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Abstrac t 

Conceptual clustering has proved an effective means of summarizing data in an understandable manner. 
However, the recency of the conceptual clustering paradigm has allowed little exploration of conceptual 
clustering as a means of improving performance. This paper describes results obtained by COBWEB, a 
conceptual clustering system that organizes data so as to maximize inference abilities. The performance 
task for COBWEB (and implied for all conceptual clustering systems) generalizes the performance 
requirements typically associated with the better known task of learning from examples. Furthermore, 
criteria aimed at improving inference seem compatible with traditional conceptual clustering virtues 
of conceptual simplicity and comprehensibility. 

1· Introduction 

Machine learning is concerned with improving performance through automated 
knowledge acquisition and refinement. This popular view is reflected in Figure 1 (Di-
etterich, 1982). Learning organizes observations into a knowledge base tha t facilitates 
performance with respect to some task. Assumptions about environment, knowledge 
base, and performance all impact the design of machine learning algorithms and de-
lineate general learning tasks. For instance, learning from examples assumes that 
objects (states, events, etc.) come preclassified with respect to a number of ' teacher' 
defined classes (e.g., 'positive' vs. 'negative'). Under this environmental assumption 
a learner induces concepts for each object class. In every learning from examples 
system, performance reduces to matching previously unseen 'objects' against induced 
concepts, thus identifying their class membership (e.g., as a 'positive' example). 

In contrast to learning from examples, this paper concentrates on the more re-
cently defined task of conceptual clustering (Michalski, 1980). Conceptual clustering 
systems accept object descriptions and produce a classification scheme over the ob-
served objects. These methods do not require a ' teacher' to preclassify objects as in 
learning from examples, but use an evaluation function to find classes with 'good' 
concept descriptions. Michalski and Stepp (1983) originally equated 'good' concepts 
with those that were simple or otherwise (human) comprehensible. However, this 
paper takes a different tack - 'good' concepts are those that maximize the number 
of predictions that can be made about objects of the environment. While conceptual 
clustering has not typically been associated with a performance task that improves 
with learning, the bias of maximizing inference ability implies such a task. 
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Figure 1. A model of learning and performance 

This paper adopts the view that classification schemes produced by conceptual 
clustering systems are useful in prediction of missing properties of previously unclas-
sified objects - inference is a by-product of classification. This generic performance 
task clarifies and generalizes the application of clustering (and related) techniques in 
the context of expert systems (Cheng and Pu, 1985; Fu and Buchanan, 1985), and is 
consistent with discussions of problem-solving as classification (Clancey, 1984). The 
performance task associated with conceptual clustering can also be contrasted with 
that of learning from examples. While learning from examples seeks to maximize 
correct inference with respect to a single ('teacher' selected) 'attribute' (i.e., class 
membership), conceptual clustering systems can be viewed as maximizing a proba-
bilistic average of correct prediction across many attributes. 

This paper examines results obtained from COBWEB, a system for conceptual 
clustering that builds classification trees that facilitate inference. COBWEB's suc-
cess at prediction is compared to a reconstruction of Quinlan's (1983) learning from 
examples program, ID3. Finally, it is argued that criteria favoring inference are 
compatible with criteria traditionally used in conceptual clustering relating to the 
understandability of derived concepts. 

2. An Overview of COBWEB 

COBWEB transforms a collection of object descriptions into a classification tree, 
where objects are described in terms of nominal attribute - value pairs like the animal 
descriptions of Table 1. Over this data, the tree of Figure 2 was formed. In tree 
construction, class decomposition at each tree level is guided by a measure of partition 
quality. COBWEB uses category utility (Gluck and Corter, 1985), a measure that 
favors object set partitions that maximize inference ability. However, category utility 
was originally developed (and validated) as a means of predicting basic (or preferred) 
category effects observed during human classification. 

The definition of category utility can be motivated by appealing to a well-known 
biological taxonomy. One reason the partitioning of animals into mammals, birds, 
fish, etc. makes sense is that knowing an Object' is in one of these subclasses (e.g., 
a mammal) raises the expected number of predictions that can be made about that 
'object' (e.g., it has hair, is warm-blooded, etc.), an advantage reflected by 
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Ta We 1. Animal (object) descriptions 

Name 1 

'mammal* 
'bird* 
'reptile* 
'amphibian* 
'fish' 

1 BodyCover 

hair 
feathers 
cornified-skin 
moist-skin 
scales 

HeartChamber 

4 
4 
imperfect-4 
3 
2 

BodyTemp 

regulated 
regulated 
unregulated 
unregulated 
unregulated 

Fertilization 

internal 
internal 
internal 
external 
external 

animals 

mammals/bird') 'reptile' Pamphibian/fish 

'mammal' 'bird' 'fish' 'amphibian' 

Figure 2. A classification tree over animal descriptions 

2£(# of correct predictions | mammal) - E(# of correct predictions). 

