
Uninformed Search of
an Explicit Graph Without Costs
Exploring Alternatives With Search

Douglas H. Fisher

Route planning is
abstracted to search an explicit directed graph.

*A dead end is a vertex from which there are no directed arcs out of the vertex.

Searching an Explicit Graph
Without Checking for Repeated Vertices
Function Search (Vertices V, Arcs A, v0, G)

/* Given:
V is a set of atomic labels representing vertices in a graph

A is a set of directed arcs (aka edges) between two nodes in V

v0 is a starting vertex, in V

G is a set of goal vertices, each in V

Return:
path of vertices (and arcs) from v0 to a member of G

Local:

Frontier is a collection of paths */

Frontier = [�v0�]

while Frontier != [] do //search dead ends can eventually in an empty the Frontier

select and remove �v0, ..., vk� from Frontier

if vk in G then return �v0, ..., vk�

for each v such that (vk, v) in A

Frontier = Frontier + �v0, ..., vk, v�

return ��
Douglas H. Fisher

Searching an Explicit Graph
Without Checking for Repeated Vertices
1. Function Search (Vertices V, Arcs A, v0, G)
2. /* Given:
3. V is a set of atomic labels representing vertices in a graph
4. A is a set of directed arcs (aka edges) between two nodes in V
5. v0 is a starting vertex, in V
6. G is a set of goal vertices, each in V
7. Return:
8. path of vertices (and arcs) from v0 to a member of G

9. Local:
10. Frontier is a collection of paths */

11. Frontier = [�v0�]

12. while Frontier != [] do

13. select and remove �v0, ..., vk� from Frontier
14. if vk in G then return �v0, ..., vk�

15. for each v such that (vk, v) in A
16. Frontier = Frontier + �v0, ..., vk, v�

17. return ��

is shorthand for

A

B

C

D

F

E

G

H

I

J

K

L

M

Goal
vertex

Start
vertex, v0

Douglas H. Fisher

In this case, we would want to
return a path to a goal (e.g.,
�(A B) (B F) (F H) (H J) (J M)�)
rather than just a goal vertex, which
we know anyways

Searching an Explicit Graph
Without Checking for Repeated Vertices
1. Function Search (Vertices V, Arcs A, v0, G)
2. /* Given:
3. V is a set of atomic labels representing vertices in a graph

4. A is a set of directed arcs (aka edges) between two nodes in V
5. v0 is a starting vertex, in V

6. G is a set of goal vertices, each in V
7. Return:
8. path of vertices (and arcs) from v0 to a member of G
9. Local:
10. Frontier is a collection of paths */

11. Frontier = [�v0�]

12. while Frontier != [] do

13. select and remove �v0, ..., vk� from Frontier
14. if vk in G then return �v0, ..., vk�

15. for each v such that (vk, v) in A
16. Frontier = Frontier + �v0, ..., vk, v�

17. return ��

A

B

C

D

F

E

G

H

I

J

K

L

M

Goal
vertex

Start
vertex, v0

Douglas H. Fisher

If Frontier is a stack, then depth-first
search
If Frontier is a queue, then breadth-first
search

Searching an Explicit Graph
Without Checking for Repeated Vertices
1. Function Search (Vertices V, Arcs A, v0, G)

2. /* Given:

3. V is a set of atomic labels representing vertices in a graph

4. A is a set of directed arcs (aka edges) between two nodes in V

5. v0 is a starting vertex, in V

6. G is a set of goal vertices, each in V

7. Return:

8. path of vertices (and arcs) from v0 to a member of G

9. Local:
10. Frontier is a collection of paths */
11. Frontier = [�v0�]

12. while Frontier != [] do

13. select and remove �v0, ..., vk� from Frontier

14. if vk in G then return �v0, ..., vk�

15. for each v such that (vk, v) in A

16. Frontier = Frontier + �v0, ..., vk, v�

17. return ��
Douglas H. Fisher

1. Function Search (Vertices V, Arcs A, v0, G)
2. /* Given:
3. V is a set of atomic labels representing vertices in a graph

4. A is a set of directed arcs (aka edges) between two nodes in V
5. v0 is a starting vertex, in V

6. G is a set of goal vertices, each in V
7. Return:
8. path of vertices (and arcs) from v0 to a member of G

9. Local:
10. Frontier is a collection of paths */

11. Frontier = [�v0�]

12. while Frontier != [] do

13. select and remove �v0, ..., vk� from Frontier

14. if vk in G then return �v0, ..., vk�

15. for each v such that (vk, v) in A

16. Frontier = Frontier + �v0, ..., vk, v�

17. return ��

�..., vk, v� is shorthand for �..., (vk, v)�, where (vk, v) in A.

For example, �A B F H J M� is shorthand for �(A B) (B F) (F H) (H J) (J M)�

Searching an Explicit Graph
Without Checking for Repeated Vertices

Douglas H. Fisher

Depth-First Search of
an Explicit Graph Without Costs
Exploring Alternatives With Search

Douglas H. Fisher

Depth-First Search of a Graph
(Without Checking for Repeated Vertices)

Top of stack (along left)Iteration
of while
loop

A

B

C

D

F

E

G

H

I
L

J

K
M

Start
vertex

Goal
vertex

Frontier (stack of paths)

1. [�A�]
2. [�A B��A C�]
3. [�A B F��A B D��A B A��A C�]

13. while Frontier != [] do
14. select and remove �v0, ..., vk� from Frontier
15. if vk in G then return �v0, ..., vk�

16. for each v such that (vk, v) in A
17. Frontier = Frontier + �v0, ..., vk, v�

Douglas H. Fisher

Depth-First Search of a Graph
(Without Checking for Repeated Vertices)

Frontier (stack of paths)

1. [�A�]
2. [�A B��A C�]
3. [�A B F��A B D��A B A��A C�]

13. while Frontier != [] do
14. select and remove �v0, ..., vk� from Frontier
15. if vk in G then return �v0, ..., vk�

16. for each v such that (vk, v) in A
17. Frontier = Frontier + �v0, ..., vk, v�

A

B

C

D

F

E

G

H

I
L

J

K
M

Start
vertex

Goal
vertex

• Every path begins with start vertex A, v0

• Last vertex in each path is underlined
• Without checking for repeated vertices, redundant

and unnecessarily costly paths can be added to
the Frontier

• �A B A� is one example

Douglas H. Fisher

Depth-First Search of a Graph
(Without Checking for Repeated Vertices)

Frontier (stack of paths)

1. [�A�]
2. [�A B��A C�]
3. [�A B F��A B D��A B A��A C�]

13. while Frontier != [] do
14. select and remove �v0, ..., vk� from Frontier
15. if vk in G then return �v0, ..., vk�

16. for each v such that (vk, v) in A
17. Frontier = Frontier + �v0, ..., vk, v�

A

B

C

D

F

E

G

H

I
L

J

K
M

Start
vertex

Goal
vertex

• Boldface indicates that a path, such as �A B F�
in step 3, was added to the Frontier in the most
recent iteration, when its parent �A B� in step 2
was removed from the Frontier

• Regular font indicates that a path, such as �A C�
in step 3, was on the previous instance of the
Frontier

Douglas H. Fisher

Depth-First Search of a Graph
(Without Checking for Repeated Vertices)

Frontier (stack of paths)

1. [�A�]
2. [�A B��A C�]
3. [�A B F��A B D��A B A��A C�]

13. while Frontier != [] do
14. select and remove �v0, ..., vk� from Frontier
15. if vk in G then return �v0, ..., vk�

16. for each v such that (vk, v) in A
17. Frontier = Frontier + �v0, ..., vk, v�

A

B

C

D

F

E

G

H

I
L

J

K
M

Start
vertex

Goal
vertex

If you wish, pause the video and complete the next
iteration or two before continuing.

