Research Statement

1. INTRODUCTION AND BACKGROUND

Since Hill, Hopkins, and Ravenel’s solution to the Kervaire invariant one problem [HHR16], there
has been a tremendous amount of work in developing a deeper understanding of the algebra under-
lying equivariant stable homotopy theory. My work builds on several components of this program
through the development and application of tools from equivariant category theory. These methods
have previously led to developments in the study of equivariant symmetric monoidal structures and
provided a solution to a conjecture of Blumberg and Hill.

In ongoing projects, I am using ideas and results from my prior work to form new connections
with other fields of mathematics. One of my projects builds on ideas of Merling, who developed a
genuine equivariant K theory for rings with action by a finite group G [Mer17]. Recently, I have
extended this to an equivariant generalization of rings known as Green functors. This construction
should have applications computations in K theory related to number theory and topology.

One can view K theory as a machine which produces topological data from categorical input.
There is still more to understand about the ways that equivariant structures proceed through
translations from categorical to topological information. In other ongoing projects, I am studying
these phenomena in the contexts of stable homotopy theory and partition complexes. Both of these
projects tie in to the theory of equivariant operads which index the various algebraic structures in
equivariant stable homotopy theory.

1.1. Background. Equivariant homotopy theory is the study of homotopical invariants, like coho-
mology, of spaces with an action by a fixed group G. Since not every space admits a non-trivial
action by G, one should expect the class of spaces with G-action to systematically admit interesting
structures not present for all spaces. This extra structure endows invariants of spaces with G-action
with additional data and the study of the resulting algebraic structures is known as equivariant
algebra. Equivariant algebra occupies an important place in algebraic topology and played a crucial
role in Hill, Hopkins, and Ravenel’s solution to the Kervaire invariant one problem [HHR16].

The most fundamental object in equivariant algebra is the Mackey functor. Roughly, a Mackey
functor M for a finite group G consists of a collection of abelian groups M (H) indexed on the
subgroups H < G. These groups are connected by a system of additive operations which provide
computational power. Mackey functors were originally defined by Dress to axiomatize various struc-
tures that arise in representation theory [Dre73]. They provide a useful framework for approaching
problems in topology and algebra when a finite group is acting on objects of interest. The connection
to equivariant homotopy theory comes from the following example.

Ezxample 1.1. Let X be a space with action by a finite group G and let E be a genuine G-spectrum,
i.e. a cohomology theory for spaces with G-action. For every n, there is a Mackey functor E™(X).

Mackey functors play a role in equivariant homotopy theory analogous to the role of abelian
groups in ordinary algebraic topology. The use of Mackey functors in this way has its roots in
work of Bredon, and was fully realized by a program of work due to Peter May and collaborators
[Bre67, LMMS81, May96]. Genuine equivariant cohomology theories are an alternative to the older
Borel cohomology theories and have certain technical advantages. For example, the genuine theories
satisfy a version of Poincaré duality for all compact G-CW complexes. By contrast, the Borel
cohomology theory only satisfies Poincaré duality for G-CW complexes with free G-action. The
duality of genuine theories was utilized, for example, in Manolescu’s disproof of the triangulatation
conjecture in high dimensions [Man16].

While Mackey functors are abelian groups in the equivariant setting, there are several general-
izations of rings. A Green functor is (essentially) a Mackey functor R such that R(H) is a ring for
all H < G. A Tambara functor S is a commutative Green functor with additional multiplicative
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operations known as norm maps. Norm structures were first studied in connection to equivariant
stable homotopy theory by Greenlees and May, and then more systematically by Hill, Hopkins, and
Ravenel [GM97, HHR16]. The norm operations of a Tambara functor provide significant advantages
when performing computations, and were a key ingredient in Hill, Hopkins, and Ravenel’s seminal
work on the Kervaire invariant one problem.

If F is a genuine G-ring spectrum (i.e. a multiplicative equivariant cohomology theory), and
X is any G-space, then E°(X) is naturally a Tambara functor, and hence also a Green functor.
More generally, Angeltveit and Bohmann have shown that the collection of Mackey functors E*(X)
fit into a graded Tambara functor [AB18]. Other examples of Green and Tambara functors arise
naturally from group representation rings, Grothendieck—Witt rings, and Galois field extensions.

