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Searching an Explicit Graph
Without Checking for Repeated Vertices

Function Search (Vertices V, Arcs A, vy, G) Route planning is
/* Given: abstracted to search an explicit directed graph.
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Frontier = [ {vg) ]

while Frontier =[] do //search dead ends can eventually in an empty the Frontier
select and remove (v, ..., vi» from Frontier
if vi in G then return vy, ..., Vi)
for each v such that (v, v) in A
Frontier = Frontier + {vq, ..., Vi, V)
return ()

*A dead end is a vertex from which there are no directed arcs out of the vertex. D Ouglas H. Fisher



o
Searching an Explicit Graph

Without Checking for Repeated Vertices

Function Search (Vertices V, Arcs A, vy, G)
/* Given:

1
2
3 V is a set of atomic labels representing vertices in a graph

4 A is a set of directed arcs (aka edges) between two nodes in V @ Goal
:. Vy is a starting vertex, in V Start
7

8

9

G is a set of goal vertices, each in V
Return: vertex, vg
path of vertices (and arcs) from vy to a member of G

Local: +<— s shorthand for «——

—

10. Frontier is a collection of paths */
11.  Frontier = {vg) ]

12.  while Frontier =[] do

13. select and remove (v, ..., vi» from Frontier
14. if vi in G then return vy, ..., Vi)

15. for each v such that (v, v) in A

16. Frontier = Frontier + (v, ..., Vi, V)

17.  return )
Douglas H. Fisher
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o
Searching an Explicit Graph

Without Checking for Repeated Vertices

1 Function Search (Vertices V, Arcs A, vy, G) In this case, we would want to

5 I Given: return a path to a goal (e.g.,

3 V is a set of atomic labels representing vertices in a graph <(A B) (B F) (F H) (H J) (J M)> )
4. Ais a set of directed arcs (aka edges) between two nodes in V rather than jUSt a goal vertex, which
5. Vo is a starting vertex, in V we know anyways

6 G is a set of goal vertices, each in V

7 Return:

8 path of vertices (and arcs) from v, to a member of G

9 Local:

10. Frontier is a collection of paths */

11.  Frontier = {vg) ]

12.  while Frontier =[] do

13. select and remove (v, ..., vi» from Frontier
14. if vi in G then return vy, ..., Vi)

15. for each v such that (v, v) in A

16. Frontier = Frontier + (v, ..., Vi, V)

17.  return )
Douglas H. Fisher




o
Searching an Explicit Graph

Without Checking for Repeated Vertices

1 Function Search (Vertices V, Arcs A, vy, G)

2. " Given:

3 V is a set of atomic labels representing vertices in a graph

4 Ais a set of directed arcs (aka edges) between two nodes in V

5. Vo is a starting vertex, in V

6 G is a set of goal vertices, each in V

7 Return:

z Lop;aatlr: of vertices (and arcs) from vO to a member of G If Frontier is a stack, then depth-first

10. Frontier is a collection of paths */ search ) . .

1. Frontier=1[ <ve) | If Frontier is a queue, then breadth-first
search

12.  while Frontier =[] do

13. select and remove (v, ..., vi» from Frontier

14. if vi in G then return vy, ..., Vi)

15. for each v such that (v, v) in A

16. Frontier = Frontier + (v, ..., Vi, V)

17.  return )
Douglas H. Fisher



o
Searching an Explicit Graph

Without Checking for Repeated Vertices

1 Function Search (Vertices V, Arcs A, vy, G)

2. " Given:

3 V is a set of atomic labels representing vertices in a graph

4 Ais a set of directed arcs (aka edges) between two nodes in V

5 Vo is a starting vertex, in V

6. G is a set of goal vertices, each in V

7 Return:

8 path of vertices (and arcs) from vy to a member of G

9 Local:

10. Frontier is a collection of paths */

11.  Frontier =[ {(vy) ]

12.  while Frontier 1= [] do (..., Vi, V) is shorthand for (..., (v, V)) , where (v, v)inA.
13. select and remove (v, ..., v} from Frontier For example, (ABF HJM) is shorthand for {(AB) (B F) (F H) (HJ) (J M)}
14. if vi in G then return (v, ..., Vi)

15. for each v such that (v, v) in A

16. Frontier = Frontier + (v, ..., Vi, V)

17.  return )
Douglas H. Fisher



Depth-First Search of
an Explicit Graph Without Costs
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Depth-First Search ot a Graph
(Without Checking for Repeated Vertices)