Douglas H. Fisher

Frontier (stack of paths)

1. [�A�]
2. [�A B��A C�]
3. [�A B F��A B D��A B A��A C�]
4. [�A B F G��A B F H��A B F B��A B D��A B A��A C�]

Examples of paths with loops

Depth-First Search of a Graph
(Without Checking for Repeated Vertices)

A

B

C

D

F

E

G

H

I
L

J

K
M

Start
vertex

Goal
vertex

Douglas H. Fisher

Depth-First Search of a Graph
(Without Checking for Repeated Vertices)

Frontier (stack of paths)

1. [�A�]
2. [�A B��A C�]
3. [�A B F��A B D��A B A��A C�]
4. [�A B F G��A B F H��A B F B��A B D��A B A��A C�]
5. [�A B F G L��A B F G I��A B F G F��A B F G H��A B F H��A B F B��A B D��A B A��A C�]

Example of redundant, nonloop paths
(two different paths to H)

A

B

C

D

F

E

G

H

I
L

J

K
M

Start
vertex

Goal
vertex

Douglas H. Fisher

Depth-First Search of a Graph
(Without Checking for Repeated Vertices)

Frontier (stack of paths)

1. [�A�]

2. [�A B��A C�]

3. [�A B F��A B D��A B A��A C�]

4. [�A B F G��A B F H��A B F B��A B D��A B A��A C�]

5. [�A B F G L��A B F G I��A B F G F��A B F G H��A B F H��A B F B��A B D��A B A��A C�]

6. [�A B F G L G��A B F G L I��A B F G I��A B F G F��A B F G H��A B F H��A B F B��A B D�
�A B A��A C�]

7. [�A B F G L G L��A B F G L G I��A B F G L G F��A B F G L I��A B F G I��A B F G F��A B F G H��A B F H�
�A B F B��A B D��A B A��A C�]

By now, you should see the problem of redundant paths and the potential for looping, which is particularly problematic with depth-first
search because of potential for infinite loops—consider G L G L as an example.

A

B

C

D

F

E

G

H

I

L

J

K
M

Start
vertex

Goal
vertex

Douglas H. Fisher

Uninformed Search
With Checks for Repeated Vertices
Exploring Alternatives With Search

Douglas H. Fisher

Searching an Explicit Graph With Checking
for Repeated Vertices and Redundant Paths

1. Function Search (Vertices V, Arcs A, v0, G)
/* … */

11. Frontier = [�v0�]
12. Reached = {�v0�}
13. while Frontier != [] do //search dead ends, loops, and other redundant paths can result in an empty

Frontier
14. select and remove �v0, ..., vk� from Frontier
15. if vk in G then return �v0, ..., vk�

16. for each v such that (vk, v) in A
17. if !exists �v0, ..., v� in Reached
18. or Cost({�v0, ..., vk, v�) < Cost({�v0, ..., v�)
19. Reached = Reached -�v0, ..., v� + �v0, ..., vk, v�
20. Frontier = Frontier + �v0, ..., vk, v�
21. return �� Douglas H. Fisher

Searching an Explicit Graph With Checking
for Repeated Vertices and Redundant Paths

1. Function Search (Vertices V, Arcs A, v0, G)
/* … */

11. Frontier = [�v0�]
12. Reached = {�v0�}
13. while Frontier != [] do
14. select and remove �v0, ..., vk� from Frontier
15. if vk in G then return �v0, ..., vk�

16. for each v such that (vk, v) in A
17. if !exists �v0, ..., v� in Reached // if a path to v does not already exist in Reached then

add it
18. or Cost({�v0, ..., vk, v�) < Cost({�v0, ..., v�)
19. Reached = Reached -�v0, ..., v� +�v0, ..., vk, v� // if �v0, ..., v� doesn’t exist,
… //then Reached -�v0, ..., v� is a no-op

… Douglas H. Fisher

Searching an Explicit Graph With Checking
for Repeated Vertices and Redundant Paths

1. Function Search (Vertices V, Arcs A, v0, G)
/* … */

11. Frontier = [�v0�]
12. Reached = {�v0�}

13. while Frontier != [] do

14. select and remove �v0, ..., vk� from Frontier
15. if vk in G then return �v0, ..., vk�

16. for each v such that (vk, v) in A
17. if !exists �v0, ..., v� in Reached

18. or Cost({�v0, ..., vk, v�) < Cost({�v0, ..., v�) // if a lesser cost path to v is
found,

19. Reached = Reached -�v0, ..., v� + �v0, ..., vk, v� //then replace old path to v
20. Frontier = Frontier + �v0, ..., vk, v�
21. return �� Douglas H. Fisher

Searching an Explicit Graph With Checking
for Repeated Vertices and Redundant Paths

1. Function Search (Vertices V, Arcs A, v0, G)
/* … */

11. Frontier = [�v0�]
12. Reached = {�v0�}

13. while Frontier != [] do

14. select and remove �v0, ..., vk� from Frontier
15. if vk in G then return �v0, ..., vk�

16. for each v such that (vk, v) in A
17. if !exists �v0, ..., v� in Explored

18. or Cost({�v0, ..., vk, v�) < Cost({�v0, ..., v�)

19. Reached = Reached -�v0, ..., v� + �v0, ..., vk, v�
20. Frontier = Frontier + �v0, ..., vk, v�
21. return ��

Douglas H. Fisher

Breadth-First Search With
Checks for Repeated Vertices
Exploring Alternatives With Search

Douglas H. Fisher

Breadth-First Search of a Graph
(With Checking for Repeated Vertices)

Frontier (queue of paths)

1. [�A�]

2. [�A B��A C�]

Reached

1. {�A�}

2. {�A��A B��A C�}

14. select and remove �v0, ..., vk� from Frontier

15. if vk in G then return �v0, ..., vk�

16. for each v such that (vk, v) in A

17. if !exists �v0, ..., v� in Reached

18. or Cost({�v0, ..., vk, v�) < Cost({�v0, ..., v�)

19. Reached = Reached -�v0, ..., v� + �v0, ..., vk, v�

20. Frontier = Frontier + �v0, ..., vk, v�

A

B

C

D

F

E

G

H

I

J

K

L

M

Douglas H. Fisher

Frontier (queue of paths)
1. [�A�]
2. [�A B��A C�]
3. [�A C��A B D��A B F�]
4. [�A B D��A B F��A C D��A C E�]

Reached
1. {�A�}
2. {�A��A B��A C�}
3. {�A��A B��A C��A B D��A B F�}
4. {�A��A B��A C��A B D��A B F��A C E�}

�A C D� is a redundant, no less costly path to D than �A
B D�, and so would not be added to Frontier (or Reached)
to begin with. Note that
�A C D� is correctly excluded from Reached already.

14. select and remove �v0, ..., vk� from Frontier
15. if vk in G then return �v0, ..., vk�

16. for each v such that (vk, v) in A
17. if !exists �v0, ..., v� in Reached
18. or Cost({�v0, ..., vk, v�) < Cost({�v0, ..., v�)
19. Reached = Reached -�v0, ..., v� + �v0, ..., vk, v�
20. Frontier = Frontier + �v0, ..., vk, v�

Breadth-First Search of a Graph
(With Checking for Repeated Vertices)

A

B

C

D

F

E

G

H

I

J

K

L

M

Douglas H. Fisher

Breadth-First Search of a Graph
(With Checking for Repeated Vertices)

Frontier (queue of paths)
1. [�A�]
2. [�A B��A C�]
3. [�A C��A B D��A B F�]
4. [�A B D��A B F��A C D��A C E�]

Reached
1. {�A�}
2. {�A��A B��A C�}
3. {�A��A B��A C��A B D��A B F�}
4. {�A��A B��A C��A B D��A B F��A C E�}

If you wish complete the next iteration or two before
continuing. The complete breadth-first search is shown on
the next slide.

