
CS x260 Program 3 ar/ficial data explana/on (Kyle)  
The data provided is a mapping of counts of themes, presumably obtained from generated roadtrips, to 
a real-valued u/lity value that corresponds to the user’s rela/ve preference for that roadtrip. The u/lity 
func/on used will be referred to as 𝑆(𝑇). Theme counts are represented as a list of integer values 𝑇 =
{𝑡(, 𝑡*, … 𝑡,}. Users will oJen have preferences that are complex and interac/ng in nature. In other 
words, the u/lity of combina/ons of themes may have higher preference than the sum of those themes 
in isola/on; i.e. 𝑆./𝑡0, 𝑡123 ≥ 𝑆({𝑡0}) + 𝑆(/𝑡12). Some combina/ons will also be preferred over others by 
a given user. 

From this, I decided to use the formula to define 𝑆(𝑇) = (1 + 𝑅)∑ 𝑤00⊂; 𝑓(𝜔0).  In this formula, 𝑖 is a 
subset of the themes in 𝑇, 𝑤0  is a weight that describes the user’s rela/ve preference for that theme 
subset s.t. ∑ 𝑤0 = 10 , and 𝑓(𝜔0) is a func/on that maps theme counts for 𝑖 to an individual preference 
value, and 𝑅 is a uniform random variable that injects some random noise. 𝑓 is shared between all users 
and all theme subsets, so learning of user preferences amounts to learning the weights 𝑤0. 

 

The func/on behind 𝑓(𝜔0) is a standard logis/c func/on defined as (
(?@AB(C.DE3AF)

 where 𝑥(𝜔0) is a 

func/on that squashes theme counts into a scalar value that will be defined below, 𝑐 = 10 controls the 
slope, and 𝑎 = (

*
 is the center value of the func/on. The graph of this func/on is shown above. A logis/c 

func/on was chosen for two primary reasons. First, logis/c func/ons are non-linear and a weighted sum 
of logis/c func/ons thus cannot be learned by a single layer neural network. Second, the overall u/lity 
formula becomes similar, but not iden/cal, to the expected human preference func/ons defined by 
Tversky and Kahneman in economic Prospect Theory. 

The final piece in need of defini/on is 𝑥(𝜔0). This func/on is the squashed input to the preference 
func/on for a single theme rela/onship. This is effec/vely how strongly the rela/onship between those 
themes shows in the datapoint. Intui/vely, a rela/onship between 𝑡0  and 𝑡1  is strongest when both are 

present and they are similar in number. From this, I used the func/on 𝑥(𝜔0) =
KLM(1,	OP)
KQR	(ST,	SU)

 (𝑥(𝜔0) = 0 



when both 𝑡1  and 𝑡V are 0 to handle division by 0). This func/on is highest when 𝑡0 = 𝑡1  and trend 
towards 0 as the values diverge. This is desirable because a rela/onship where one value is high while 
the other low is one in which that rela/onship is not strongly represented. A limita/on to this approach 
is that there is no preference for the size of a rela/onship’s presence. That is to say, given the values 
{𝑡1 = 1, 𝑡V = 4, 𝑡X = 3, 𝑡, = 1},  the rela/onship {𝑡1, 𝑡,} will yield a higher value than {𝑡V, 𝑡X} despite 
the higher average counts in the laUer. This is also only defined for size two rela/ons, but can be 
generalized to the following form: 
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Where 
KLM.Oe,OP3
KQR.Oe,OP3

= 0 when 𝑡1 = 𝑡V = 0 to handle division by zero. Intui/vely, this is the average 

ac/va/on of every pair of themes in the rela/onship. The maximum value will be 1 when all themes are 
equally represented and approaches 0 as more themes differ from each other by larger amounts or are 
absent en/rely. 

 

The formulae described above are restated below for convenience. 

𝑇 = {𝑡(, 𝑡*, … 𝑡,} 

𝑆(𝑇) = (1 + 𝑅)]
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