In this question, do NOT assume that strict 2 phase locking is used. Rather you can assume that locks are released as soon as they are no longer needed (after a read for shared, and after a write for exclusive).

1. (5 points) Consider the following two transactions, T1 and T2:

 T1: Read(A), \(Op_{11}(A) \), Write(A), Read(B), \(Op_{12}(B) \), Write(B), Commit

 T2: Read(A), \(Op_{21}(A) \), Write(A), Read(B), \(Op_{22}(B) \), Write(B), Commit

Identify all schedules (just showing disk reads and writes) that clearly result in *serializable* behavior, under the assumption of no system failures and transaction rollbacks, even without knowing when the Ops are performed. *A and B are distinct objects, but are shared across transactions.*

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th></th>
<th>(B)</th>
<th></th>
<th>(C)</th>
<th></th>
<th>(D)</th>
<th></th>
<th>(E)</th>
<th></th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>R(A)</td>
<td>T1</td>
<td>R(A)</td>
<td>T1</td>
<td>R(A)</td>
<td>T1</td>
<td>R(A)</td>
<td>T1</td>
<td>R(A)</td>
<td>T1</td>
<td>R(A)</td>
</tr>
<tr>
<td></td>
<td>W(A)</td>
<td></td>
<td>W(A)</td>
<td></td>
<td>W(A)</td>
<td></td>
<td>W(A)</td>
<td></td>
<td>W(A)</td>
<td></td>
<td>W(A)</td>
</tr>
<tr>
<td></td>
<td>R(B)</td>
<td></td>
<td>R(B)</td>
<td></td>
<td>R(B)</td>
<td></td>
<td>R(B)</td>
<td></td>
<td>R(B)</td>
<td></td>
<td>R(B)</td>
</tr>
<tr>
<td></td>
<td>W(B)</td>
<td></td>
<td>W(B)</td>
<td></td>
<td>W(B)</td>
<td></td>
<td>W(B)</td>
<td></td>
<td>W(B)</td>
<td></td>
<td>W(B)</td>
</tr>
<tr>
<td>Commit</td>
<td></td>
<td>Commit</td>
<td></td>
<td>Commit</td>
<td></td>
<td>Commit</td>
<td></td>
<td>Commit</td>
<td></td>
<td>Commit</td>
<td></td>
</tr>
</tbody>
</table>

The possible schedules are:

- Schedule (A): T1: R(A), W(A), R(B), W(B), Commit; T2: R(A), W(A), R(B), W(B), Commit
- Schedule (B): T1: R(A), W(A), R(B), W(B), Commit; T2: R(A), W(A), R(B), W(B), Commit
- Schedule (C): T1: R(A), W(A), R(B), W(B), Commit; T2: R(A), W(A), R(B), W(B), Commit
- Schedule (D): T1: R(A), W(A), R(B), W(B), Commit; T2: R(A), W(A), R(B), W(B), Commit
- Schedule (E): T1: R(A), W(A), R(B), W(B), Commit; T2: R(A), W(A), R(B), W(B), Commit
- Schedule (F): T1: R(A), W(A), R(B), W(B), Commit; T2: R(A), W(A), R(B), W(B), Commit

+3 for one, +4 for two, +5 for three
-1 for one incorrect circled, -2 for two,
-5 for three
0 min, 5 max
Suppose that $A=5$ and $B=2$ before $T1$ and $T2$; suppose $Op11(A) = A+1$; $Op12(B)=B*2$; $Op21(A)=2*A$; $Op22(B)=1+B$

2. (5 points) Consider the following two transactions, $T1$ and $T2$:

$T1$: Read(A), $Op_{11}(A)$, Write(A), Read(B), $Op_{12}(B)$, Write(B), Commit

$T2$: Read(A), $Op_{21}(A)$, Write(A), Read(B), $Op_{22}(B)$, Write(B), Commit

Suppose that $A=5$ and $B=2$ just before $T1$ and $T2$ are initiated.

Suppose $Op11(A) = A+1$; $Op12(B)=B*2$; $Op21(A)=2*A$; $Op22(B)=1+B$

So, we have

$T1$: Read(A), $A+1$, Write(A), Read(B), $B*2$, Write(B), Commit

$T2$: Read(A), $2*A$, Write(A), Read(B), $1+B$, Write(B), Commit

a) Under the conditions above, what are the resulting values for A and B when $T1$ and $T2$ are completed, with the entirety of $T1$ completed before $T2$ initiated.

All of $T1$ followed by all of $T2$:
Value of A: 12
Value of B: 5

1 pt each

A=5, B=2 \rightarrow T1 \rightarrow A=6, B=4 \rightarrow T2 \rightarrow A=12, B=5

b) Under the conditions above, what are the resulting values for A and B when $T2$ and $T1$ are completed, with the entirety of $T2$ completed before $T1$ initiated.