2. PRIOR AND ONGOING WORK

2.1. Results of prior work. The difference between Tambara and Green functors is rooted in
categorical considerations. The category of Mackey functors has a symmetric monoidal product,
called the box product, and the monoids are exactly the Green functors. To describe Tambara
functors categorically, one considers an equivariant symmetric monoidal structure, in the sense of
Hill and Hopkins, on the category of Mackey functors [HH16]. The Hoyer—-Mazur theorem states
that the category of Mackey functors admits such an equivariant symmetric monoidal structure,
and Tambara functors are exactly the equivariant commutative monoids [Hoy14, Maz13, HM19|.

In recent work, Blumberg and Hill study Tambara functors which are bi-incomplete, in the sense
that they only have some of the usual additive and multiplicative operations [BH22|. These ob-
jects arise in the context of equivariant stable homotopy indexed on incomplete G-universes. Such
G-universes provide an important technical groundwork for constructions in equivariant stable ho-
motopy theory and arise naturally in geometric situations [BH21, Man16]. Other examples of bi-
incomplete Tambara functors come from localizations in equivariant algebra and topology [HH14].

The data of a bi-incomplete Tambara functor is indexed by combinatorial objects known as a
transfer system. Every bi-incomplete Tambara functor determines a pair of transfer systems: one
for additive operations and one for multiplicative operations. Just as multiplication distributes over
addition in a ring, the multiplicative operations of a bi-incomplete Tambara functor interact with
the additive operations in interesting ways. Accordingly, only suitably compatible pairs of transfer
systems can be used for indexing bi-incomplete Tambara functors. Unfortunately, checking whether
two transfer systems are compatible is difficult from the definitions. While studying bi-incomplete
Tambara functors I produced an efficient method for checking the necessary compatibility.

Theorem 2.1 (Theorem 4.10 of [Cha22]). Compatibility of a pair of transfer systems is equivalent
to an easily-checked combinatorial condition.

Underlying every bi-incomplete Tambara functor is an incomplete Mackey functor — a Mackey
functor missing some of its additive structure. Incomplete Mackey functors appear in topology as
unstable equivariant homotopy groups [Lew92|. Bi-incomplete Tambara functors should be thought
of as ring objects in incomplete Mackey functors and I recently made this analogy precise, answering
a conjecture of Blumberg—Hill by proving a generalization of the Hoyer—-Mazur theorem.

Theorem 2.2 (Proposition 6.7 and Theorem 8.4 of [Cha22|). Any category of incomplete Mackey
functors admits an equivariant symmetric monoidal structure whose equivariant monoids are the
bi-incomplete Tambara functors.

The models of equivariant symmetric monoidal structures used in Theorem 2.2 are the symmetric
monoidal Mackey functors defined by Hill and Hopkins [HH16, HM19]. These can be thought of
as Mackey functors in symmetric monoidal categories: a symmetric monoidal Mackey functor C
consists of symmetric monoidal categories C(H) for every subgroup H < G. The categories C(H)
are connected by strong monoidal functors that mirror data of ordinary Mackey functors. These
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functors are subject to a rather large amount of coherence data. In my thesis, I prove this coherence
can be repackaged as a pseudofunctor which takes values in the 2-category of categories.

Theorem 2.3. The symmetric monoidal Mackey functors of [HH16] are equivalent to product pre-
serving pseudofunctors from the Burnside category A® to the 2-category of categories.

Packaging the coherence this way allows for efficient construction of examples, such as that of
Theorem 2.2. A more subtle advantage of Theorem 2.3 is that our pseudofunctors are landing in
the 2-category of categories, instead of symmetric monoidal categories. Valuing our pseudofunctors
in a less structured 2-category allows us to generalize Tambara functors to this context.

Definition 2.4. There is a category P such that Tambara functors are exactly product preserving
functors from PY into the category of sets. We define a symmetric monoidal Tambara, functor to
be a pseudofunctor from P& to the 2-category of categories.

Proposition 2.5. The symmetric monoidal (incomplete) Mackey functors of Theorem 2.2 extend
to symmetric monoidal (bi-incomplete) Tambara functors.

Theorem 2.3 is connected to the study of genuine G-spectra by the following theorem of Guillou
and May.

Theorem 2.6 (|[GM11], also see |[Barl7|). The category of genuine G-spectra is Quillen equivalent
to the category of “spectrally enriched functor” from AC to the category of ordinary spectra. Such
functors are called spectral Mackey functors.

To produce a spectral Mackey functor from a symmetric monoidal Mackey functor, it suffices
to have a construction which produces a spectrum for each of the constituent symmetric monoidal
categories; this is precisely the job of Segal’s K theory machine [Seg74, EMO06].