Start

Frontier (stack of paths)

1. [ {A) ]
2. [(ABY (AC)]
3. [(ABF) (ABD) (ABA) (AC)]

1 Iteratiovn\ Top of stack (along left)

of while
loop

13. while Frontier !=[] do

14. select and remove (v,, ..., v, from Frontier

15. if v, in G then return (v,, ..., v,)
16. for each v such that (v, v) in A
17. Frontier = Frontier + (v, ..., v, V)

Douglas H. Fisher




Depth-First Search ot a Graph
(Without Checking for Repeated Vertices)

Start
vertex

Frontier (stack of paths)

1. [ {A) ]
2. [(ABY (AC)]
3. [(ABF) (ABD) (ABA) (AC)]

*  Every path begins with start vertex A, v,

* Last vertex in each path is underlined
«  Without checking for repeated vertices, redundant

13. while Frontier !=[] do and unnecessarily costly paths can be added to
14, select and remove (v, ..., v,» from Frontier the Frontier

15. if v in G then return  {vy, ..., v, (ABA) is one example

16. for each v such that (v, v) in A

17. Frontier = Frontier + (v, ..., v, V)

Douglas H. Fisher




Depth-First Search ot a Graph
(Without Checking for Repeated Vertices)

Start
vertex

Frontier (stack of paths)

1. [ {A) ]
2. [(ABY (AC)]
3. [(ABF) (ABD) (ABA) (AC)]

«  Boldface indicates that a path, such as (A B F)
in step 3, was added to the Frontier in the most
recent iteration, when its parent (AB) in step 2
was removed from the Frontier

13. while Frontier !=[] do
« Regular font indicates that a path, such as (A C)

14. select and remove (v, ..., v,> from Frontier in step 3, was on the previous instance of the
15. if v, in G then return (v,, ..., v,) Frontier

16. for each v such that (v, v) in A

17. Frontier = Frontier + (v, ..., v, V)

Douglas H. Fisher




Depth-First Search ot a Graph
(Without Checking for Repeated Vertices)

Start

Frontier (stack of paths)

1. [ {A) ]
2. [(ABY (AC)]
3. [(ABF) (ABD) (ABA) (AC)]

If you wish, pause the video and complete the next
iteration or two before continuing.

13. while Frontier !=[] do

14. select and remove (v,, ..., v, from Frontier
15. if v, in G then return (v,, ..., v,)

16. for each v such that (v, v) in A

17. Frontier = Frontier + (v, ..., v, V)

Douglas H. Fisher




Depth-First Search ot a Graph
(Without Checking for Repeated Vertices)

Frontier (stack of paths)

Start

o pnp =

[ (A ]

[ (AB) (AC)]

[(ABE) (ABD) <(ABA) <(AC)]
[ (ABFG) (ABFH) (ABFB) (ABD) <(ABA) <(AC)]

N

Examples of paths with loops

Douglas H. Fisher




Depth-First Search ot a Graph
(Without Checking for Repeated Vertices)

Frontier (stack of paths)

Start

o &~ 0D~

[ (A) ]

[ (ABY (AC) ]

[ (ABE) (ABD) (ABA) <(AC)]
[ (ABFG) (ABFH) (ABFB) (ABD) <(ABA) <(AC)]

[ (ABFGL) (ABFGI) (ABFGF) (ABFGH) <(ABFH) (ABFB) (ABD) <(ABA) <(AC)]

\/

Example of redundant, nonloop paths

(two different paths to H)

Douglas H. Fisher




Depth-First Search ot a Graph
(Without Checking for Repeated Vertices)

Start

Frontier (stack of paths)

[ (A) ]

[ (ABY (AC) ]

[ (ABE) (ABD) (ABA) <(AC)]
[ (ABFG) (ABFH) (ABFB) (ABD) <(ABA) <(AC)]

[ (ABFGL) (ABFGI) (ABFGF) (ABFGH) <(ABFH) (ABFB) (ABD) <(ABA) <(AC)]

[ (ABFGLG) (ABFGL]) (ABFG]) (ABFGF) (ABFGH) (ABFH) (ABFB) (ABD)
(ABA) <(AC)]

7. [(ABFGLGL) (ABFGLG]) (ABFGLGF) (ABFGL]) (ABFGI) (ABFGE) (ABFGH) <(ABFH)
(ABFB) <(ABD) <ABA) <(AC)]

By now, you should see the problem of redundant paths and the potential for looping, which is particularly problematic with depth-first
search because of potential for infinite loops—consider G L G L as an example.