Gluck and Corter formalize this expression for attribute - value (Ai = Vij) represen-
tations in terms of conditional probabilities such as P(A{ = l^|mammal) and base 
rate probabilities, P(A{ = V{j). For an object set partition, {Ci ,C2 , . . . ,C n } , category-
utiUty({C1,C2, . . . ,Cn}) = 

EUP(Ck)[EiΣ,·P(Aj = Via\Ckf -EiΣ,-P{M = ^ ) 2 ] ^ 2 __ l 

n 

where n is the number of categories in a partition. Averaging over categories allows 
comparison of different size partitions. 

Category utility favors information-rich categories and is sensitive to attribute 
value correlations. Using category utility, COBWEB tends to form trees where the 
first level is the best partition of the observed objects; this is the case with the tree of 
Figure 2. However, COBWEB's tree construction algorithm differs significantly from 
other conceptual clustering algorithms (Michalski and Stepp, 1983; Cheng and Fu, 
1985); COBWEB is incremental. Given an existing classification tree and a single 
object, incorporation is basically a process of classifying the object by descending the 
tree along a path of 'best' matching classes and subclasses. 
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To evaluate which of several classes 'best' matches an object (according to cat-
egory utility), summary distributional information regarding currently classified ob-
jects must be maintained at each node. For example, stored at the 'mammals/bird' 
node of Figure 2 are probabilities such as P(BodyCover = hair | mammals/bird) = 
0.5 and P(BodyTemp = regulated | mammals/bird) = 1.0. Probabilistic information 
stored at tree nodes constitutes a probabilistic concept (Smith and Medin, 1981). 

While complete distributional information about observed attribute values must 
be kept at nodes for purposes of evaluation, COBWEB distinguishes certain values 
as normative (Kolodner, 1983) or predictable (Lebowitz, 1982). In some systems 
normative values are specified to be those that are present with a probability (or 
weight) greater than some constant threshold (e.g., 0.67). COBWEB's designation 
of normative values generalizes this view. Specifically, an attribute's value becomes 
'normative' only at node(s) that render the probability of the value (approximately) 
independent of other attribute values. This generalizes constant threshold strategies 
since a value with high probability (i.e., close to 1.0) will tend to approximate in-
dependence from other values. The 'norms' of Figure 2's 'mammals/bird' node are 
{HeartChambers=4, BodyTemp=Regulated, Fertilization=internal}. Taken collec-
tively, normative properties allow compact characterization of object classes and link 
probabilistic and symbolic representations. 

While COBWEB processes observations individually, over a sequence of objects 
and an initially empty tree, a classification tree can be built from 'scratch'. As each 
new object is incorporated and classified down the tree, probabilistic attribute in-
formation is updated. While objects are predominantly classified with respect to 
existing tree nodes, operators exist for new node (class) creation, node combination 
(merging), and node division (splitting). Fisher (1987) describes COBWEB as hill-
climbing (no backtracking) through the space of classification trees. Node merging 
and splitting are inverse operators that allow bidirectional movement through hierar-
chy space and recovery from misguided learning paths. This general control strategy 
was abstracted from previous work by Lebowitz (1982) and Kolodner (1983). Relevant 
dimensions of hierarchy quality, incorporation cost, and convergence time are intro-
duced in Schlimmer and Fisher (1986) and demonstrate COBWEB to be economical 
and robust (Fisher, 1987). 

In summary, COBWEB's main conceptual precursors are drawn from cognitive 
psychology, conceptual clustering, and incremental concept formation. COBWEB 
draws a measure of concept quality from cognitive psychology (Gluck and Corter, 
1985) and is the basis of a second system that accounts for important psychological 
(basic level and typicality) effects (Fisher, 1987). From a machine learning standpoint 
this work imposes the framework of conceptual clustering (Michalski and Stepp, 1983; 
Fisher and Langley, 1985) onto incremental concept formation systems like those 
developed by Lebowitz (1982) and Kolodner (1983). This combination encourages 
evaluation along a number of dimensions (e.g., hierarchy quality, convergence time) 
and opens the way for comparative study, something not traditionally performed in 
this line of work. Lastly, COBWEB suggests inference of missing attributes as a 
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performance task for conceptual clustering. 

