CS x260 Program 3 artificial data explanation (Kyle)

The data provided is a mapping of counts of themes, presumably obtained from generated roadtrips, to
a real-valued utility value that corresponds to the user’s relative preference for that roadtrip. The utility
function used will be referred to as S(T). Theme counts are represented as a list of integer values T =
{t,, t,, ...t }. Users will often have preferences that are complex and interacting in nature. In other
words, the utility of combinations of themes may have higher preference than the sum of those themes
in isolation; i.e. S({ti, tj}) >S{¢D + S({tj}). Some combinations will also be preferred over others by
a given user.

From this, | decided to use the formula to define S(T) = (1 + R) X;cr w; f(w;). In this formula, i is a
subset of the themes in T, w; is a weight that describes the user’s relative preference for that theme
subsets.t. >;;w; = 1, and f (w;) is a function that maps theme counts for i to an individual preference
value, and R is a uniform random variable that injects some random noise. f is shared between all users
and all theme subsets, so learning of user preferences amounts to learning the weights w;.

The function behind f (w;) is a standard logistic function defined as . 5 where x(w;) isa
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function that squashes theme counts into a scalar value that will be defined below, ¢ = 10 controls the

slope, and a = S is the center value of the function. The graph of this function is shown above. A logistic

function was chosen for two primary reasons. First, logistic functions are non-linear and a weighted sum
of logistic functions thus cannot be learned by a single layer neural network. Second, the overall utility
formula becomes similar, but not identical, to the expected human preference functions defined by
Tversky and Kahneman in economic Prospect Theory.

The final piece in need of definition is x(w;). This function is the squashed input to the preference
function for a single theme relationship. This is effectively how strongly the relationship between those
themes shows in the datapoint. Intuitively, a relationship between t; and ¢; is strongest when both are

present and they are similar in number. From this, | used the function x(w;) = % (x(w;)) =0
j tk



when both t; and t;, are 0 to handle division by 0). This function is highest when t; = t; and trend
towards 0 as the values diverge. This is desirable because a relationship where one value is high while
the other low is one in which that relationship is not strongly represented. A limitation to this approach
is that there is no preference for the size of a relationship’s presence. That is to say, given the values

{t = 1,ty = 4,ty, = 3,t, = 1}, the relationship {t;, t, } will yield a higher value than {ty, t,,} despite
the higher average counts in the latter. This is also only defined for size two relations, but can be
generalized to the following form:
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activation of every pair of themes in the relationship. The maximum value will be 1 when all themes are
equally represented and approaches 0 as more themes differ from each other by larger amounts or are
absent entirely.

Where = 0 when t; = t; = 0 to handle division by zero. Intuitively, this is the average

The formulae described above are restated below for convenience.

T = {ty, ty, ...t,}
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