R i

Douglas H. Fisher
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o
Searching an Explicit Graph With Checking

for Repeated Vertices and Redundant Paths

1. Function Search (Vertices V, Arcs A, vg, G)
[* ...%
11. Frontier = {vy) ]
12. Reached ={ {vy) }
13. while Frontier =[] do //search dead ends, loops, and other redundant paths can result in an empty

Frontier
14. select and remove (v, ..., x> from Frontier
15. if vi in G then return vy, ..., Vi)
16. for each v such that (vg, v) in A
17. if lexists (vp, ..., v) in Reached
18. or Cost({ {vg, ..., Vi, V) ) < Cost({ {vg, ..., V2 )
19. Reached = Reached - (vg, ...,v) + (Vg, ..., Vi, V)
20. Frontier = Frontier + <{vy, ..., Vi, V)
21. return () Douglas H. Fisher



o
Searching an Explicit Graph With Checking

for Repeated Vertices and Redundant Paths

1. Function Search (Vertices V, Arcs A, vg, G)
[* .07

11. Frontier = [ {vy? ]

12. Reached ={ {vy) }

13. while Frontier =[] do

14. select and remove (v, ..., v» from Frontier

15. if v in G then return {vy, ..., Vi)

16. for each v such that (v, v) in A

17. if lexists (vy, ..., v) in Reached // if a path to v does not already exist in Reached then
add it

18. or Cost({ <vg, ..., Vi, V> ) < Cost({ {vg, ..., V) )

19. Reached = Reached - (vg, ..., v) + Vg, eeey Vi, V2 Ilif {vy, ..., v) doesn’t exist,

/Ithen Reached - {vy, ..., v) is a no-op

Douglas H. Fisher
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o
Searching an Explicit Graph With Checking

for Repeated Vertices and Redundant Paths

1. Function Search (Vertices V, Arcs A, vq, G)
[* ...*

11. Frontier = [ {vg) ]

12. Reached = { {vy) }

13. while Frontier =[] do

14. select and remove (v, ..., vi» from Frontier
15. if vi in G then return vy, ..., Vi)
16. for each v such that (v, v) in A
17. if lexists {vg, ..., v) in Reached
18. or Cost({ {vg, ..., Vi, V) ) < Cost({ {vq, ..., V) ) Il if a lesser cost path to v is
found,
19. Reached = Reached - (vy,...,v) + {vg, ..., Vi V) [Ithen replace old path to v
20. Frontier = Frontier + <{vy, ..., Vi, V)
21. return <) Douglas H. Fisher



o
Searching an Explicit Graph With Checking

for Repeated Vertices and Redundant Paths

1. Function Search (Vertices V, Arcs A, vq, G)
[* ...*

11.  Frontier = {vgp) ]

12. Reached = { {vy) }

13. while Frontier =[] do

14. select and remove (v, ..., vi» from Frontier

15. if vi in G then return vy, ..., Vi)

16. for each v such that (v, v) in A

17. if lexists {vo, ..., v) in Explored

18. or Cost({ {vo, ..., Vi, V2 ) < Cost({ {vg, ..., V) )
19. Reached = Reached - (vg, ..., v) + (Vg ..., Vi, V)
20. Frontier = Frontier + (v, ..., Vi, V)

21. return

Douglas H. Fisher
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Breadth-First Search With
Checks for Repeated Vertices

Exploring Alternatives With Search
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Breadth-First Search of a Graph
(With Checking for Repeated Vertices)

0

Frontier (queue of paths) Reached
1. [(A)] 1. {(A)}
2. [{(AB) (AC)] 2. {{A) (AB) <(AC)}

14. select and remove (v,, ..., v,» from Frontier
15. if v in G then return vy, ..., v,)
16. for each v such that (v,, v) in A

17. if lexists (v, ..., v) in Reached

18. or Cost({ {vg, ..., Vi, V2 ) < Cost({ vy, ..., V) )
19. Reached = Reached - (v, ..., V) + (vg, ..., V,, V)
20. Frontier = Frontier + (v, ..., V, V)

Douglas H. Fisher




Breadth-First Search of a Graph

(With Checking for Repeated Vertices)

Frontier (queue of paths)

0

Reached

1. [ (A ]
2. [(AB) (AC)]
3. [(AC) (ABD) {(ABF)]

4. [ (ABD) <(ABF) <AGCDHB)>- (ACE) ]