14. select and remove �v0, ..., vk� from Frontier
15. if vk in G then return �v0, ..., vk�

16. for each v such that (vk, v) in A
17. if !exists �v0, ..., v� in Reached
18. or Cost({�v0, ..., vk, v�) < Cost({�v0, ..., v�)
19. Reached = Reached -�v0, ..., v� + �v0, ..., vk, v�
20. Frontier = Frontier + �v0, ..., vk, v�

A

B

C

D

F

E

G

H

I

J

K

L

M

Douglas H. Fisher

Breadth-First Search of a Graph
(With Checking for Repeated Vertices)

Frontier (queue of paths)

1. [�A�]

2. [�A B��A C�]

3. [�A C��A B D��A B F�]

4. [�A B D��A B F��A C E�]

5. [�A B F��A C E�]

6. [�A C E��A B F G��A B F H�]

7. [�A B F G��A B F H�]

8. [�A B F H��A B F G I�]

9. [�A B F G I��A B F H J��A B F H K�]

10. [�A B F H J��A B F H K��A B F G I L�]

11. [�A B F H K��A B F G I L��A B F H J M�]

Reached

1. {�A�}

2. {�A��A B��A C�}

3. {�A��A B��A C��A B D��A B F�}

4. {�A��A B��A C��A B D��A B F��A C E�}

5. {�A��A B��A C��A B D��A B F��A C E�}

6. {�A��A B��A C��A B D��A B F��A C E�
�A B F G��A B F H�}

7. {�A��A B�… �A B F H�}

8. {�A��A B�… �A B F H��A B F G I�}

9. {�A��A B�… �A B F G I��A B F H J��A B F H K�}

10. {�A��A B�… �A B F H K��A B F G I L�}

11. {�A��A B�… �A B F G I L��A B F H J M�}Finding a goal, M, is two dequeues away.

A

B

C

D

F

E

G

H

I

J

K

L

M

Douglas H. Fisher

Comparing costs not necessary in breadth-first search
and paths will automatically be enumerated in order of length

No late-goal test after dequeue

Rather make early-goal test before enqueue

If not goal, then go ahead and enqueue it

Early Goal Test With Breadth-First Search

while Frontier != [] do
select and remove �v0, ..., vk� from Frontier
if vk in G then return �v0, ..., vk�

for each v such that (vk, v) in A
if !exists �v0, ..., v� in Reached or

Cost({�v0, ..., vk, v�) < Cost({�v0, ..., v�)
if v in G then return �v0, ..., vk, v�
Reached = Reached -�v0, ..., v� + �v0, ..., vk, v�
Frontier = Frontier + �v0, ..., vk, v�

• An early goal test in breadth-first search will still ensure that minimal length paths to goal are found.
• And it is more space- and runtime-efficient than a late goal test in breadth-first search.
• So, we would probably use an early goal test if we knew we would use a breadth-first search, which would be rare, since we would

probably use iterative-deepening depth first search (IDDFS) instead (coming up).
• This is a good example that generality, in the form of the generic search algorithm, can be elegant, but not always as efficient when

we can make specializing assumptions.

• Question: Can we do an early goal test with IDDFS and still be guaranteed a minimal-length solution? Douglas H. Fisher

while Frontier != [] do

select and remove �v0, ..., vk� from Frontier

if vk in G then return �v0, ..., vk�

for each v such that (vk, v) in A
if !exists �v0, ..., v� in Reached or

Cost({�v0, ..., vk, v�) < Cost({�v0, ..., v�)

if v in G then return �v0, ..., vk, v�
Reached = Reached -�v0, ..., v� + �v0, ..., vk, v�
Frontier = Frontier + �v0, ..., vk, v�

Level d

Level d + 1

vk
●

●
Goal, g

How do we know there
is no goal here at level d?

Because had there been, it would have been
found before its enqueue

10. [�A B F H J��A B F H K��A B F G I L�]
11. [�A B F H K��A B F G I L�]

�A B F H J M�

Early Goal Test With Breadth-First Search (cont.)

Comparing costs not necessary in breadth-first search
and paths will automatically be enumerated in order of length

No late-goal test after dequeue

Rather make early-goal test before enqueue

If not goal, then go ahead and enqueue it

Douglas H. Fisher

Iterative Deepening
Exploring Alternatives With Search

Douglas H. Fisher

Iterative Deepening Depth-First Search of a Graph
(Without Checking for Repeated Vertices)

Frontier (stack of paths)

1. [�A�] (followed by [])
2. [�A�]
3. [�A B��A C�]
4. [�A C�] (followed by [])
5. [�A�]
6. [�A B��A C�]
7. [�A B F��A B D��A B A��A C�]
8. [�A B D��A B A��A C�]
9. [�A B A��A C�]
10. [�A C�]
11. [�A C D��A C E��A C A�]
12. [�A C E��A C A�]
13. [�A C A�] (followed by [])
14. [�A�]

A

B

C

D

F

E

G

H

I
L

J

K
M

Start
vertex

Goal
vertex

DFS to depth 0

DFS to depth 1

DFS to depth 2

Start DFS to depth 3

IDDFS is preferred over BFS, but why?!?

Keep searching to increasing depths until a goal
is found. The first goal found is guaranteed to be
a shortest path from start to goal.

Douglas H. Fisher

Iterative Deepening Depth-First Search of a Graph
(Without Checking for Repeated Vertices)

Frontier (stack of paths)

1. [�A�] (followed by [])
2. [�A�]
3. [�A B��A C�]
4. [�A C�] (followed by [])
5. [�A�]
6. [�A B��A C�]
7. [�A B F��A B D��A B A��A C�]
8. [�A B D��A B A��A C�]
9. [�A B A��A C�]
10. [�A C�]
11. [�A C D��A C E��A C A�]
12. [�A C E��A C A�]
13. [�A C A�] (followed by [])
14. [�A�]

A

B

C

D

F

E

G

H

I
L

J

K
M

Start
vertex

Goal
vertex

DFS to depth 0

DFS to depth 1

DFS to depth 2

Start DFS to depth 3

IDDFS is preferred over BFS, but why?!?
• The space requirements of BFS are O(Bd)

• e.g., with B = 10, and d = 20, O(1020) stuff starts
breaking

• The space requirements for IDDFS are O(B*d)
• The runtime cost of BFS is O(∑"#$% &') = O(&d), and this is

also the runtime cost of IDDFS to depth d! Why?

Douglas H. Fisher

Uninformed Search of
an Explicit Graph With Costs
Exploring Alternatives With Search

Douglas H. Fisher

A

B

C

D

F

E

G

H

I

L

J

K

M

2

32

2
2

33

4

4

4

5
57

1
1

1
1 1

1

Lowest-Cost First Search (aka Uniform Cost Search, aka Dijkstra’s
Algorithm) of a Graph

• Arc costs label each arc.

• Path costs are the sum of costs on arcs in the path.

• For example,�A B F G�(6) has cost 1 + 1 + 4 = 6.

• Double arrow arcs () is shorthand for two single arrow arcs () and costs, if any, being
equal in both directions.
• But in many applications, arcs in each direction have different costs (e.g., one direction corresponds to uphill,

the other to downhill; one direction is with rush hour traffic, the other is with the lighter flow).

• But for now, simplifying assumptions apply.

Douglas H. Fisher

Lowest-Cost First Search (aka Uniform Cost Search, aka Dijkstra’s Algorithm) of a Graph
(With Checking for Repeated Vertices)

A

B

C

D

F

E

G

H

I

L

J

K

M

2

3
2

2
2

33

4

4

4

5
57

1
1

1
1 1

1

Frontier (priority queue of paths)

1. [�A�(0)]
2. [�A B�(1) �A C�(3)]
3. [�A B F�(2) �A C�(3) �A B D�(6)]
4. [�A C�(3) �A B D�(6) �A B F G�(6) �A B F H�(9)]

Reached

1. {�A�(0)}
2. {�A�(0) �A B�(1) �A C�(3)}
3. {�A�(0) �A B�(1) �A C�(3) �A B F�(2) �A B D�(6)}
4. {�A�(0) �A B�(1) �A C�(3) �A B F�(2) �A B D�(6)

�A B F G�(6) �A B F H�(9)}

• Path costs, the sum of costs on arcs in the path, are in parentheses have been added for easy reference.