3. Classification and Inference 

COBWEB forms classifications which tend to maximize the amount of information 
that can be inferred from category membership. The efficacy of this domain indepen-
dent heuristic depends on the presence of regularities or 'hidden causes' (Pearl, 1985; 
Cheng and Fu, 1985) in the environment, and on these regularities being extracted 
and organized by a conceptual clustering system. For example, a disease class and 
its associated treatment 'properties' are dependent on inter-correlations among symp-
toms. Classification of instances based on symptoms can then be used for effective 
diagnosis and treatment of diseases. 

The utility of classification trees for inference was tested in the several domains, 
including a set of 47 soybean disease cases (data from Stepp, 1984). Each case (object) 
was described along 35 attributes. Four soybean diseases were represented in the data 
- Diaporthe stem rot, Charcoal Rot, Rhizoctonia Root Rot, Phytophthora rot. These 
disease designations were also included in each object description, making a total 
of 36 attributes (e.g., Precipitation = low, Root-condition = rotted, ..., Diagnostic-
condition = Charcoal Rot).1 

An experiment was conducted in which soybean disease cases were incrementally 
presented to COBWEB in order to see whether the resultant classification could 
be used for effective disease diagnosis. After incorporating every 5th instance, the 
remaining unseen cases were classified (but not incorporated) with respect to the 
classification tree constructed up until that point. Test instances being classified con-
tained no information regarding 'Diagnostic condition', but the value of this attribute 
was inferred as a byproduct of classification. Specifically, classification terminated 
when the test object was matched against a leaf of the classification tree. This leaf 
represented that previously observed object which best matched the test object. The 
diagnostic condition of the test object was guessed to be the corresponding condition 
of the leaf. The experiment was terminated after one half of the domain (of 47 cases) 
had been incorporated. 

The graph of Figure 3 give the results of the experiment. The graph shows that 
after as few as 5 instances, the classification could be used to correctly diagnose 
disease over the remaining 42 cases 88% of the time. After 10 instances, 100% correct 
diagnosis was achieved and maintained. To put these results into perspective, Figure 
3 also graphs the results of a simpler, but reasonable inferencing strategy. This 
'frequency-based' method dictates that one always guess the most frequently occurring 
value (Phytophthora Rot) of the unknown Diagnostic-condition attribute and gives a 
36% correct prediction rate. Thus, the COBWEB classification tree facilitates a 64% 
increase in correct prediction. 

1 While Diagnostic condition was included in each object description, it was simply treated as 
another attribute. Diagnostic condition was not treated as a teacher imposed class designation as in 
learning from examples. 
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% of Correct Diagnoses over Unseen Cases 
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Figure 3. Success at inferring 'Diagnostic condition' 

( soybean j 
\ . diseases J 
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f N31 >v f N32 >v 
( Rhizoctonia J f Phytophthora J 
V. Rot J \ . Rot J 

Figure 4. A partial tree over soybean cases 

While the results of this experiment seem impressive, they follow from the regu-
larity of this particular domain. In fact, when COBWEB was run on the data with 
no information of Diagnostic condition at all, the four classes were 'rediscovered' as 
nodes in the resultant tree. This indicates that Diagnostic condition participates in 
a network of attribute correlations that is rewarded by category utility. In organiz-
ing classes around the correlated network of attributes, classes corresponding to the 
various Diagnostic conditions are generated (Figure 4). 

The success at inferring Diagnostic condition implies a relationship between an 
attribute's dependence on other attributes and the utility of COBWEB classification 
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Figure 5. Correct attribute inference as a function of attribute dependence 

trees for induction over that attribute. To characterize this relationship it is necessary 
to introduce a measure of attribute dependence. Function 3-1 gives one such measure. 
The dependence of an attribute AM on other attributes Ai is given as 

Σ * Μ Σ * P(Aj = ν*)ΣίΜ[Ρ{ΑΜ = VniJAj = V^f - P(AM = VMJM)*] 
\{i\A^AM}\ 

This function is derived in much the same way as category utility, but instead measures 
the average increase in the ability to guess the value of AM given one knows the value 
of a second attribute. If AM is independent of all other attributes, A;, then 3-1 
equals 0 since P(AM = VMJM\A{ = V ·̂.) = P(AM = VMJM) f° r ^ -̂ t» a n ( l thus 
P(AM = VMsM\Ai = Viai)

2 - P(AM = VMJM)2 = 0. 