14. select and remove (v,, ..., v,» from Frontier

15. if v, in G then return (v, ..., v,

16. for each v such that (v,, v) in A

17.
18.
19.
20.

if lexists (v, ..., v) in Reached

or Cost({ (v, ..., Vi, V2 ) < Cost({ {vq, .., V) )

Reached = Reached - (v, ..., V)

Frontier = Frontier + (v, ..., V, V)

+ Vg, cory Vi, VD

—

{ (A) }
2. {(A) (AB) (AC)}

3. {(A) (AB) <(AC) (ABD) (ABF)}

4. {{A) (AB) <(AC) (ABD) <(ABF) (ACE)}

—A-G-D>—is a redundant, no less costly path to D than (A
B D) , and so would not be added to Frontier (or Reached)
to begin with. Note that

—A-G-DB>— is correctly excluded from Reached already.

Douglas H. Fisher




Breadth-First Search of a Graph

(With Checking for Repeated Vertices)

Frontier (queue of paths)

0

Reached

1. [ (A ]
2. [(AB) (AC)]
3. [(AC) (ABD) {(ABF)]

4. [ (ABD) <(ABF) <AGCDHB)>- (ACE) ]

14. select and remove (v,, ..., v,» from Frontier

15. if v, in G then return (v, ..., v,

16. for each v such that (v,, v) in A

17.
18.
19.
20.

if lexists (v, ..., v) in Reached

or Cost({ (v, ..., Vi, V2 ) < Cost({ {vq, .., V) )

Reached = Reached - (v, ..., V)

Frontier = Frontier + (v, ..., V, V)

+ Vg, cory Vi, VD

—

{ (A) }
2. {(A) (AB) (AC)}

3. {(A) (AB) <(AC) (ABD) (ABF)}

4. {{A) (AB) <(AC) (ABD) <(ABF) (ACE)}

If you wish complete the next iteration or two before
continuing. The complete breadth-first search is shown on
the next slide.

Douglas H. Fisher




Breadth-First Search of a Graph
(With Checking for Repeated Vertices)

Frontier (queue of paths) Reached

1. [ (A ] 1. { (A}

2. [{AB) <(AC)] 2. {{A) (AB)

3. [(AC) (ABD) (ABF)] 3. { (A (AB)

4. [(ABD) (ABF) (ACE) ] 4. {(AY (AB)

5. [(ABF) (ACE) ] 5 {(A) (AB)

6. [(ACE) (ABFG) (ABFH)] 6. {(A) <(AB)

7. [(ABFG) <(ABFH) ] (ABFG)

8. [(ABFH) (ABFGI) ] 7. {(A) (AB) ...

9. [(ABFGI) (ABFHJ) (ABFHK) ] 8. {(A (AB) ..

10. [(ABFHJ) (ABFHK) (ABFGIL)] 9 {(A) (AB) ..

11. [(ABFHK) (ABFGIL) (ABFHJM)] 10-{(A> <(AB) ..
1. { (A (AB) ...

Finding a goal, M, is two dequeues away.

(AC)
(AC)
(AC)
(AC)

(ABFH)}

(ABD) (ABF)}
(ABD) (ABF) (ACE)}
(ABD) (ABF) (ACE)}
(ABD) (ABF) <(ACE)
(ABFH)}
(ABFH) (ABFGD }
(ABFGI) (ABFHJ) (ABFHK)}
(ABFHK) (ABFGIL)}
(ABFGIL) (ABFHJM)} Douglas H. Fisher
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Farly Goal Test With Breadth-First Search

while Frontier =[] do

select and remove (v, ..., v,» from Frontier

v, in-Gthenreturm (v v —

for each v such that (v,, v) in A

if lexists (v, ..., v) in Reached or

Gost{— ¥y —r<-Gost{—<vy—v—)
if vin G then return (v, ..., v, V)
Reached = Reached - (v, ..., v) + {vg, ..., V,, V)
Frontier = Frontier + (v, ..., v,, V)

No late-goal test after dequeue

Comparing costs not necessary in breadth-first search
and paths will automatically be enumerated in order of length

Rather make early-goal test before enqueue

If not goal, then go ahead and enqueue it

* An early goal test in breadth-first search will still ensure that minimal length paths to goal are found.
* And it is more space- and runtime-efficient than a late goal test in breadth-first search.

«  So, we would probably use an early goal test if we knew we would use a breadth-first search, which would be rare, since we would
probably use iterative-deepening depth first search (IDDFS) instead (coming up).

« This is a good example that generality, in the form of the generic search algorithm, can be elegant, but not always as efficient when

we can make specializing assumptions.