• For example, �A B F G�(6) has cost 1 + 1 + 4 = 6.

• Redundant, more costly paths to a vertex, are not added to Reached or to Frontier.

• For example, when �A B�(1) is expanded into �A B D�(6) and �A B F�(2), �A B A�(2) is not added since it is a redundant path that is more

costly than �A�(0).

Douglas H. Fisher

Lowest-Cost First Search (aka Uniform Cost Search, aka Dijkstra’s Algorithm) of a Graph
(With Checking for Repeated Vertices)

A

B

C

D

F

E

G

H

I

L

J

K

M

2

3
2

2
2

33

4

4

4

5
57

1
1

1
1 1

1

Frontier (priority queue of paths)
1. [�A�(0)]
2. [�A B�(1) �A C�(3)]
3. [�A B F�(2) �A C�(3) �A B D�(6)]
4. [�A C�(3) �A B D�(6) �A B F G�(6) �A B F H�(9)]
5. [�A C D�(4) �A C E�(5) �A B D�(6) �A B F G�(6)
�A B F H�(9)]

Reached
1. {�A�(0)}
2. {�A�(0) �A B�(1) �A C�(3)}
3. {�A�(0) �A B�(1) �A C�(3) �A B F�(2) �A B D�(6)}
4. {�A�(0) �A B�(1) �A C�(3) �A B F�(2) �A B D�(6)
�A B F G�(6) �A B F H�(9)}

5. {�A�(0) �A B�(1) �A C�(3) �A B F�(2) �A B D�(6)
�A B F G�(6) �A B F H�(9) �A C D�(4) �A C E�(5)}

The path to D, �A B D�(6), was added before �A C D�(4), and the earlier redundant path �A B D�(6) is removed from Reached, but
not from Frontier. Why not Frontier, too?

Douglas H. Fisher

A

B

C

D

F

E

G

H

I

L

J

K

M

2

3
2

2
2

33

4

4

4

5
57

1
1

1
1 1

1

Frontier (priority queue of paths)
1. [�A�(0)]
2. [�A B�(1) �A C�(3)]
3. [�A B F�(2)�A C�(3) �A B D�(6)]
4. [�A C�(3) �A B D�(6) �A B F G�(6) �A B F H�(9)]
5. [�A C D�(4) �A C E�(5)�A B D�(6) �A B F G�(6)
�A B F H�(9)]

Reached
1. {�A�(0)}
2. {�A�(0) �A B�(1) �A C�(3)}
3. {�A�(0) �A B�(1) �A C�(3) �A B F�(2) �A B D�(6)}
4. {�A�(0) �A B�(1) �A C�(3) �A B F�(2) �A B D�(6)
�A B F G�(6) �A B F H�(9)}

5. {�A�(0) �A B�(1) �A C�(3) �A B F�(2) �A B D�(6)
�A B F G�(6) �A B F H�(9) �A C D�(4) �A C E�(5)}

The path to D, �A B D�(6), was added before �A C D�(4), and the earlier redundant path �A B D�(6) is removed from Reached, but
not from Frontier. Why not Frontier, too?

Lowest-Cost First Search (aka Uniform Cost Search, aka Dijkstra’s Algorithm) of a Graph
(With Checking for Repeated Vertices)

Douglas H. Fisher

Lowest-Cost First Search (aka Uniform Cost Search, aka Dijkstra’s Algorithm) of a Graph
(With Checking for Repeated Vertices)

A

B

C

D

F

E

G

H

I

L

J

K

M

2

3
2

2
2

33

4

4

4

5
57

1
1

1
1 1

1

Frontier (priority queue of paths)
1. [�A�(0)]
2. [�A B�(1) �A C�(3)]
3. [�A B F�(2) �A C�(3) �A B D�(6)]
4. [�A C�(3) �A B D�(6) �A B F G�(6) �A B F H�(9)]
5. [�A C D�(4) �A C E�(5) �A B D�(6) �A B F G�(6)
�A B F H�(9)]

6. [�A C E�(5) �A B D�(6) �A B F G�(6) �A B F H�(9)]
7. [�A B D�(6) �A B F G�(6) �A C E H�(6)
�A B F H�(9)]

Reached
1. {�A�(0)}
2. {�A�(0) �A B�(1) �A C�(3)}
3. {�A�(0) �A B�(1) �A C�(3) �A B F�(2) �A B D�(6)}
4. {�A�(0) �A B�(1) �A C�(3) �A B F�(2) �A B D�(6)
�A B F G�(6) �A B F H�(9)}

5. {�A�(0) �A B�(1) �A C�(3) �A B F�(2) �A B F G�(6)
�A B F H�(9) �A C D�(4) �A C E�(5)}

6. {�A�(0) ... �A B F H�(9) �A C D�(4) �A C E�(5)}
7. {�A�(0) … �A B F H�(9) �A C D�(4) �A C E�(5) �A C

E H�(6)}
A new shorter path to H is discovered, thereby causing an update to Reached. �A C E H�(6) will become part of the final solution. D

ou
gl

as
 H

. F
ish

er

Will Early Goal Test Work for Least-Cost First Search?

No, not while guaranteeing a least cost solution in any case!
Look at steps 12–15 of example of previous slide, repeated here:

12.[�A C E H K�(8) �A B F H�(9) �A C E H J�(9)]
13.[�A B F H�(9) �A C E H J�(9) �A C E H K M�(12)]
14.[�A C E H J�(9) �A C E H K M�(12)]
15.[�A C E H J M�(10)�A C E H K M�(12)]

If �A C E H K M�(12) were returned immediately after it was found
in step 13, and before placing it on Frontier, then �A C E H J M�
(10) would not have been discovered in step 15

Douglas H. Fisher

Embedding Path Information
in State Descriptions
Exploring Alternatives With Search

Douglas H. Fisher

structure SearchNode
State (e.g., vertex v) in state space
Parent is a SearchNode with state vk, where vk is a directed neighbor of v in

state space (vk, v) (accessible by pointer or hashing)
Path-Cost is the cost of the arc (vk, v) in state space plus the Path Cost of Parent
Children is a set of SearchNodes, each of which corresponds to a reachable

neighbor, v’, of v in state space; not every v’ need have an associated child

A Revision to Generic Search
Algorithm for Explicit Graphs

Some observations
1. In the last example of least-cost first search we have this entry in the Frontier:

10. [�A B F G I�(8) �A B F G L�(8) �A C E H K�(8) �A B F H�(9) �A C E H J�(9)]
The sub-path �A B F� is stored thrice, �A B F G� is stored twice, and �A C E H� is stored twice.

2. Generally, in both the Frontier and Reached structures, there are redundancies across paths.

3. We can eliminate redundancy while retaining the capability of remembering paths (and returning paths to goals) by distinguishing the
vertex and arc space (i.e., the state space) and the search space of that contains information to efficiently recover requisite
information such as vertices, arcs, paths, and costs (e.g., an implementation of [�A B F G I�(8)]).

