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Abstract 
We describe a novel integration of Planning with 
Probabilistic State Estimation and Execution. The resulting 
system is a unified representational and computational 
framework based on declarative models and constraint-
based temporal plans. The work is motivated by the need to 
explore the oceans more cost-effectively through the use of 
Autonomous Underwater Vehicles (AUV), requiring them 
to be goal-directed, perceptive, adaptive and robust in the 
context of dynamic and uncertain conditions. The novelty of 
our approach is in integrating deliberation and reaction over 
different temporal and functional scopes within a single 
model, and in breaking new ground in oceanography by 
allowing for precise sampling within a feature of interest 
using an autonomous robot.  The system is general-purpose 
and adaptable to other ocean going and terrestrial platforms. 

Introduction  
Autonomous Underwater Vehicles (AUVs) (Yuh 2000) are 
untethered mobile robotic platforms used by the 
oceanographic community. AUVs carry sophisticated 
science payloads for measuring important water properties 
(Ryan 2005), as well as instruments for recording the 
morphology of the benthic environment with advanced 
sonar equipment (Thomas 2006). The extensive payload 
capacity and operational versatility of these vehicles offer a 
cost-effective alternative to traditional ship-based 
oceanographic measurements.   
Existing mission control practices rely on manually 
scripted plans generated a priori that are tedious to 
construct and, more importantly, inflexible to changes 
during mission execution. This prevents in-situ adaptation 
of mission structure essential to improving operation in an 
environment as dynamic and uncertain as the ocean 
(Rudnick and Perry 2003). Ocean exploration also requires 
adaptation to pursue unanticipated science opportunities. 
Safe and effective adaptation requires a balanced 
consideration of mission objectives, environmental 
conditions and available resources. Moreover, as mission 
durations increase, sustained presence in the ocean requires 
the ability to deal with off-nominal conditions.  
We have developed and deployed an onboard Adaptive 
Control System that integrates Planning and Probabilistic 
State Estimation in a hybrid Executive. Estimation, 
Planning, and Execution must be integrated in order to 
inform planning systems with predictions of the most 
likely evolution of the environment.  Probabilistic State 
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Estimation integrates a number of science observations to 
produce a likelihood that the vehicle sensors perceive a 
feature of interest. Onboard planning and execution 
enables adaptation of navigation and instrument control 
based on the probability of having detected such a 
phenomenon. It further enables goal-directed commanding 
within the context of projected mission state and allows for 
replanning for off-nominal situations and opportunistic 
science events.  
We have tested our system in the coastal ocean where 
complex interactions between physical, chemical, 
geological, and biological processes often occur. Our 
studies have targeted two highly unpredictable phenomena 
frequently encountered in the coastal waters of central 
California. (1) Intermediate Nepheloid Layers (INL), (Fig 
1), are fluid sheets of suspended particulate matter that 
originate from the seafloor (McPhee-Shaw 2004, Ryan 
2005). (2) Estuarine plumes are outflows from land-
influenced coastal waterways into coastal waters. In these 
studies our aim is to dynamically adapt the control of an 
AUV after detecting a feature of interest, to take water 
samples within the feature and to modify the survey spatial 
resolution while projecting the impact to the mission plan.  
The novelty of this work is twofold. We integrate 
deliberation and reaction over different temporal and 
functional scopes within a single agent and a single model 
that covers the needs of high-level mission management, 
low-level navigation, instrument control, and detection of 
unstructured and poorly understood phenomena. Secondly, 
we break new ground in oceanography by allowing 
scientists to obtain samples precisely within a scientific 
feature of interest using an autonomous robot.  
The structure of the paper is as follows. We first motivate 
our approach by introducing key concepts of our design. 
We then describe the synthesis of planning and 
probabilistic state estimation within a hybrid executive 
based on these ideas. Results from sea trials in Monterey 
Bay, California are presented next. We conclude with a 
review of related efforts and a discussion of future work. 

 
Fig. 1: INL mapped by AUV in Monterey Bay, California.  