*  Question: Can we do an early goal test with IDDFS and still be guaranteed a minimal-length solution?
e

Douglas H. Fisher
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Farly Goal Test With Breadth-First Search (cont.)

while Frontier =[] do

select and remove (v, ..., v,» from Frontier

v, inGthenretum—{v v —

for each v such that (v,, v) in A

if lexists (v, ..., v) in Reached or

Gost{—¥yrrmW ¥ —r<-Gost{—<vy—v—)
if vin G then return (v, ..., v, V)
Reached = Reached - (v, ..., v) + {vg, ..., V,, V)
Frontier = Frontier + (v, ..., v,, V)

How do we know there

No late-goal test after dequeue

Comparing costs not necessary in breadth-first search
and paths will automatically be enumerated in order of length

Rather make early-goal test before enqueue

If not goal, then go ahead and enqueue it

10
11. [ (ABFHK)

(ABFHK) (ABFGIL) ]
(ABFGIL) ]

is no goal here at level d? —— Leveld Vi @
/"X Leveld+1

Because had there been, it would have been

found before its enqueue Goal, g

Douglas H. Fisher




Iterative Deepening

Exploring Alternatives With Search
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Iterattive Deepening Depth-First Search of a Graph
(Without Checking for Repeated Vertices)

Frontier (stack of paths)

[ (A) ]
[ (AB)

[ (A) ]

[ (AB)

[ (ABE)

[ (ABD)

[ (ABA)
[ (ALY ]
. [(ACD)
. [(ACE)
. [ (ACA)
[ (A ]

© © N O O bk WD =

A A A A A
A W N -~ O

[ (A) ] (followed by []) } DFS to depth 0

(AC) ] DFS to depth 1
[ (AC ) ] (followed by [])

—

(AC) ]

(ABD) (ABA) (AC)]
(ABA) (AC) ]

(AC) ]

(ACE) (ACA)]
(ACA) ]
] (followed by [ ])

Start

IDDFS is preferred over BFS, but why?!?

— DFS to depth 2

Keep searching to increasing depths until a goal
is found. The first goal found is guaranteed to be
a shortest path from start to goal.

Start DFS to depth 3

Douglas H. Fisher




Iterattive Deepening Depth-First Search of a Graph
(Without Checking for Repeated Vertices)

Frontier (stack of paths) Start
vertex
1. [{AY ] (followed by []) } DFS to depth 0
2. [(A)]
3. [(ABY (AC)] DFS to depth 1
4. [ (AC) ] (followed by [])
5. [ (A) ] R
6. [(AB) (AC) ]
7. [{(ABE) (ABD) <(ABA) (AC)] IDDFS is preferred over BFS, but why?!?
8. [(ABD) <(ABA) <(AC)] The space requirements of BFS are O(B¢)
9 AB A AC - e.g., with B = 10, and d = 20, O(102°) stuff starts
[ (ABA) <(AC) ] DFS to depth 2 breaking
10. [ (AC) ] « The space requirements for IDDFS are O(B*d)
11. [ {ACD) (ACE) (ACA)] The runtime cost of BFS is O(X%_, B¥) = O(BY), and this is
12. [(ACE) (ACA) ] also the runtime cost of IDDFS to depth d! Why?
13. [ (ACA) ] (followed by [])
14 T4¢AY T Start DFS to depth 3 Douglas H. Fisher
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Lowest-Cost First Search (aka Uniform Cost Search, aka Dijkstra’s
Algorithm) of a Graph

* Arc costs label each arc.
« Path costs are the sum of costs on arcs in the path.
« For example, (ABF G) (6) hascost 1+ 1+ 4 =6.

* Double arrow arcs («—) is shorthand for two single arrow arcs ( =—= ) and costs, if any, being
equal in both directions.

« But in many applications, arcs in each direction have different costs (e.g., one direction corresponds to uphill,
the other to downhill; one direction is with rush hour traffic, the other is with the lighter flow).

« But for now, simplifying assumptions apply.