Proposition 2.7 (c.f. [BO15,MM19|). Every symmetric monoidal Mackey functor C determines a
genuine G-spectrum K (C) called its algebraic K theory. A similar construction can be made when
replacing symmetric monoidal categories with Waldhausen categories.

Goal 2.8. Study the multiplicative structure of K (C).

Multiplicative structures on G-spectra are more subtle than ordinary spectra. In [GMI11], the
authors remark it is not known when a spectral Mackey functor is a commutative G-ring spectrumni.
This poses an obstacle to computational methods in equivariant stable homotopy theory. The
obvious guess is that one should expect commutative ring G-spectra to be modeled by spectral
Mackey functors which are commutative monoids with respect to the Day convolution product of
functors. This guess, however, seems to be incorrect because we can construct counterexamples
using Proposition 2.7. To show these counterexamples are not ring spectra, we compute that the
zeroth homotopy group is not a Tambara functor.

These counterexamples suggest that what is missing from our initial guess is the existence of norm
data in our spectral Mackey functors. At the categorical level, an approach to keeping track of norms
is through the categorical Tambara functors of Definition 2.4. T conjecture that if C is a categorical
Tambara functor then its K theory is a ring G-spectrum. From a theoretical standpoint, one can
view this conjecture as a form of the Hoyer—Mazur theorem that identifies equivariant commutative
monoids in G-spectra with “spectral Tambara functors.” As a starting point for this project, I am
working to make the definition of spectral Tambara functors precise.

2.2. Algebraic K Theory of Green functors. In joint work with Maxine Calle and Andres Mejia
we are studying a new construction which assigns a genuine G-spectrum to each Green functor which
I call Green functor K theory. The definition of Green functor K theory proceeds by assigning a
Mackey functor of Waldhausen categories to each Green functor, and taking its algebraic K theory
as in Proposition 2.7 to produce a genuine G-spectrum. The constituent Waldhausen categories of
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this Mackey functor are categories of finitely generated projective modules over the Green functor
S, and other Green functors derived from S.

Examples of Green functors come from rings with G action. Every ring S with action by G
determines a fived point Green functor FP(S) defined by FP(S)(H) = SH. Merling has defined a
separate equivariant K theory for rings with G-action and our constructions are often the same.

Theorem 2.9 (|CCM]|, in preparation). Let S be a ring with action by a finite group G. If |G| is
invertible in S, then there is an equivalence K(FP(S)) = Ky (S), where Ky is Merling’s K theory.

The proof of Theorem 2.9 proceeds by showing there is actually an equivalence between categories
of finitely generated projective modules over S and FP(S). When the order of G is not invertible,
the difference between these constructions can be understood in terms of the modular representation
theory of the group G. We also conjecture the following splitting theorem.

Conjecture 2.10. For any G-Green functor S, there is a splitting of G-spectra:

K(8)% = \/ K(Su)
(H)

where the wedge runs over representatives of the conjugacy classes of subgroups of G, and Sy is a
particular quotient of the ring S(G/H).

This splitting mirrors a similar result in equivariant A theory [MM19,BDal7]. We have been
able to prove the analogous result when K theory is replaced with G theory. The G theory splitting
generalizes work of Greenlees, and its proof leverages a filtration of the category of Mackey functors
due to Lewis [Gre92, Lew80]. The most immediate goal for this project is to adapt this argument
to prove Conjecture 2.10. Other goals of this project are outlined below.

Goal 2.11. Perform computations of Green functor K groups.

Computations of K groups are famously difficult, but in some examples it seems possible to
perform computations for K theory of Green functors by leveraging existing knowledge. A first
step is to consider the fixed point Green functors of finite fields with Galois actions. As observed
by Merling, and in view of Theorem 2.9, the K theory of these Green functors is related to the
Quillen—Lichtenbaum conjecture. Computations for these Green functors are particularly accessible
since Quillen computed the algebraic K theory of finite fields [Qui72|. Additionally, modules over
these Green functors are particularly simple since, by the observation of Nakaoka [Nakl12|, these
fixed points Green functors are “Tambara fields.” Beyond finite fields, we hope to leverage the
splitting of Conjecture 2.10 to perform computations from existing knowledge of the K theory of
rings. These computations would be furthered significantly by successful work on Goal 2.8.

Goal 2.12. Interpret low dimensional K-groups via algebra and topology.