The AUV survey track is shown in gray.   
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Fig. 2: Integrated System Design 

 

Key Concepts 
The Sense-Plan-Act (SPA) paradigm for robot control 
embeds planning at the core of a control loop. Planning is 
typically the dominant cost and can limit the reactivity of 
an agent. Furthermore, the world can (and often does) 
change at a faster rate than the planner can plan. In this 
situation, the agent may thrash if the internal state of the 
plan gets out of synch with the actual state of the world. 
So, while SPA offers a general representational and 
computational framework for control, it is problematic for 
application in systems that require extensive deliberation 
and fast reaction.  
For example, in our domain, an AUV may be tasked with a 
set of objectives to be accomplished over the course of a 
mission. Correctly selecting a feasible subset of these 
objectives, and deciding the order in which they should be 
accomplished has a big impact on the utility of a mission. 
To do this effectively requires deliberation over the full 
temporal extent of the mission. In contrast, instrument 
control decisions require faster reaction times (e.g., 1 
second) but can be taken with a more myopic view of 
implications to the plan without loss in utility. This 
suggests that the control responsibilities of the executive 
can be factored according to how far to look ahead 
(temporal scope), which state variables to consider 
(functional scope) and required reaction time (latency). To 
exploit this we allow the executive to be partitioned into a 
coordinated collection of control loops, each with its own 
internal SPA cycle, distinguished explicitly by these 
parameters above.  
Although partitioning can be a powerful tool to reduce 
planning complexity it is unreasonable to require all 
planning to complete at the rate at which the environment 
is changing. Rather, planning within each control loop 
must be completed at the rate at which it must react to 
provide effective control. In order to allow a uniform 
quantization of time throughout the model, yet permit 
different rates of reaction for different control loops, it 
becomes necessary to allow sensing and planning to be 
interleaved. This allows multiple state updates to occur 
during deliberation, keeping the plan in synch with an 
evolving world state. To support this we decouple 
synchronization of the plan from deliberation over goals 
and allow them to be interleaved. 
Our emphasis on partitioning and synchronization to 
flexibly and efficiently integrate deliberation and reaction 
offers a novel variation of the Sense-Plan-Act paradigm. 
We now describe the application of these ideas to the 
problem of adaptive mission control. 

The Teleo-Reactive Executive 
The structure of the integrated control system is shown in 
Fig 2 implemented as a Teleo-Reactive Executive (T-REX) 
where each component is an instance of a Teleo-Reactor 
(McGann 2008). Three reactors are organized 
hierarchically: a Mission Manager, a Navigator, and a 

Vehicle Control Subsystem (VCS). For purposes of 
discussion the VCS is conceptualized as a functional layer. 
Each reactor receives goals to drive its behavior, sends 
goals to task a lower level reactor, and receives 

observations on system 
state variables of 
interest. For example, 
the Mission Manager 
may receive a goal to 
conduct a volume 
survey in a designated 
region, with 
constraints on finish 
time, depth bounds, or 
spatial resolution 
ranges. It may generate 
a plan at a high level 
that includes steps to 
navigate to a target 
location, turn to a 
heading etc. This high-
level plan considers 
the full temporal scope 

of the mission (e.g., 10 hours). Near-term navigation steps 
of the plan are dispatched as goals to the Navigator. The 
Navigator will plan over a shorter time horizon (e.g., 60 
seconds). Ultimately, mission commands (e.g., ascend, get 
a GPS fix, descend) are generated and dispatched to the 
VCS. Feedback from the VCS takes the form of vehicle 
and command state updates. Fig 2 shows a common 
framework for integrating deliberation and reaction for the 
Mission Manager and Navigator that we call a 
Deliberative Reactor based on the EUROPA2 (Frank 2003) 
constraint-based temporal planning library. 

The Plan Database 
A constraint-based temporal plan is a form of constraint 
network (Mackworth 1992). Algorithms designed to 
operate on the plan during planning are directly exploited 
in execution to propagate state updates, detect conflicts, 
and reason about temporal precedence. A single model is 
used to capture the domain details at all levels of 
abstraction. The model is applied using a propositional 
inference engine triggered by changes in the plan.  The 
dependency structure of the plan is utilized in execution to 
aid recovery from plan failure. The plan, model and plan 
manipulation algorithms are contained in the Plan 
Database. 
Figure 3 illustrates a plan fragment 1432 seconds into 
mission execution. It contains two state variables: the 

 
Fig 3: The plan database at t=1432 
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Fig 5: Synchronizing an observation 

with the plan 

 

 
Fig 4: A constraint network fragment 

 
Fig 6: Sub-goal implied by the model to be planned 

 