All of $T2$ followed by all of $T1$:
Value of A: 11
Value of B: 6

A=5, B=2 \rightarrow T2 \rightarrow A=10, B=3 \rightarrow T1 \rightarrow A=11, B=6
Suppose that $A=5$ and $B=2$ before $T1$ and $T2$; suppose $Op_{11}(A) = A+1$; $Op_{12}(B)=B*2$; $Op_{21}(A)=2*A$; $Op_{22}(B)=1+B$

2c Consider the following two transactions, $T1$ and $T2$:

$T1$: Read(A), $Op_{11}(A)$, Write(A), Read(B), $Op_{12}(B)$, Write(B), Commit

$T2$: Read(A), $Op_{21}(A)$, Write(A), Read(B), $Op_{22}(B)$, Write(B), Commit

What are the values of a and b under the schedule below

(A)	(A)
$T1$ | $T2$
R(A) | R(A)
W(A) | W(A)
R(B) | R(B)
W(B) | W(B)
Commit | Commit

Value of A: 12
Value of B: 5
1 pt each

$A=5$, $B=2$

$\Rightarrow T1(A) \Rightarrow$ Read(A), $A+1$, Write(A) $\Rightarrow A=6$

$\Rightarrow T2(A) \Rightarrow$ Read(A), $2*A$, Write(A) $\Rightarrow A=12$ Same as $T1$, $T2$

$\Rightarrow T1(B) \Rightarrow$ Read(B), $B*2$, Write(B) $\Rightarrow B=4$

$\Rightarrow T2(B) \Rightarrow$ Read(B), $1+B$, Write(B) $\Rightarrow B=5$

Generally, consider $T1$ and $T2$ simplified into two transactions, $T(A)$ and $T(B)$, based on each shared object, A and B. If simplified, but still dependent, transactions follow same serial order, such as $T1(A), T2(A)$ and $T1(B), T2(B)$, then the schedule is serializable (assuming no system failures and rollbacks).
Consider the following two transactions, T1 and T2:

T1: Read(A), Op_{11}(A), Write(A), Read(B), Op_{12}(B), Write(B), Commit

T2: Read(A), Op_{21}(A), Write(A), Read(B), Op_{22}(B), Write(B), Commit

What are the values of a and b under the schedule below

\[\begin{array}{c|c|c|c|c|c|c}
 & T1 & T2 & \text{C} & \hline
\text{R(A)} & \text{W(A)} & \text{R(A)} & \text{W(A)} & \text{R(A)} & \text{W(A)} \\
\text{W(A)} & \text{W(A)} & \text{W(A)} & \text{W(A)} & \text{W(A)} & \text{W(A)} \\
\text{R(B)} & \text{W(B)} & \text{W(B)} & \text{W(B)} & \text{W(B)} & \text{W(B)} \\
\text{W(B)} & \text{W(B)} & \text{W(B)} & \text{W(B)} & \text{W(B)} & \text{W(B)} \\
\text{Commit} & \text{Commit} & \text{Commit} & \text{Commit} & \text{Commit} & \text{Commit} \\
\end{array} \]

Suppose that A=5 and B=2 before T1 and T2; suppose Op_{11}(A) = A+1; Op_{12}(B)=B*2; Op_{21}(A)=2*A; Op_{22}(B)=1+B

Value of A: 12
Value of B: 6

1 pt each
3. (10 pts) Consider the B+ tree index for attribute A of table T. Above each node is a numeric label for the node (1 through 11), which you will use in answering this question.

For each of the following operations, list the nodes (by label), in proper order, that would be locked (shared or exclusive) in strict two-phase locking (2PL) when performing the respective operation. If no nodes need be locked, then write None. Ignore data nodes, which are not shown, and do not list new nodes that might be introduced. Assume that this index for attribute A is used in evaluating each operation below. Write S(label) for a shared lock, and X(label) for an exclusive lock. Note that the same node, A, may be listed twice, first as S(A) then as X(A), for the same operation. Do not show order of lock release (we’ll assume all locks released at end of operation, upon commit). Treat each operation as independent, and not as a sequence of actions. Assume that redistribution is never used.

(a) SELECT T.A FROM T WHERE T.A > 75 : S(1), S(4), S(10), S(11) 2 pts for (a)
(b) UPDATE T SET T.B = T.B + 100 WHERE T.A = 37 : S(1), S(2), S(6) 2 pts for (b)
(c) UPDATE T SET T.A = T.A + 5 WHERE T.A = 29 : S(1), S(2), S(6), X(6) 3 pts for (c)
(d) INSERT INTO T (A, B, C) VALUES (70, 20, 10) : S(1), S(3), S(9), X(9), X(3), X(1) 3 pts for (d)
subtle: X(8) and/or X(10) too so as to update ptr to 9 (ok if missing)