Douglas H. Fisher

structure SearchNode (State Parent Path-Cost Children)

10. [�A B F G I�(8) �A B F G L�(8) �A C E H K�(8)�A B F H�(9) �A C E H J�(9)]

A Revision to Generic Search
Algorithm for Explicit Graphs

NI

NJ

NJ

NK

NH2

NG

NH1

NE

NF

NC

NB

State A
Parent NULL
Path cost 0

Children NB NC

State B
Parent NA

Path cost 1
Children NF

State C
Parent NA

Path cost 3
Children NE

State F
Parent NB

Path cost 2
Children NG NH1

State E
Parent NC

Path cost 5
Children NH2

State H
Parent NE

Path cost 6
Children NJ NK

State G
Parent NF

Path cost 6
Children NI NJ

State H
Parent NF

Path cost 9
Children

State I
Parent NG
Path cost 8

Children

State J
Parent NG
Path cost 8

Children

State J
Parent NF

Path cost 9
Children

State K
Parent NB
Path cost 8

Children

NA

Douglas H. Fisher

A Revision to Generic Search
Algorithm for Explicit Graphs

structure SearchNode (State Parent Path-Cost Children)
SearchNode Search (Vertices V, Arcs A, v0, G)

/* … assume that each entry in A now includes a cost c (vi, vj, c) where c */

SearchNode N = new SearchNode(State v0, Parent NULL, Path-Cost 0, Children NULL)

Frontier = [N]

Reached = {N}

while Frontier != [] do

select and remove N from Frontier

if N.State in G then return N // from which the path from v0 to N.State can be recovered

for each v such that (vk, v, c) in A

SearchNode L = new SearchNode(State v, Parent N, Path-Cost N.Path-Cost + c, Children NULL)

if !exists Node M in Explored s.t. M.State == v or L.Path-Cost < M.Path-Cost

N.Children = N.Children + L

Reached = reached - M + L. //if M doesn’t exist then Reached – M is a no-op

Frontier = Frontier + L

return ��
Douglas H. Fisher

Multiple Arcs Between Vertices
The use of a SearchNode structure also facilitates something else. There can be multiple arcs between the same
vertices, perhaps with different costs. For example, a mapping app can consider two different direct routes between two
towns, one along highway 70 and one along Interstate 40. In this case, we would probably want to store the arc taken
from parent to child with each node as well to disambiguate.

NC

NB

State Nashville
Parent NULL

Arc taken NULL
Path cost 0

Children NB NC

State Crossville
Parent NA

Arc taken I40
Path cost 114 (along

Interstate 40)
Children…

State Crossville
Parent NA

Arc taken H70
Path cost 113 (along

Highway 70)
Children…

NA

Douglas H. Fisher

Informed (or Heuristic)
Search of an Explicit Graph
Exploring Alternatives With Search

Douglas H. Fisher

Cost (WvK)

cost(JNa25)

5 miles

5.3 miles

Douglas H. Fisher

h = 5.15 miles

Douglas H. Fisher

Action: go right

Douglas H. Fisher

5.3 miles

Douglas H. Fisher

Action: go left
towards west end

Douglas H. Fisher

After applying Westend
“operator”

5.0 miles

Douglas H. Fisher

A

B

C

D

F

E

G

H

I

L

J

K

M

2
3

2

2

2

3
3

4

4

4

5
5

7

1

1

1

1 1

1
Start

Goal

10

9 8 4 2

1

0
7 5 4

4

8

5

An Example Graph

Douglas H. Fisher

An Example Graph (cont.)

In the graph of the previous slide, which we will use going forward:
• Arc costs, also called g costs, label arcs, again under the assumption that costs are the

same in each direction, which is not necessary or even typical
• Heuristic estimates of remaining cost, called h, from each vertex to a goal (M) along least-

cost path label each vertex
• In this example, the h cost of each node happens to be exact; this would be rare, but we’ll

start with this illustration
• Though we learned a representation for the search space that used a SearchNode structure,

which comes with space advantages, we will continue representing paths separately for ease
of illustration

Douglas H. Fisher

Greedy Best-First Search of
an Explicit Graph
Exploring Alternatives With Search

Douglas H. Fisher

Frontier (priority queue organized by h cost estimates only)
1. [�A�(10)]
2. [�A C�(7) �A B�(9)]
3. [�A C E�(5) �A C D�(8) �A B�(9)]
4. [�A C E H�(4)�A C D�(8) �A B�(9)]

Reached is not shown, but it is still computed and used to censor
�A C E D�(8) and �A C E C�(7) in step 4 after �A C E�(5) is
expanded in step 3, for example.

A

B

C

D

F

E

G

H

I

L

J

K

M

2
3

2

2

2

3
3

4

4

4

5
5

7

1

1

1

1 1

1

Start

Goal

10

9 8 4 2

1

0
7 5 4

4

8

5

Greedy Best-First Search

Douglas H. Fisher

Greedy Best-First Search (cont.)

Frontier (priority queue organized by h cost estimates only)
1. [�A�(10)]
2. [�A C�(7) �A B�(9)]
3. [�A C E�(5) �A C D�(8) �A B�(9)]
4. [�A C E H�(4) �A C D�(8) �A B�(9)]
5. [�A C E H J�(1) �A C E H K�(4) �A C E H G�(4) �A C D�(8) �A C E H F�(8) �A B�(9)]
6. [�A C E H J M�(0) �A C E H J I�(2) �A C E H K�(4) �A C E H G�(4) �A C D�(8) �A C E H F�(8) �A B�(9)]

A

B

C

D

F

E

G

H

I

L

J

K

M

2
3

2

2

2

3
3

4

4

4

5
5

7

1

1

1

1 1

1

Start

Goal

10

9 8 4 2

1

0
7 5 4

4

8

5

D
ou

gl
as

 H
. F

ish
er

Heuristic Depth-First
Search of an Explicit Graph
Exploring Alternatives With Search

Douglas H. Fisher

Almost no difference between heuristic depth-first
search and greedy best-first search in

this example, just in placement of �A C E H F�(8)

Regular DFS, but on
each expansion, push
children in inverse
order by h (highest to
lowest)

Heuristic Depth-First Search

Frontier (stack with siblings pushed using h cost estimates)
1. [�A�(10)]
2. [�A C�(7) �A B�(9)]
3. [�A C E�(5) �A C D�(8) �A B�(9)]
4. [�A C E H�(4) �A C D�(8) �A B�(9)]
5. [�A C E H J�(1) �A C E H K�(4) �A C E H G�(4) �A C E H F�(8) �A C D�(8) �A B�(9)]
6. [�A C E H J M�(0) �A C E H J I�(2) �A C E H K�(4) �A C E H G�(4) �A C E H F�(8) �A C D�(8) �A B�(9)]

A

B

C

D

F

E

G

H

I

L

J

K

M

2

3

2

2

2

3
3

4

4

4

5
5

7

1

1

1

1 1

1
Start

Goal

10

9 8 4 2

1

0
7 5 4

4

8

5

Douglas H. Fisher

A* Search of an Explicit Graph
Exploring Alternatives With Search

Douglas H. Fisher

Frontier (priority queue organized by f = g + h cost estimates)

1. [�A�(10)]
2. [�A B�(10) �A C�(10)]
3. [�A B F�(10) �A C�(10) �A B D�(14)]
4. [�A B F G�(10) �A C�(10) �A B F H�(13) �A B D�(14)]

• Reached is not shown, but it is still being used to prevent
redundant paths.

• Note that, in cases of ties, the most recent generated path is
placed first. This is unlike previous examples. Might there be
(dis)advantages to this practice?

Use both actual cost so
far plus (g) estimated
cost to go (h). This sum
is called f.

A*

A

B

C

D

F

E

G

H

I

L

J

K

M

2

3

2

2

2

3
3

4

4

4

5
5

7

1

1

1

1 1

1
Start

Goal

10

9 8 4 2

1

0
7 5 4

4

8

5

Douglas H. Fisher

A* (cont.)

Frontier (priority queue organized by f = g + h cost estimates)
1. [�A�(10)]
2. [�A B�(10) �A C�(10)]
3. [�A B F�(10) �A C�(10) �A B D�(14)]
4. [�A B F G�(10) �A C�(10) �A B F H�(13) �A B D�(14)]
5. [�A B F G I�(10) �A C�(10) �A B F G L�(13) �A B F H�(13) �A B D�(14)]
6. [�A B F G I J�(10) �A C�(10) �A B F G L�(13) �A B F H�(13) �A B D�(14)]
7. [�A B F G I J M�(10) �A C�(10) �A B F G L�(13) �A B F H�(13) �A B D�(14)

A

B

C

D

F

E

G

H

I

L

J

K

M

2

3

2

2

2

3
3

4

4

4

5
5

7

1

1

1

1 1

1
Start

Goal

10

9 8 4 2

1

0
7 5 4

4

8

5

Douglas H. Fisher

• In this example, g costs are the same as in every other example,
but the h costs have changed.

• Is the heuristic admissible?
• Perform greedy best-first, heuristic depth-first, and A* search on

this graph.