SamplerController and the SamplerBehavior. The former 
is an internal state variable of the Navigator, the latter is 
external, reflecting the status of a behavior for sampler 
activation resident in the VCS. Each reactor is the owner of 
its internal state variables, and publishes their values 
during synchronization. Each reactor subscribes to 
observations on its external state variables and must 
reconcile its internal state with these external values. The 
evolution of each state variable is recorded (when in the 
past) and projected (when in the future) in a timeline. The 
SamplerController oscillates between firing and ready. 
Each state includes a bound on the number of samples that 
can be used (e.g., 2), and a record of the number of 
samples taken thus far. The start and end times of each 
state are shown. The figure shows that the 
SamplerBehavior was activated at t=1431 and remained 
active for 1 second. The transition to the Inactive  state is 
concurrent with the transition of the SamplerController to 
a ready state. Notice that this parameter has incremented 
after the controller has triggered. Finally, observe that the 
end time of the ready state is unbound, since the 
SamplerController may remain in a ready state 
indefinitely. 
To illustrate these ideas further, consider the model rule 
below applied to all values of the SamplerController state 
variable of the predicate Holds. 

A fragment of 
the partial plan 
where this rule 
applies is 
shown in Fig. 
4. There are 
two values as 

before. 
However, each 
is now depicted 

as a token that acts to constrain the set of values a state 
variable may hold over some temporal extent. All tokens 
have start and end variables. Different predicates may 
contain different parameter variables. Bi-directional arrows 
indicate constraints between variables in accordance with 
the model rule above. The implication from the model is 
reflected by the directed arrow from token a to b. Only the 
end variable of b is unbound in this example; all other 
variables were bound to singletons as the plan is executed. 
In general, the ability to leave parts of the plan flexible 
supports a least-commitment approach to planning where 
only necessary restrictions are imposed allowing final 
details to be refined at or close to the point of execution. 

Embedding the Plan Database in Execution 
The Plan Database is embedded in the control loop by 
synchronizing observations with the plan and dispatching 

the plan as goal-requests to the responsible reactor (e.g., 
the VCS). Dispatching the plan is detailed in (McGann 
2008). The goal of synchronization is to produce a 
consistent and complete view of the plan at the execution 
frontier. Observations are received for external state 
variables. For example, say that SamplerBehavior is an 
external state variable whose value can be either Active or 
Inactive. A message from the VCS indicating that the 
behavior has completed becomes a 
SamplerBehavior.Inactive token in the plan database. Fig 5 
illustrates the situation before and after this observation is 

synchronized. 
The observation 
is received at 
t=1432. The last 
observed value 
for the 
SamplerBehavior 
was active. This 
new observation 
is resolved by 
insertion into the 
plan, resulting in 
a restriction of 
the end time of 
the active state.  

The connections in the underlying constraint network 
propagate the implications of this restriction throughout the 
partial plan. This process is repeated for all observations 
and for all implications that impact the execution frontier. 
In the event that the plan is not consistent with the 
observations, the plan is discarded, and the relaxed 
execution frontier is synchronized with observations.  

The Planner 
Automated planning refines an incomplete plan into one 
with sufficient detail to support execution. Planning and 
execution are interleaved seamlessly while operating on a 
shared database. Planning is broken down into atomic 
steps, where each step leaves the database in a consistent 
state. The planner is invoked one step at a time, in order to 
permit synchronization to take place. Updates applied 
during synchronization are visible in the next step of the 
planner so further refinement of the plan will account for 
the changing world. The planner is invoked whenever 
flaws occur in the plan. Flaws stem from either externally 

∀a ∈ Holds ⇒ ∃ b ∈ Holds  
 a.start < a.end  ^ a.end = b.start 
 a.max = b.max ^ b.count = a.count +1 
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a) HMM Execution trace b) State estimation timelines  
Fig 8: Similarity between HMM and Timeline 

Representations 

 
Fig 7: The HMM used by the state estimator. 

 

requested goals (e.g., from another reactor, or a user-driven 
input) or implied by the model and feedback from the 
environment.  
For example, consider the partial plan depicted in Fig 6. 
The Sampler Controller timeline is transitioned to trigger 
the sampler, based on observations made from the 
environment. In order to actually trigger the instrument, the 
model requires the SamplerBehavior to be Active. 
Consequently, the model will introduce a sub-goal for the 
SamplerBehavior for the planner. Thus, while there is a 
clear separation between synchronization and deliberation, 
the flow of information through the shared partial plan 
structure provides a continuous integration of state as they 
are interleaved. 

