Consider the table \textbf{Driver (licenseNum, firstName, lastName, age)}, part of a simple driver registration database. Every row of Driver has a unique \textit{licenceNum}.

1. Write a query in SQL to give the first and last names of all drivers that share a last name with another driver. (2 points)

\begin{verbatim}
SELECT DISTINCT d1.firstName, d1.lastName  //DISTINCT optional this time
FROM Driver d1, Driver d2
WHERE d1.lastName = d2.lastName AND d1.licenceNum <> d2.licenceNum;
// or following ok (this time)
SELECT d1.firstName, d1.lastName
FROM Driver d1, Driver d2
WHERE d1.lastName = d2.lastName AND d1.firstName <> d2.firstName;
\end{verbatim}

2. Given another relation \textbf{Voter (voterID, firstName, lastName, district)}, write a query in SQL to find all (first name, last name) pairs that are associated with a voter in district = ‘32’, and also associated with a driver under the age of 25. Every row of Voter has a unique \textit{voterID}

A) Write the query using the INTERSECT operator (2 points)

\begin{verbatim}
SELECT firstName, lastName  //they can also use row variables like D (for Driver)
FROM Driver  // and V for Voter
WHERE Driver.age < 25
INTERSECT
SELECT firstName, lastName
FROM Voter
WHERE Voter.district = ‘32’
\end{verbatim}

B) Write the query WITHOUT using the INTERSECT operator (2 points)

\begin{verbatim}
SELECT Driver.firstName, Driver.lastName
FROM Driver, Voter
WHERE Driver.firstName = Voter.firstName AND Driver.lastName = Voter.lastName
AND Driver.age < 25 AND Voter.district = ‘32’;
\end{verbatim}