to distribute work?

Jump-Landing Experiment
How do people choose to distribute work?

Estimating Active vs. Passive Contributions
How do people choose to distribute work?

People prefer to do more active work than necessary.
$N=8$
Collected ground reaction forces and full-body kinematics
Range of jump heights

Counter-Movement Push-off Aerial Collision Recovery

\[mgh_{\text{jump}} \]
Stiff-legged landing minimizes negative work

Counter-Movement Push-off Aerial Collision Recovery

mgh_{jump} passive negative work
Doing work actively increases total work done

Counter-Movement

Push-off

Aerial

Collision

Recovery

\[mgh_1 \]

\[mgh_{\text{jump}} \]

\[mgh_2 \]
Hypothesis: people prefer to perform extra work

- Counter-Movement
- Push-off
- Aerial
- Collision (active & passive negative work)
- Recovery
Representative mechanical power
Preferred landing style

![Graph showing relationship between Total Work (J) and Jump Height (m)].

- **Normal Recovery**
- **Normal Collision**

Axes:
- **Y-axis**: Total Work (J)
- **X-axis**: Jump Height (m)

Legend:
- **Collision**
- **Recovery**
Theoretical minimum: only negative work

![Graph showing the relationship between total work and jump height. The graph includes lines for Normal Recovery, Minimum Collision Work (mgh_{jump}), Normal Collision, Collision, and Recovery.](graph.png)
People choose to do more work than necessary

![Graph showing the relationship between total work (J) and jump height (m). The graph includes two lines: one for normal recovery work (Extra Positive Work) and one for minimum collision work (Extra Negative Work). The graph also shows the work done during collision and recovery phases.](image-url)
Landing stiff-legged minimizes work

![Graph showing the relationship between Total Work (J) and Jump Height (m). The graph includes lines for Normal Recovery, Stiff Recovery, Minimum Collision Work (mg\(h_{\text{jump}}\)), Stiff Collision, and Normal Collision.]
Landing softly increases neg. & pos. work

![Graph showing the relationship between Total Work (J) and Jump Height (m) with different recovery and collision conditions.]
Landing softly increases neg. & pos. work
Mechanical work performed landing from 40cm

- theoretical minimum
- stiff-legged
- normal (preferred)
- soft
Trade-off between energy and pain

more metabolic energy

more painful

-600 -500 -400 -300 -200 -100 0 100
Total Work (J)

theoretical minimum

stiff-legged

normal (preferred)

soft
People prefer to do 37% more negative work
König's Theorem

Total Mechanical Power

Joint + Soft Tissue

Rotational power due to muscles/tendons

Everything else, notably power due to deformations of non-rigid bodies

Center-of-Mass + Peripheral

Power due to motion of the CoM

Power due to motion relative to the CoM
Center-of-Mass + Peripheral = Joint + Soft Tissue
\[
\sum_{\text{legs}} F_i \cdot v_{\text{COM}} \approx \frac{d}{dt} \sum_{\text{segments}} \frac{1}{2} m_s (v_s - v_{\text{COM}})^2 + \frac{1}{2} l_s \cdot \omega_s^2
\]

Center-of-Mass + Peripheral*

\[\approx\]

(inverse dynamics)

\[
\sum_{\text{joints}} M_j \cdot \omega_j
\]

Joint* + Soft Tissue

*rigid-body assumptions
Joint

indicator of active contributions

Center-of-Mass + Peripheral

indicator of passive contributions

Soft Tissue
Mechanical Power

Counter-Movement

Push-off

Aerial

Collision

Recovery

Time
Mechanical Power (Inverse-Dynamics-based)

Joint Power
\[(\text{Total} - \text{Joint}) \text{ Power} = \text{Soft Tissue Power}\]
Mechanical Power (Soft Tissue)

positive work (damped rebound?)

negative work (absorption)
Soft Tissue Collision work increases with Total
Soft Tissues perform 16% of Collision work
Passive contribution highest for small Collisions

Collision Work

Soft Tissue

Total

Soft Tissue Contribution to Collision

Collisions during walking at 1.25 m/s (Zelik and Kuo 2010)

Percent

16.0%
People prefer to distribute work between active & passive tissues, doing 37% more than needed

Collisions could be done for free, but it hurts to land passively,
So people will choose
Mostly muscles to use.
Comfort is worth energy.

Acknowledgements
Adrian Choy
NSF GRF, DoD, NIH
People prefer to distribute work between active & passive tissues, doing 37% more than needed.

Collisions could be done for free, but it hurts to land passively, So people will choose Mostly muscles to use. Comfort is worth energy.

Acknowledgements
Adrian Choy
NSF GRF, DoD, NIH