State Estimation 
To enable the AUV to adapt its mission based on feature 
detection, we employ a Hidden Markov Model (HMM) 
(Rabiner 1986). To execute this HMM, we encode it 
directly within the unified representational and 
computational framework of a Deliberative Reactor 
allowing for a seamless integration of state estimation 
through synchronization and planning. The sensor data we 
use depends on the feature of interest; for instance we use 
two optical sensor readings for INL detection. HMMs are 
useful since the stochastic nature of these models can 
correlate the type of features we want to detect with the 
sensor observations. And such models can also be learned 
using past mission data (Fox 2006).  

Fig 7 
shows two 

hidden 
states: in - 

expressing 
that the 
AUV is in 
the feature 

of interest – and its alternate out. The model specifies the 
set of probabilities of observation ci given state si, p(ci | si),  
and the probabilities of transition from s’ to s, p(s|s’). In 
our implementation the probabilities of transition are fixed 
empirically ((Fox 2006) shows how can they be learned). 
This model is used to compute the new probabilities 
{p(in)t, p(out)t} using (1): 

p(st) = at*p(ct|st)*Σ s’ ∈ {in, out} p(st|s’t-1)*p(s’t-1)   (1) 
with at as a normalization factor such that : 

      Σs ∈ {in, out} p(st) = 1        (2) 
Equations (1) and (2) encapsulate HMM based belief. In so 
doing, they express a constraint between current estimated 
state, the last observation and the previous estimated state. 
Fig 8a shows an HMM execution trace representation 
where arrows represent the dependence between states and 
observations. Fig 8b shows the timelines managing our 
state estimation where arrows stand for constraint 
propagation between tokens, indicating a strong similarity 
between the two.  

The model is applied in execution as follows: 
1. Sensor data is classified by the VCS so that it 

computes the corresponding cluster as in (Fox 2007). 
This cluster value is provided as an observation on 
the Cluster timeline to the Navigator.  

2. The observation is inserted in the plan during 
synchronization. 

3. The implications of this observation on the 
Estimation timeline, expressed in the model, are 
applied and resolved during synchronization. 
Constraints then propagate the probability 
distribution according to (1). 

At this stage we have the estimation deduced from the 
HMM. The transition from the estimation to decision 
making can then be done directly. For instance to decide 
when to take a water sample the steps are: 
4. If the probability of being within a feature of interest 

(such as an INL) dominates the distribution and other 
sampling conditions are satisfied (e.g spatial 
constraints dispersing sampling locations), then a 
sample should be taken. This rule is evaluated during 
synchronization as the constraint network is 
propagated. 

5. Should this rule fire, a new token will be generated to 
transition the SamplerController into a firing state. 
This triggers a new deliberation phase to resolve the 
implications of this transition (i.e., select a sampling 
canister, and generate an action to fire it).  

We use a similar process for altering the spatial resolution 
of the survey using the HMM to compute the probability of 
having seen the feature during the last vehicle transect. 
This in turn is used to determine the spatial separation 
between the previous and next transect.  

Results 
The evaluation of our system focusses on 2 key issues: the 
efficacy of the adaptive behaviour for science and the 
efficiency of the integration. The first requires us to test 
that the system is able to predict the occurence (or absence) 
of the pheonomena and adjust instrument and navigation 
control accordingly. With the second, we are concerned 
with reactivity in a real-world environment. 
Our results are based on extensive simulations and multiple 
sea trials over a period of a year, culminating in science 
driven surveys. The surveys applied the integrated system 
onboard a Dorado AUV, operating at a speed of 1.5 m/s, to 
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Fig 9: a) AUV survey volumes (blue) within the context of 
regional seafloor and land topography. b) INL optical 
backscattering intensity (x10-3 m-1 at 676 nm).  c) Plume 
detection probability (relative).  Water sample locations 
are indicated in b) and c).  
 