Low dimensional K groups are particularly interesting because they can often be understood
in simpler terms than as homotopy groups of a space. It would be illuminating to make sense
of these in the equivariant setting to develop, for instance, a more complete picture of matrices
and determinants for Green functors. These low dimensional groups are also related to topology
via constructions such as Wall’s finiteness obstruction, Whitehead torsion, and the Waldhausen
linearization map. Understanding how Green functor K theory fits into the equivariant versions of
these stories would provide a topological interpretation of the constructions.

Goal 2.13. Construct an equivariant Dennis trace map.

Classically, the K theory and topological Hochschild homology of rings are related by the Dennis
trace map, which has been utilized to great effect in computations of algebraic K theory [DGM13].
Topological Hochschild homology for Green functors, and G-ring spectra, has already been studied
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in the literature [BGHL19, ABGT18, AGH"22a, AGH"22b|. It would be useful for our theoretical
understanding to have a Dennis trace in this setting and existing computations of THH could be
leveraged to shed light on our own. We expect the construction to proceed essentially the same as
it does classically.

2.3. Partition complexes and equivariant operads. Let n be a set with n elements and let
P(n) denote the collection of non-trivial partitions of n. Since P(n) is a poset, we can form a
simplicial complex |P(n)| whose vertices are the elements of P(n) and whose higher dimensional
simplices correspond to chains in the poset. This simplicial complex is the classifying space of the
category underlying P(n). The space |P(n)| is homeomorphic to the space of trees whose leaves are
labeled by the set n. This space has been studied extensively and has connections to Lie algebras,
operad theory, and Goodwillie calculus [Rob04, AD01, HM21, Fre04].

In ongoing joint work with Bergner, Bonventre, Calle, and Sarazola we are studying the properties
of partition complexes that arise by replacing the set n by a finite G-set. We begin by reframing a
partition of n as a surjective map n — k where the the components of a partition correspond to the
preimages of points in k. We define an equivariant partition of a G-set A to be either a surjective
map A — k, or a surjective, equivariant map A — B where B is another G-set.

Our equivariant partitions lead to two different simplicial complexes which we denote |P(A)| and
|PE(A)], respectively. The complex |P(A)| has an action by G and |P%(A)] is recovered as the fixed
points of this action.

Theorem 2.14 (|[BBCT|, in preparation). For any subgroup H < G, there is a homotopy equivalence
between |P(A)|H, the H-fized points of |P(A)|, and [P (A)).

Since |PH(A)| is the classifying space of a category, we are able to access information about the
fixed points of |[P(A)| algebraically. In particular, if G = ¥,, and A = n, we are able to provide new
proofs of some results of [AB21] on the fixed points of the symmetric action on |P(n)|. These fixed
points are related to computations of Bredon cohomology, see [ADL16] for a full discussion.

Leveraging an understanding of how equivariant structures proceed through the classifying space
construction, we extend work of Heuts and Moerdijk to our setting [HM21].

Theorem 2.15 (|[BBC™], in preparation). There is a G-homotopy initial map from P(A) to the
space of equivariant trees labeled by A. This map is, in particular, a G-homotopy equivalence.

In the course of proving Theorem 2.15 we develop general tools for equivariant homotopy theory.
Among other things, we prove an equivariant generalization of Quillen’s Theorem A. Additionally,
we offer a different perspective on related work, providing new proofs of some results of [AB21].

Goal 2.16. Study equivariant operads using Theorem 2.15 and Theorem 2.1.

Non-equivariantly, the relationship between partition complexes and trees provides a connection
to operads via the Boardman—Vogt W-construction [BV73]. Equivariantly, we expect there to be
a similar story relating our partition complexes and the genuine equivariant operads of Bonventre
and Pereira [BP21]. The homotopy theory of these operads is more subtle than it is in the non-
equivariant setting, and is related to the poset of transfer systems I studied in Theorem 2.1.

Important examples of equivariant operads are the linear isometries operads which parameterize
multiplicative structures on G-equivariant ring spectra. Rubin has in some cases classified the kinds
of transfer systems that can arise from the related equivariant Steiner operads. A classification of
those determined by linear isometries operads remains unknown [Rub21]. The transfer systems of
linear isometries and Steiner operads are naturally compatible in the sense of [BH22|. Reframing
this compatibility in combinatorial terms as in Theorem 2.1 could provide an avenue for classifying
the linear isometries operads via their compatibility with the Steiner operads. Such a classification
would improve our understanding of multiplicative equivariant structures.
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