Douglas H. Fisher




Lowest-Cost First Search (aka Uniform Cost Search, aka Dijkstra’s Algorithm) of a Graph
(With Checking for Repeated Vertices)

Frontier (priority queue of paths) Reached
1. [ (A (0)] 1. { (A) (0)}
2. [{AB) (1) (AC) (3)] 2. {<A) (0) (AB) (1) (AC) (3)}

3. [(ABF) (2) (AC) (3) (ABD) (6)] 3. {{A) (0) (AB) (1) (AC) (3) <ABF) (2) (ABD) (6)}
4 4

[ (AC) (3) (ABD) (6) (ABFG) (6) (ABFH) (9) (A (0) (AB) (1) (AC) (3) (ABF) (2) (ABD) (6)
(ABFG) (6) (ABFH) (9)}

» Path costs, the sum of costs on arcs in the path, are in parentheses have been added for easy reference.
For example, (ABF G) (6)hascost1+1+4=6.
 Redundant, more costly paths to a vertex, are not added to Reached or to Frontier.

For example, when (A B) (1)is expanded into (ABD) (6)and (ABF) (2), (ABA) (2)is not added since it is a redundant path that is more
costly than (A) (0).

Douglas H. Fisher
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Lowest-Cost First Search (aka Uniform Cost Search, aka Dijkstra’s Algorithm) of a Graph
(With Checking for Repeated Vertices)

Frontier (priority queue of paths) Reached
1. [ {(A) (0)] 1. { (A) (0)}
2. [{AB) (1) (AC) (3)] 2. {<A) (0) (AB) (1) (AC) (3)}
3. [(ABF) (2) (AC) (3) (ABD) (6)] 3. {{A) (0) (AB) (1) (AC) (3) <ABF) (2) (ABD) (6)}
4. [ (AC) (3) (ABD) (6) (ABFG) (6) (ABFH) (9)] 4. { {(A) (0) (AB> (1) (AC) (3) <ABF) (2) (ABD) (6)
5. [(ACD) (4) (ACE) (5) {ABD) (6) (ABF G) (6) (ABFG) (6) (ABFH) (9)}

(ABFH) (9)] 5. {{(A) (0) (AB) (1) {(AC) (3) (ABF) (2) <ABbB>{(6)

(ABFG) (6) (ABFH) (9) (ACD) (4) (ACE) (5)}

The path to D, (AB D) (6), was added before (A C D) (4), and the earlier redundant path {AB D) (6) is removed from Reached, but
not from Frontier. Why not Frontier, too?

Douglas H. Fisher
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Lowest-Cost First Search (aka Uniform Cost Search, aka Dijkstra’s Algorithm) of a Graph
(With Checking for Repeated Vertices)

Frontier (priority queue of paths) Reached
1. [ {(A) (0)] 1. { (A) (0)}
2. [{AB) (1) (AC) (3)] 2. {<A) (0) (AB) (1) (AC) (3)}
3. [(ABF) (2) (AC) (3) (ABD) (6)] 3. {{A) (0) (AB) (1) (AC) (3) <ABF) (2) (ABD) (6)}
4. [ (AC) (3) (ABD) (6) (ABFG) (6) (ABFH) (9)] 4. { {(A) (0) (AB> (1) (AC) (3) <ABF) (2) (ABD) (6)
5. [(ACD) (4) (ACE) (5) {ABD) (6) (ABF G) (6) (ABFG) (6) (ABFH) (9)}

(ABFH) (9)] 5. {{(A) (0) (AB) (1) {(AC) (3) (ABF) (2) <ABbB>{(6)

(ABFG) (6) (ABFH) (9) (ACD) (4) (ACE) (5)}

The path to D, (AB D) (6), was added before (A C D) (4), and the earlier redundant path {AB D) (6) is removed from Reached, but
not from Frontier. Why not Frontier, too?

Douglas H. Fisher
e



Lowest-Cost First Search (aka Uniform Cost Search, aka Dijkstra’s Algorithm) of a Graph
(With Checking for Repeated Vertices)

Frontier (priority queue of paths) Reached
1. [ (A (0)] 1. { (A) (0)}
2. [{AB) (1) (AC) (3)] 2. {<A) (0) (AB) (1) (AC) (3)}
3. [(ABF) (2) (AC) (3) (ABD) (6)] 3. {{A) (0) (AB) (1) (AC) (3) <ABF) (2) (ABD) (6)}
4. [ (AC) (3) (ABD) (6) (ABFG) (6) (ABFH) (9)] 4. { {(A) (0) (AB> (1) (AC) (3) <ABF) (2) (ABD) (6)
5. [ {ACD) (4 (ACE) (5) (ABD) (6) (ABFG) (6) (ABFG) (6) (ABFH) (9)} 5
(ABFH) (9)] 5 { (A) (0) (AB) (1) (AC) (3) <ABF) (2) (ABFG) (6) <
. [(ACE) (5) (ABD) (6) (ABFG) (6) (ABFH) (9) (ABFH) (9) (ACD) (4) (ACE) (5) &
7. [(ABD) (6) (ABFG) (6) (ACEH) (6) 6. { <A (0)... (ABFH) (9) (ACD) (4) (ACE) (5)} T
(ABFH) (9)] 7. {<A) (0)... <ABFH> (9 (ACD) (4) (ACE) (5) <(AC <
E H) (6)} 20
A new shorter path to H is discovered, thereby causing an update to Reached. (A C E H) (6) will become part of the final solution. QO



Will Early Goal Test Work for Least-Cost First Search?