detect and sample an INL in Monterey Canyon and a 
coastal plume caused by outflow from the Elkhorn Slough 
(Fig 9a).  Water sampling employed a system developed 
for AUV applications (Bird 2007). INL intensity, indicated 
by optical data, is shown in Fig 9b along with locations of 
water samples.  Plume probability computed by the HMM 
is shown in Fig 9c along with the water sample locations. 
In both missions, our system was able to detect the feature 
of interest, adapt the resolution of the survey consistent 
with the finding (or lack thereof), and sample the feature. 
In both missions the state estimator correctly excluded all 
measurements that did not correspond to the feature of 
interest, with no associated triggering of the water-sampler. 
For the INL survey, the system generated and dispatched a 
total of 188 commands over a period of 4 hours over the 
canyon axis. Using conventional approaches, the operator 
would have needed to specify all commands sent to the 
VCS a priori without a guarantee of having sampled with 
the precision expected for science. 
For these sea trials, our system included 28 timelines 
distributed across 3 reactors. The deliberative reactors ran 
on a 367 MHz EPX-GX500 AMD Geode stack using Red 
Hat Linux, with the VCS functional layer running on a 
separate processor. Computational analyses of both these 
runs indicate that approximately 20% of the time, the CPU 
load was at about 5%. While the agent was always 
synchronizing at 1Hz, and receiving observations from the 
VCS at that rate, there was very little change in the plan 
otherwise so the cost of synchronization is low with little 
deliberation. Approximately 40% of the time, the CPU 
utilization was around 10% when actively executing the 
HMM. Once the vehicle was within the feature, the load 
peaked at 25% and was dominated by the cost of 
synchronization to evaluate spatial constraints and sampler 
availability. The average CPU cost of deliberation was less 
than 1% and 90% of the time there was no deliberation. 

This low number shows that the flexible partial plan 
representation is incrementally refined and extended 
throughout the mission without any need to re-plan. Where 
re-planning was required, it was localized within the 
Navigator and only impacted a small time horizon 
validating our information model for partitioning of 
control. 

Related Work 
Most plan execution techniques are coupled with state 
estimation for fault detection isolation and recovery 
(FDIR). A classic example of such an effort was the 
Remote Agent Experiment (RAX) (Muscettola 1998 and 
Rajan 2000) where onboard FDIR was used to trigger 
replanning and projection of spacecraft state. RAX had 
three distinct components with their own models with 
correspondingly significant design and integration issues 
(Bernard 2000).  Like RAX, the Autonomous Sciencecraft 
Experiment (Chien 2005) and other 3T architectures (Gat 
1998) did not have a unified framework but relied on 
loosely coupled systems with distinct representations.    
Other efforts have focused on deriving models of time 
series of state evolution of structured phenomena to build 
Hidden Markov models of the environment (Lenser 2005) 
even if the architecture does not explicitly deliberate as 
outlined in our work. In (Sellner 2007) plans with durative 
action can be repaired inline to deal with execution 
anomalies using probabilistic approaches. Execution in this 
work is however simulated within a less flexible plan 
representation, while dealing with kernel density 
estimations for duration prediction.  
IDEA (Muscettola 2002, Finzi 2004) is a hybrid executive 
that integrates planning and execution in a single 
representational and computational framework with a 
unified declarative model. Our approach is similar in its 
formulation of a timeline-based representation and in its 
use of constrained-based temporal planning to implement a 
control loop. In contrast to IDEA, we separate 
synchronization from deliberation. We further allow 
synchronization to be interleaved with deliberation 
permitting reaction times to extend to multiple time steps if 
necessary. Moreover, the partitioning structure we provide 
automatically applies rules for synchronization and 
dispatch to co-ordinate among control loops and resolve 
conflicts. These common patterns must be encoded 
explicitly in an IDEA model, which we believe is 
unnecessary and cumbersome. 
Our work is further distinguished in the underwater domain 
where popular techniques for AUV control have relied on 
reactive approaches; see (Carreras 2006) for a survey. 
ORCA (Turner 1991) and MCS (Palomeras 2007) while 
integrating deliberation onboard do not deal with state 
estimation or durative action representation. In the case of 
ORCA, the case-based planner appears to have been used 
in simulation only. Our work is the first integrated 
Planning, Execution and Estimation framework deployed 
for actual oceanographic exploration. 
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Conclusions and Future Work 
Our field results to date are encouraging. Using a unified 
representational and computational framework for 
Estimation, Planning, and Execution has proved effective 
for adaptive mission control. The integration of such 
capabilities has resulted in precise observation and 
sampling of dynamic processes that had not been done to 
date. The scalability suggested by the CPU load data while 
promising, requires more rigorous empirical evaluation. 
The focus of our effort going forward will be in two key 
areas: to investigate approaches for online learning and 
longer-term projection for state estimation and to 
investigate adaptive sampling within an information 
theoretic framework. We expect this will allow us to 
qualitatively characterize a dynamic feature in 4D (space 
and time) by allowing the vehicle to spatially map and 
sample the feature over an extended period of time. Our 
longer-term vision is to extend our framework to control a 
diverse range of mobile and immobile robotic assets that 
can collaboratively help quantify a range of processes in 
the ocean. 
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