Game Theory and Computational Economics in the Environment

Applications and Research

Jesse Roberts

About Me

- * Background
- Research Interests

Useful Frameworks for Studying Behavior

- * Game Theory
- * Computational Economics / Evolutionary Game Theory

Thinking In Games

- * What is a game?
- Players, Information + Actions, Payoffs
- * What is Game Theory?
- * How is it useful to recognize and evaluate interactions as games?

My Work in Game Theory

- Addressing the Traveler's Dilemma Paradox
- Understanding Rural Opposition to the Reintroduction of Wolves

Background

- * Eastern Red Wolves
- Indigenous to the southeast
- * Federally Protected Species
- * Reintroduction is Mandated by Federal Court
- Reintroduction Heavily Supported in Urban Communities / Heavily Opposed in Rural Communities
- * Grey Wolves
- * Indigenous to the North and West
- * Federally Protected Species
- * Reintroduction Heavily Supported in Urban Communities / Heavily Opposed in Rural Communities

Understanding the Behavior

- * Behavior
- * Sharp Rural/Urban Divide Regarding Wolf Reintroduction
- * Can we explain this behavior using Game Theory?
- * Who are the players?
- * What actions/information is available?
- * What are the payoffs?

The Reintroduction Game

- * Players
- * Rural Voters, Urban Voters, Nature
- * Actions
- * Vote for Reintroduction, Vote against Reintroduction
- * Payoffs
- * Deterministic small positive for reintroducing (urban and rural)
- * Deterministic medium negative for not reintroducing (urban and rural)
- * Stochastic large negative for reintroducing (rural)
- Interesting Notes
- Asymmetric Game, Introspective Oneshot, Overestimation of negative payoff and probability

Muddying the Waters

- * Behavior Rural and Urban Communities Support the Reintroduction of Elk
- * The Game is Unchanged
- * Players
- * Rural Voters, Urban Voters, Nature
- * Actions
- * Vote for Reintroduction, Vote against Reintroduction
- * Payoffs
- Deterministic small positive for reintroducing (urban and rural)
- Deterministic medium negative for not reintroducing (urban and rural)
- Stochastic large negative for reintroducing (rural)

Future Work

* Reformulate the Reintroduction Game to explain discriminating between ungulates and predators.

Questions We can't Ask with Game Theory

- * How did this behavior develop?
- * How hard would it be to change the behavior? (stability)
- Is it accurate to assume the players are rational?

Computational Economics

- Multi-Agent Dynamic Model
- * Each agent has some learning ability
- * Learns to mimic the behaviors of other agents
- Will deviate from the best observed response probabilistically
- * Why is it useful to analyze games dynamically?
- * Observe the development of social norms and emergent behaviors
- * Analyze the stability of the behavior
- Doesn't Expect Rational use of Information

Future Work

- * Future Work
- * Should the Reintroduction Game be different for ungulates and predators or is the difference irrational?
- * If irrational, why does experience with coyotes not generalize to expectations of wolves?
- How did the rural/urban dichotomy develop? (What computationally underlies the development of this emergent behavior)
- * How stable is the rural opposition?
- Could it be replaced easily or nudged out of stability?
- Thinking Bigger
- * How might strong bipartisan divide develop as an emergent behavior?