A

B

C

D

F

E

G

H

I

L

J

K

M

2

3

2

2

2

3
3

4

4

4

5
5

7

1

1

1

1 1

1
Start

Goal

12

8 7 4 2

2

0
9 5 3

1

6

5

Second Example Graph

Douglas H. Fisher

Iterative Deepening
Exploring Alternatives With Search

Douglas H. Fisher

Frontier (Stack)

1. [�A�(4)] //DFS to f-threshold of 4
2. [�A B�(4) �A C�(7)]
3. [�A B F�(8) �A B D�(14) �A B A�(6) �A C�(7)]
4. [�A B D�(14) �A B A�(6) �A C�(7)]

5. [�A B A�(6) �A C�(7)]

6. [�A C�(7)] (followed by [])

7. [�A�(4)] //DFS to f-threshold of 6
8. [�A B�(4) �A C�(7)]
9. . . .
10. [�A�(4)] //DFS to f-threshold of 7
11. [�A B�(4) �A C�(7)]
12. [�A B F�(8) �A B D�(14) �A B A�(6) �A C�(7)]
13. [�A B D�(14) �A B A�(6) �A C�(7)]

14. [�A B A B�(6)�A B A C�(8) �A C�(7)]

15. [� A B A B A�(8)� A B A B F�(10) � A B A B D�(16)
�A C�(7)] . . .

Iterative Deepening A*

A

B

C

D

F

E

G

H

I

L

J

K

M

2

3

2

2

2

3
3

4

4

4

5
5

7

1

1

1

1 1

1
Start

Goal

4

3 6 4 2

1

0
4 2 1

4

8

5

Douglas H. Fisher

19. [�A C�(7)]

20. [�A C D�(12)�A C E�(7) �A C A�(10)]
21. [�A C D�(12)�A C E�(7) �A C A�(10)]

22. [�A C E�(7) �A C A�(10)]

23. [�A C E H�(7)�A C E D�(17) �A C E C�(11) �A C A�(10)]

24. [�A C E H F�(19) …�A C A�(10)]

…

30. [�A�(4)] //DFS to f-threshold of 8

Keep searching to increasing f-thresholds until a goal
is found. The first goal found is guaranteed to be a
least cost from start to goal IF h is admissible.

Consider the search graph below. The h value of a node is given adjacent to that node. The actual cost of
traversing an arc (in the indicated directions) is given adjacent to that arc. Node S is the start/initial state.
Nodes G1 and G2 are goals. Use this graph for the questions to follow.

S

A

B

C

D

E

G1

G2

4

1

2

2

2

4

2

5

1

27

4

5

3

2 0

0

2

Suggested Exercises

When you have completed all the questions, upload a pdf of the questions and answers to Brightspace. You may
consult the pdf while you take the “quiz” component. Douglas H. Fisher

1. Give the order in which nodes are visited (i.e., checked for goalness) by heuristic depth first search. In the
case of two or more nodes with the same evaluation score on the frontier, break the tie by visiting the nodes in
alphabetical order as labeled above – this same convention applies to the remaining parts of this question. For
this question ONLY, assume that “reached” (as described in the videos) is NOT used.

2. Give the order in which nodes are visited (i.e., checked for goalness) by greedy best-first search.

Suggested Exercises

3. Give the order in which nodes are visited (i.e., checked for goalness) by lowest cost first search.

4. Give the order in which nodes are visited (i.e., checked for goalness) by A*.

5. Which nodes would be checked for goalness on the first iteration of iterative deepening A*?

Notes:

• G1 is alphabetically before G2
• A misconception on the part of some is that the "order that nodes are visited" is the same as "the final path

returned". This is not typically the case. Most search strategies will visit vertices that are not part of the final path. Douglas H. Fisher

Searching an Implicit Graph
Exploring Alternatives With Search

Douglas H. Fisher

Searching an Implicit Graph

• All of the search methods studied for an explicit graph can be adapted
straightforwardly to search of an implicit graph.

• An implicit graph is one with “vertices” (states) that are created “on
demand,” as search proceeds.

• As with explicit graphs, we are generally most interested in using search to
find one or more paths to a goal, rather than simply finding a goal per se.

• Thus, search is used to find a “plan” in virtual space that can be executed in
the real world later.

Douglas H. Fisher

Adapted from Slide 13 Chapter 6, Lecture 1 (https://artint.info/2e/slides/ch06/lect1.pdf) of Slides for Poole, D., & Mackworth, A. (2017). Artificial
intelligence: Foundations of computational agents (2nd ed.). Cambridge University Press. Copyright © Poole and Mackworth, 2017 and are licensed under

a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/).

This may look like another problem of
searching a graph for a location
(vertex) that satisfies some goal
condition, but it’s not!

Rather, the task for service robot
Rob is to find a path of actions
from a given situation defined by
features on the left (e.g., human
Sam wants coffee but has none),
for a goal situation (e.g., that Sam
has coffee).

“Operation” is synonymous with
“action.”

Searching an Implicit Graph (cont.)

D
ou

gl
as

 H
. F

ish
er

https://artint.info/2e/slides/ch06/lect1.pdf
https://creativecommons.org/licenses/by-nc-sa/4.0/

Source vertex Arc Resulting vertex

We could treat this problem like an explicit graph problem, with each situation description as an atomic, indivisible vertex, and vertices are
connected by labeled, directed arcs. I’ll write each vertex as lab-rhc-swc-mw-rhm (with hyphens) to stress the indivisibility.

lab-rhc-swc-mw-rhm mc mr-rhc-swc-mw-rhm
lab-rhc-swc-mw-~rhm mc mr-rhc-swc-mw-~rhm
lab-rhc-swc-~mw-rhm mc mr-rhc-swc-~mw-rhm
lab-rhc-swc-~mw-~rhm mc mr-rhc-swc-~mw-~rhm
lab-rhc-~swc-mw-rhm mc mr-rhc-~swc-mw-rhm
lab-rhc-~swc-mw-~rhm mc mr-rhc-~swc-mw-~rhm
lab-rhc-~swc-~mw-rhm mc mr-rhc-~swc-~mw-rhm
lab-rhc-~swc-~mw-~rhm mc mr-rhc-~swc-~mw-~rhm
lab-~rhc-swc-mw-rhm mc mr-~rhc-swc-mw-rhm
…
lab-~rhc-~swc-~mw-~rhm mc mr-~rhc-~swc-~mw-~rhm
…

If every situation is really
indivisible, then
lab-rhc-swc-mw-rhm has no
more in common with
off-rhc-swc-mw-rhm than it
does with
off-~rhc-~swc-~mw-~rhm.

24 = 16 different vertex-arc-
vertex triples are needed to
represent that the move-
clockwise (mc) action will
move Rob from the lab to
the mail room (mr). And
that’s only the start!

Delivery Robot Example

mcc mc

mcc
mc

mcc
mc

pum
puc

off-~rhc-swc-mw-~rhm lab-~rhc-swc-mw-~rhm mr-~rhc-swc-mw-~rhm

cs-~rhc-swc-mw-~rhm cs-rhc-swc-mw-~rhm mr-~rhc-swc-~mw-rhm

D
ou

gl
as

 H
. F

ish
er

State Action Resulting State

< lab, rhc, swc, mw, rhm> mc < mr, rhc, swc, mw, rhm>
< lab, rhc, swc, mw, ~rhm> mc < mr, rhc, swc, mw, ~rhm>
< lab, rhc, swc, ~mw, rhm> mc < mr, rhc, swc, ~mw, rhm>
< lab, rhc, swc, ~mw, ~rhm> mc < mr, rhc, swc, ~mw, ~rhm>
…
< lab, ~rhc, ~swc, ~mw, ~rhm> mc < mr, ~rhc, ~swc, ~mw, ~rhm>

• swc (Sam wants coffee) is binary-valued.
• mw (mail waiting) is binary-valued.

• rloc (Rob’s location) is four-valued.
• rhc (Rob has coffee) is binary-valued.