No, not while guaranteeing a least cost solution in any case!
Look at steps 12—15 of example of previous slide, repeated here:

15.]

12.]
13.]
14.]

(ACEHK) (8) (ABFH) (9) (ACEHUJ) (9)]
(ABFH) (9) (ACEHUJ) (9) (ACEHKM) (12)]
(ACEHJ) (9) (ACEHKM) (12)]
(ACEHJM) (10) (ACEHKM) (12)]

If (A CEHK M) (12) were returned immediately after it was found
in step 13, and before placing it on Frontier, then {ACEHJ M)
(10) would not have been discovered in step 15

Douglas H. Fisher



Embedding Path Information
in State Descriptions

Exploring Alternatives With Search

Douglas H. Fisher
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A Revision to Generic Search

Algorithm for Explicit Graphs

Some observations
1. In the last example of least-cost first search we have this entry in the Frontier:

10.[ (ABFGI) (8) (ABFGL) (8) (ACEHK) (8) (ABFH) (9) (ACEHUJ) (9)]
The sub-path (AB F) is stored thrice, (ABF G) is stored twice, and (A C E H) is stored twice.

2. Generally, in both the Frontier and Reached structures, there are redundancies across paths.

3. We can eliminate redundancy while retaining the capability of remembering paths (and returning paths to goals) by distinguishing the
vertex and arc space (i.e., the state space) and the search space of that contains information to efficiently recover requisite
information such as vertices, arcs, paths, and costs (e.g., an implementation of [ (ABF G I) (8)]).

structure SearchNode
State (e.g., vertex v) in state space
Parent is a SearchNode with state v,, where v, is a directed neighbor of v in
state space (v,, v) (accessible by pointer or hashing)
Path-Cost is the cost of the arc (v,, v) in state space plus the Path Cost of Parent
Children is a set of SearchNodes, each of which corresponds to a reachable

neighbor, v’, of v in state space; not every v’ need have an associated child Douglas H. Fisher



A Revision to Generic Search

Algorithm for Explicit Graphs

structure SearchNode (State Parent Path-Cost Children)

State A
Parent NULL

Path cost O
Children Ng N¢

State B
Parent Np
Path cost 1
Children Ng

State C
Parent Ny
Path cost 3
Children Ng

State F
Parent Ng
Path cost 2
Children NG NH1

State E
Parent N¢
Path cost 5
Children Np»

10.[ (ABFGI) (8) (ABFGL) (8) {(ACEHK) (8) (ABFH) (9) (ACEHJ) (9)]

State G
Parent Ng
Path cost 6
Children N, N,

State H
Parent N
Path cost 9

Children

State H
Parent Ng
Path cost 6
Children Nj Nk

State |
Parent Ng
Path cost 8
Children

State J
Parent Ng
Path cost 8

Children

State J
Parent N
Path cost 9

Children

State K
Parent NB
Path cost 8

Children

Douglas H. Fisher
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A Revision to Generic Search

Algorithm for Explicit Graphs

structure SearchNode (State Parent Path-Cost Children)
SearchNode Search (Vertices V, Arcs A, v,, G)
[* ... assume that each entry in A now includes a cost c (vi, vj, ¢) where ¢ */
SearchNode N = new SearchNode(State v,, Parent NULL, Path-Cost 0, Children NULL)
Frontier = [N]
Reached = {N}
while Frontier =[] do
select and remove N from Frontier
if N.State in G then return N // from which the path from v, to N.State can be recovered
for each v such that (v,, v, c) in A
SearchNode L = new SearchNode(State v, Parent N, Path-Cost N.Path-Cost + ¢, Children NULL)
if lexists Node M in Explored s.t. M.State == v or L.Path-Cost < M.Path-Cost
N.Children = N.Children + L
Reached = reached - M + L. //if M doesn’t exist then Reached — M is a no-op
Frontier = Frontier + L
return <)

Douglas H. Fisher



o
Multiple Arcs Between Vertices

The use of a SearchNode structure also facilitates something else. There can be multiple arcs between the same
vertices, perhaps with different costs. For example, a mapping app can consider two different direct routes between two
towns, one along highway 70 and one along Interstate 40. In this case, we would probably want to store the arc taken
from parent to child with each node as well to disambiguate.