The induction test conducted for the Diagnostic condition attribute was repeated 
for each of the remaining 35 attributes. Averaged over all attributes, correct induc-
tion of attributes values for unseen objects levels off at 88% using the COBWEB 
classification tree as compared with 72% for the frequency-based method. A break-
down of the results in terms of individual attributes is given in Figure 5, where the 
increase in correct inferences afforded by the COBWEB classification tree over the 
frequency-based method is shown as a function of attribute dependence (3-1). Each 
point on the scatter graph represents one of the 36 attributes used to describe soybean 
cases. The graph indicates a significant positive correlation between an attribute's 
dependence on other attributes and the degree that COBWEB trees facilitate correct 
inference. For example, Diagnostic condition participates in dependencies with many 
other attributes and is also the most predictable attribute. 

3 - 1 
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The soybean data strongly suggests that COBWEB captures the important inter-
correlations between attributes, and summarizes these correlations at classification 
tree nodes. In doing so, COBWEB promotes inference of attributes in proportion to 
the degree that they participate in correlations - COBWEB tends to maximize infer-
ence across all attributes according to some (as yet unformalized) 'weighted' average. 
This is in contrast to learning from examples systems that seek to maximize correct 
prediction with respect to a single 'teacher' selected attribute. This observation sug-
gests a way of obtaining an upper bound on COBWEB's inference ability, just as the 
frequency-based method supplied a lower bound. 

COBWEB's accuracy (stemming from a single classification tree) was compared 
to results obtained from a reconstruction of Quinlan's (1983) learning from examples 
program, ID3. The program, ID3', builds decision trees to distinguish object classes. 
Specifically, for each of the 36 attributes, the training set (of 25 instances) observed 
by COBWEB was used to train ID3'; in each case the values of the attribute were 
treated as 'teacher' imposed classes. Thus, ID3; built one decision tree to distinguish 
the various diagnostic conditions, a separate tree to distinguish root conditions, and a 
distinct tree for each subsequent attribute. These decision trees were used to predict 
the appropriate attribute values in the remaining unclassified soybean cases.2 

The differences between the percent of correct predictions for each attribute us-
ing the corresponding ID3' decision tree and the COBWEB classification tree are 
given in Figure 6. For example, COBWEB's tree predicts Root-condition correctly 
100% of the time, while the ID3' decision tree yields 96% correctness, thus giving a 
difference of -4%. Overall, correctness afforded by the COBWEB classification tree 
is comparable to, if not slightly better than that afforded by the 36 ID3; decision 
trees. However, this statement must be qualified. First, the reconstruction of ID3 
does not include protections against 'exceptional' objects (e.g., the chi-square mea-
sure) and decision trees can overly specialize. Secondly, comparisons of COBWEB's 
classification tree and ID3 decision trees may be unfair - ID3 trees discriminate based 
on a single attribute at decision points (i.e., they are monothetic classifiers), while 
the use of category utility as a matching function makes COBWEB trees essentially 
polythetic and therefore more sensitive to attribute inter-correlations. The advantage 
of polythetic classification may be magnified by the small data set. 

Granting the limitations of ID3' however, the data still suggests the cost effec-
tiveness of the COBWEB approach to improving inference over the use of a learning 
from examples approach for each attribute. However, better clarification of this rela-
tionship requires further experimentation, including tests in more domains and with 
polythetic learning from examples systems. A current hypothesis is that while learning 
from examples systems delimit upperbounds on COBWEB's performance, in general 
COBWEB approximates their abilities. One trait suggested by current data is that 
performance afforded by COBWEB and a suitable learning from examples system will 
diverge (i.e., learning from examples will be better) at attributes of intermediate de-
pendence (0.012 - 0.036 in the soybean experiment), while performance will converge 

2This experiment was suggested independently by Jeff Schlimmer and Nick Littlestone. 
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Figure 6. Positive vertical axis values indicate ID3; outperforms COBWEB. 

at attributes exhibiting either significant dependence or independence; highly depen-
dent attributes will be easy to spot by any system (including a conceptual clustering 
system) and rules concerning independent attributes will be difficult to spot by any 
method (including learning from examples). 