• rhm (Rob has mail) is binary-valued.

<lab, ?V1, ?V2, ?V3, ?V4> mc <mr, ?V1, ?V2, ?V3, ?V4>
<mr, ?V1, ?V2, ?V3, ?V4> mc <cs, ?V1, ?V2, ?V3, ?V4>
<cs, ?V1, ?V2, ?V3, ?V4> mc <off, ?V1, ?V2, ?V3, ?V4>
<off, ?V1, ?V2, ?V3, ?V4> mc <lab, ?V1, ?V2, ?V3, ?V4>

16
mc

Represented as
four patterns
with factored

representation

<cs, ~rhc, ?V1, ?V2, ?V3> puc <cs, rhc, ?V1, ?V2, ?V3>
<off, rhc, ?V1, ?V2, ?V3> dc <off, ~rhc, ~swc, ?V2, ?V3>
<mr, ?V1, ?V2, mw, ~rhm> pum <mr, ?V1, ?V2, ~mw, rhm>
<off, ?V1, ?V2, ?V3, rhm> dm <off, ?V1, ?V2, ~V3, ~rhm>

Different representations for actions
possible, (e.g., perhaps Rob can’t be

holding coffee to pick up mail) but must
choose one set of definitions.

A factored (or feature vector or attribute-value pairs) representation

Delivery Robot Example

Coffee
shop
(cs)

Sam’s
office
(off)

Mail
room
(mr)

Lab
(lab)

Douglas H. Fisher

Delivery Robot Example

• rloc (Rob’s location) is four-valued.
• rhc (Rob has coffee) is binary-valued.
• swc (Sam wants coffee) is binary-valued.
• mw (mail waiting) is binary-valued.
• rhm (Rob has mail) is binary-valued.

<cs, ~rhc, swc, mw, ~rhm>

Initial
state

Goal
states

<?V1, ?V2, ~swc, ?V3, ~V4>

Coffee
shop
(cs)

Sam’s
office
(off)

Mail
room
(mr)

Lab
(lab)

Douglas H. Fisher

<cs, ~rhc, swc, mw, ~rhm>

Initial state Goal states

<…, ~swc, …>

<cs, rhc, swc, mw, ~rhm>

puc

<off, ~rhc, swc, mw, ~rhm>

mc

<mr ~rhc, swc, mw, ~rhm>

States are realized through operator application.

Delivery Robot Example

• rloc (Rob’s location) is four-valued.
• rhc (Rob has coffee) is binary-valued.
• swc (Sam wants coffee) is binary-valued.
• mw (mail waiting) is binary-valued.
• rhm (Rob has mail) is binary-valued.

Coffee
shop
(cs)

Sam’s
office
(off)

Mail
room
(mr)

Lab
(lab)

Douglas H. Fisher

mc mcc

Delivery Robot Example

• rloc (Rob’s location) is four-valued.
• rhc (Rob has coffee) is binary-valued.
• swc (Sam wants coffee) is binary-valued.
• mw (mail waiting) is binary-valued.
• rhm (Rob has mail) is binary-valued.

<cs, ~rhc, swc, mw, ~rhm>

Initial state Goal states

<…, ~swc, …>

<cs, rhc, swc, mw, ~rhm>

puc

<off, ~rhc, swc, mw, ~rhm>

mc

<mr ~rhc, swc, mw, ~rhm>

Frontier, a stack in this case
of depth-first search

mcc

<off, rhc, swc, mw, ~rhm> <mr, rhc, swc, mw, ~rhm>

Coffee
shop
(cs)

Sam’s
office
(off)

Mail
room
(mr)

Lab
(lab)

Douglas H. Fisher

<off, ~rhc, ~swc, mw, ~rhm>

dc

<lab, rhc, swc, mw, ~rhm>

mc

<cs, rhc, swc, mw, ~rhm>

mcc

Delivery Robot Example

mc

• rloc (Rob’s location) is four-valued.
• rhc (Rob has coffee) is binary-valued.
• swc (Sam wants coffee) is binary-valued.
• mw (mail waiting) is binary-valued.
• rhm (Rob has mail) is binary-valued.

<cs, ~rhc, swc, mw, ~rhm>

Initial state Goal states

<…, ~swc, …>

<cs, rhc, swc, mw, ~rhm>

puc

<off, ~rhc, swc, mw, ~rhm>

mc

<mr ~rhc, swc, mw, ~rhm>

<off, rhc, swc, mw, ~rhm> <mr, rhc, swc, mw, ~rhm>

mccCoffee
shop
(cs)

Sam’s
office
(off)

Mail
room
(mr)

Lab
(lab)

Douglas H. Fisher

Repeated state
X

Goal

Delivery Robot Example

<off, ~rhc, ~swc, mw, ~rhm>

dc

<lab, rhc, swc, mw, ~rhm>

mc

<cs, rhc, swc, mw, ~rhm>

mcc

mc

• rloc (Rob’s location) is four-valued.
• rhc (Rob has coffee) is binary-valued.
• swc (Sam wants coffee) is binary-valued.
• mw (mail waiting) is binary-valued.
• rhm (Rob has mail) is binary-valued.

<cs, ~rhc, swc, mw, ~rhm>

Initial state Goal states

<…, ~swc, …>

<cs, rhc, swc, mw, ~rhm>

puc

<off, ~rhc, swc, mw, ~rhm>

mc

<mr ~rhc, swc, mw, ~rhm>

<off, rhc, swc, mw, ~rhm> <mr, rhc, swc, mw, ~rhm>

mccCoffee
shop
(cs)

Sam’s
office
(off)

Mail
room
(mr)

Lab
(lab)

D
ou

gl
as

 H
. F

ish
er

Searching an Implicit Graph:
A World Trade Game
Exploring Alternatives With Search

Douglas H. Fisher

World Trade Game Example

A simulation in which fictional countries that are actually fronts for AI game players build and trade
resources in pursuit of bettering each of their own circumstances as well as the fictional world’s
circumstances, each country using utility metrics of their software designer’s and AI’s choosing.

Douglas H. Fisher

A single across-country operator template exists, (TRANSFER ?C_i ?C_k ((?R_1j ?X_1j))), for ?C_i to
give ?C_k any amount, ?X_1j, of resource ?R_1j in ?C_i’s possession.

World Trade Game Example
TRANSFORMs are within-country actions that allow a country, given by the value of variable ?C, to create composite
resources (OUTPUTS) from raw resources and other composite resources (INPUTS). Templates show relative amounts
of resources, which can be multiplicatively adjusted, so that the Alloys Template can be used to transform INPUTS of
3*1 population and 3*2 MetallicElements into OUTPUTS of 3*1 Population, 3*1 MetallicAlloys, and
3*MettalicAlloysWaste.

Housing template Alloys template Electronics template
(TRANSFORM ?C

(INPUTS
(Population 5)
(MetallicElements 1)
(Timber 5)
(MetallicAlloys 3))

(OUTPUTS
(Housing 1)
(HousingWaste 1)
(Population 5)))

(TRANSFORM ?C
(INPUTS

(Population 1)
(MetallicElements 2))

(OUTPUTS
(Population 1)
(MetallicAlloys 1)
(MetallicAlloysWaste 1)))

(TRANSFORM ?C
(INPUTS

(Population 1)
(MetallicElements 3)
(MetallicAlloys 2))

(OUTPUTS
(Population 1)
(Electronics 2)
(ElectronicsWaste 1)))

Douglas H. Fisher

World Trade Game Example
Alloys template

((TRANSFORM ?C (INPUTS (R1 1) (R2, 2)) (OUTPUTS (R1 1) (R21, 1) (R21’ 1)),

preconditions are of the form ?ARj <= ?C(?Rj)

Electronics template

(TRANSFORM ?C (INPUTS (R1 3) (R2 2) (R21 2)) (OUTPUTS (R22 2) (R22’ 2) (R1 3)),

preconditions are of the form ?ARj <= ?C(?Rj)

Housing template

(TRANSFORM ?C (INPUTS (R1 5) (R2, 1) (R3 5) (R21 3) (OUTPUTS (R1 5) (R23, 1)
(R23’ 1)),

preconditions are of the form ?AIk <= ?C(?Rk)

(TRANSFER ?Cj1 ?Cj2 ((?Ri ?ARi)), where ?ARi <= ?Cj1(?Ri)
State, nk

A(tlantis)
R1: 500
R2: 700
R3: 100
R21: 0
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

E(rewon)
R1: 100
R2: 50
R3: 2000
R21: 30
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

Templates can be used to
generate a large number of
successors to state nk.

While an explicit graph
representation could have
been used with the small
robot delivery example, with
nontrivial numbers of
countries and resources (and
possible amounts of
resources), an explicit graph
is not practical here.

The graph is implicit in the
actions and is generated on
demand.

Douglas H. Fisher

World Trade Game Example
Alloys template

((TRANSFORM ?C (INPUTS (R1 1) (R2, 2)) (OUTPUTS (R1 1) (R21, 1) (R21’ 1)),

preconditions are of the form ?ARj <= ?C(?Rj)

(TRANSFORM A (INPUTS (R1 50*1) (R2, 50*2)) (OUTPUTS (R1 50) (R21, 50) (R21’ 50)),

preconditions 50 <= 500, 100 <= 700

Electronics template

(TRANSFORM ?C (INPUTS (R1 3) (R2 2) (R21 2)) (OUTPUTS (R22 2) (R22’ 2) (R1 3)),

preconditions are of the form ?ARj <= ?C(?Rj)

(TRANSFORM A (INPUTS (R1 30) (R2 20) (R21 20)) (OUTPUTS (R22 20) (R22’ 20) (R1 30)),

preconditions 30 <= 500, 20 <= 700, 20 !<= 0
Housing template

(TRANSFORM ?C (INPUTS (R1 5) (R2, 1) (R3 5) (R21 3) (OUTPUTS (R1 5) (R23, 1) (R23’ 1)),

preconditions are of the form ?AIk <= ?C(?Rk)

(TRANSFORM E (INPUTS (R1 10*5) (R2, 10*1) (R3 10*5) (R21 10*3) (OUTPUTS (R1 10*5) (R23, 10*1) (R23’ 10*1)),

preconditions are of the form 50 <= 100, 10 <= 50, 50 <= 2000, 30 <= 30

(TRANSFER ?Cj1 ?Cj2 ((?Ri ?ARi)), where ?ARi <= ?Cj1(?Ri)

(TRANSFER E A ((R3 500)), preconditions 500 <= 2000

A(tlantis)
R1: 500
R2: 700
R3: 100
R21: 0
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

E(rewon)
R1: 100
R2: 50
R3: 2000
R21: 30
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

Douglas H. Fisher

Alloys template (one instantiation)

(TRANSFORM A (INPUTS (R1 50*1) (R2, 50*2)) (OUTPUTS (R1 50) (R21, 50) (R21’
50)),

preconditions 50 <= 500, 100 <= 700

Electronics template (one instantiation)

(TRANSFORM A (INPUTS (R1 30) (R2 20) (R21 20)) (OUTPUTS (R22 20) (R22’ 20) (R1
30)),

preconditions 30 <= 500, 20 <= 700, 20 !<= 0. (insufficient resources)

Housing template (one instantiation)

(TRANSFORM E (INPUTS (R1 10*5) (R2, 10*1) (R3 10*5) (R21 10*3) (OUTPUTS (R1
10*5) (R23, 10*1) (R23’ 10*1)),

preconditions are of the form 50 <= 100, 10 <= 50, 50 <= 2000, 30 <= 30

Transfer (one instantiation)
(TRANSFER E A ((R3 500)), preconditions 500 <= 2000

X
No successor

A(tlantis)
R1: 500
R2: 700
R3: 100
R21: 0
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

E(rewon)
R1: 100
R2: 50
R3: 2000
R21: 30
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

A(tlantis)
R1: 500
R2: 600
R3: 100
R21: 50
R21’: 50
…

World Trade Game Example
E(rewon)
R1: 100
R2: 50
R3: 2000
R21: 30
R21’: 0
…

A(tlantis)
R1: 500
R2: 700
R3: 100
R21: 0
R21’: 0
R22: 0
R22’: 0
R23: 0
R23’: 0

E(rewon)
R1: 10
R2: 40
R3: 1950
R21: 0
R21’: 0
R22: 0
R22’: 0
R23: 10
R23’: 10

A(tlantis)
R1: 500
R2: 700
R3: 600
R21: 0
R21’: 0
…

E(rewon)
R1: 100
R2: 50
R3: 1500
R21: 30
R21’: 0
…

Douglas H. Fisher

The Generic Algorithm
for Searching Implicit Graphs
Exploring Alternatives With Search

Douglas H. Fisher

Otherwise, generate successors of N (next slide).

A Revision to Generic (Heuristic)
Search Algorithm for Implicit Graphs

structure SearchNode (State Parent Action Path-Cost DistEst, Children)
SearchNode Search (Vertices V, Arcs Actions A, S0, Goal Condition G HeuristicFn H)

/* … assume that each entry in A, a, now includes an operator a.op and cost a.cost;
G is a Boolean goal condition */

SearchNode N = new SearchNode(State S0, Parent NULL, Action NULL, Path-Cost 0, DistEst H(S0, G), Children
NULL)

Frontier = [N]
Reached = {N}
while Frontier != [] do

select and remove N from Frontier
if N.State satisfies G then return N // from which the path from S0 to N.State can be recovered

return ��

Douglas H. Fisher

structure SearchNode (State Parent Action Path-Cost DistEst, Children)
SearchNode Search (Vertices V, Arcs Actions A, S0, Goal Condition G HeuristicFn H)
… (previous slide)

if N.State satisfies G then return N // from which the path from S0 to N.State can be recovered
for each action a in A that is applicable to N.State

SearchNode L = new SearchNode(State Apply(a.op, N.State), Parent N, Action a,
Path-Cost N.Path-Cost + a.cost, DistEst default,
Children NULL)

L.DistEst = H(L.State, G)
if !exists Node M in Reached s.t. M.State == L.State or L.Path-Cost < M.Path-Cost

N.Children = N.Children + L
Reached = Reached - M + L
Frontier = Frontier + L

return ��

Generate
Successors (N, A)

This is no longer a simple check of a reencountered atomic
and extant vertex but now requires a check to see if the two
are exact copies (of factored or structured representations).

A Revision to Generic (Heuristic)
Search Algorithm for Implicit Graphs (cont.)

Douglas H. Fisher

<off ~rhc, swc, mw, ~rhm>
Initial state

<lab, ~rhc, swc, mw, ~rhm> <cs, ~rhc, swc, mw, ~rhm>

mcc

<mr, ~rhc, swc, mw, ~rhm>

mc

<cs, rhc, swc, mw, ~rhm>
pum

mc

puc

<mr, ~rhc, swc, ~mw, rhm>

<cs, ~rhc, swc, ~mw, rhm>
mc

<cs, rhc, swc, ~mw, rhm>

puc

<off, rhc, swc, ~mw, rhm>
mc

<mr, rhc, swc, mw, ~rhm>

<mr, rhc, swc, ~mw, rhm>

<lab, rhc, swc, ~mw, rhm>

<off, rhc, swc, ~mw, rhm>

mcc

pum

mcc

mcc

Redundant paths assuming state copy equality

Delivery Robot Example of
Redundant Paths With Implicit Graphs

• rloc (Rob’s location) is four-valued.
• rhc (Rob has coffee) is binary-valued.
• swc (Sam wants coffee) is binary-valued.
• mw (mail waiting) is binary-valued.
• rhm (Rob has mail) is binary-valued.

Coffee
shop
(cs)

Sam’s
office
(off)

Mail
room
(mr)

Lab
(lab)

Douglas H. Fisher

The End
The Generic Algorithm for Searching Implicit Graphs