4. A Note on Inference and Understandability 

The use of probabilistic (versus logical) concepts and validation of classification 
trees with respect to inference (versus understandability) distinguish COBWEB from 
the work of Michalski and Stepp (1983). However, these representations and perfor-
mance objectives need not be incompatible (Cheeseman, 1985; Rendell, 1986). Gen-
erally, it is not difficult to show that category utility represents a tradeoff between 
the predictability of attribute values (operationalized as P(A{ = ^j|Cfc)) and the pre-
dictiveness of values (i.e., P(Ck\A{ = V{j)). An appropriate tradeoff of predictability 
and predictiveness is necessary in classification structures useful for inference - pre-
dictive values combine to direct the classification of partially described objects. Once 
classified, predictable values can be asserted to complete partial object descriptions. 
However, as Medin, Wattenmaker, and Michalski (1986) point out, predictability and 
predictiveness generalize logical necessity (characteristic) and sufficiency (discrimi-
nant), respectively. It is probable that an analogous tradeoff for logical concepts 
(e.g., Michalski and Stepp's measures of 'simplicity' and 'fit') would result in trees 
that facilitate inference. 

As logical concepts may approximate probabilistic ones in facilitating prediction, 
understandable symbolic descriptions can be generated from probabilistic ones. The 
gap between probabilistic and symbolic representations is bridged by normative val-
ues. Consider COBWEB's selection of normative values for nodes i\T2 and N$ of 

Root-condition 
V Diagnostic-condition 
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TabJe 2. Normative values of soybean tree nodes 

N2 = 'Charcoal Rot' 
Ai = Via[P{Ai = νί,-ΐΛΓ,), P(N2\Ai = V{j)] 

Precipitation = below-normal [1.0,1.0] 
Temperature = above-normal [0.60,1.0] 
Stem-cankers = absent [1.0,1.0] 
Fruit-pod-condition = normal [1.0,0.50] 
Canker-lesion-color = tan [1.0,1.0] 
Outer-stem-decay = absent [1.0, 0.48] 
Internal-stem-discoloration = black [1.0,1.0] 
Sclerotia-internal-external = present [1.0,1.0] 

1 N3 

Ai = VijlPiAi = VijlN^PiNMi = Via)] 

Plant-stand = less-than-normal [0.93,1.0] 
Temperature = below-normal [0.63,1.0] 
Stem-cankers = below-soil [0.67,1.0] 
Fruit-pod-condition = does-not-apply [1.0,1.0] 
Severity = severe [0.59, 0.84] 
Damaged-area = low-areas [0.96, 0.90] 

Figure 4 (Table 2). JV2 has a total of 8 normative values, 5 of which are individu-
ally necessary and sufficient for class membership. N$ has 6 normative values, one 
of which is necessary and sufficient. In Michalski and Stepp 's terminology, necessary 
and sufficient values represent concepts that are simple and tightly fit the data. In 
cases where there are no (simply stated) necessary and sufficient conditions, polymor-
phous rules (Hanson and Bauer, 1986) can be used to symbolically describe classes. 
Specifically, a list of normative values is regarded as a class prototype and any object 
with a specified number (e.g., a majority) of these values can be regarded as a class 
member. 

Lastly, while probabilistic concepts are typically justified because they generalize 
logical (typically conjunctive) representations (Smith and Medin, 1981; Hanson and 
Bauer, 1985), statistically based representations seem more suitable for incremental 
systems (Schlimmer, personal communication). Even heuristic measures applied to 
logical representations may be computed from summary statistics. However, in the 
context of nonincremental systems these statistics can be computed as needed and 
there is no need to make them an explicit part of the concept representation. In incre-
mental systems it is advantageous to maintain summary statistics, thus reducing cost 
when incorporating new objects. Nonincremental methods tend to compute statis-
tics as necessary, whereas an effective incremental strategy is to generate symbolic 
descriptions as necessary. 

5. Concluding Remarks 

COBWEB is an incremental conceptual clustering system that builds predictive 
models of an environment. It takes a 'shotgun' approach to improve inference with 
respect to all attributes, as opposed to a learning from examples system that seeks 
to optimize inference with respect to a single teacher selected 'attribute'. Initial 
experiments indicate that COBWEB's approach compares favorably with respect to 
a reconstruction of ID3, but further experimentation in other domains and with other 
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learning from examples systems is required to fully understand this relationship. The 
direction of this work promises to unify the tasks of conceptual clustering and learning 
from examples in a common processing abstraction. 

Finally, it is hoped that this work casts conceptual clustering as a useful tool 
for problem-solving, by assigning it the performance task of predicting unknown at-
tribute values. This view need not oppose an earlier view of conceptual clustering as 
summarizing data in an understandable manner - important criteria of each view ap-
pear compatible. Elaborating the connection between these views, as well as extend-
ing conceptual clustering systems to handle more complex representation languages 
(Stepp, 1984), promises to yield an interpretation of conceptual clustering as a model 
of evolving expertise (Kolodner, 1983). 
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