State Crossville
Ng Parent Ny
Arc taken 140

/" Path cost 114 (along

, Interstate 40)
State Nashville Children. ..
Parent NULL
Arc taken NULL
Path cost O
Children Ng N¢ N¢ State Crossville
A Parent Np

| Arc taken H70
Path cost 113 (along
Highway 70)
Children...

Douglas H. Fisher
e



Informed (or Heuristic)
Search of an Explicit Graph

Exploring Alternatives With Search

Douglas H. Fisher
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An Example Graph

Douglas H. Fisher




I ——
An Example Graph (cont.)

In the graph of the previous slide, which we will use going forward:

» Arc costs, also called g costs, label arcs, again under the assumption that costs are the
same in each direction, which is not necessary or even typical

» Heuristic estimates of remaining cost, called h, from each vertex to a goal (M) along least-
cost path label each vertex

* In this example, the h cost of each node happens to be exact; this would be rare, but we'll
start with this illustration

 Though we learned a representation for the search space that used a SearchNode structure,
which comes with space advantages, we will continue representing paths separately for ease
of illustration

Douglas H. Fisher
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Greedy Best-First Search of
an Explicit Graph

Exploring Alternatives With Search

Douglas H. Fisher
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I ——
Greedy Best-First Search

Start
10

Frontier (priority queue organized by h cost estimates only)

1. [ <A (10)]

2. [{AC) (7) (AB) (O] Reached is not shown, but it is stil ted and used t

eached Is not snown, but It I1s stll computed ana used 10 censor
3. [(ACE) (5 (ACD; (8) <AB) (9] (ACED) (8)and {(ACEC) (7)in step 4 after {ACE) (5)is
4. [ (ACEH) (4) (ACD) (8) (AB) (9)] expanded in step 3, for example.

Douglas H. Fisher




e
Greedy Best-First Search (cont.)

Frontier (priority queue organized by h cost estimates only)
[ (A) (10)]
[ (AC) (7) (AB) (9)]

[ (ACE) (5) ({ACD) (8) (AB) (9)]

[ (ACEH) (4) (ACD) (8) (AB) (9)]

[ (ACEHJ) (1) {(ACEHK) (4) (ACEHG) (4) (ACD) (8) (ACEHF) (8) (AB) (9)]

[(ACEHJM) (0) (ACEHJI) (2) (ACEHK) (4) (ACEHG) (4) (ACD) (8) (ACEHF) (8) (AB) (9)]

o a0~ W N =
Douglas H. Fisher




Heuristic Depth-First
Search of an Explicit Graph

Exploring Alternatives With Search

Douglas H. Fisher
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—
Heuristic Depth-First Search

Regular DFS, but on
each expansion, push
children in inverse
order by h (highest to
lowest)

Frontier (stack with siblings pushed using h cost estimates)

[ (A) (10)]

[ (AC) (7) (AB) (9)] Almost no difference between heuristic depth-first
search and greedy best-first search in

[(ACE) (5) CACD) (8) (AB) (9) this example, just in placementof (ACEHF) (8)

[ (ACEH) (4) (ACD) (8) (AB) (9)]

[ (ACEHJ) (1) (ACEHK) (4 (ACEHG) (4 (ACEHF) (80 (ACD) (8) <AB) (9)]

[ (ACEHJM) (0) (ACEHJI) (2) (ACEHK) (4) (ACEHG) (4) (ACEHF) (8) (ACD) (8) (AB) (9)]

L S o

Douglas H. Fisher




A* Search ot an Explicit Graph

Exploring Alternatives With Search

Douglas H. Fisher
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Ak

Use both actual cost so
far plus (g) estimated

cost to go (h). This sum

is called f. Start
10 (A
3
C )=
7 2

Frontier (priority queue organized by f = g + h cost estimates)

1. [ A (10)]

2. [ (AB) (10) (AC) (10)]

3. [(ABF) (10) (AC) (10) (ABD) (14)]

4. [{ABFG) (10) (AC) (10) (ABFH) (13) (ABD) (14)]

Reached is not shown, but it is still being used to prevent
redundant paths.

Note that, in cases of ties, the most recent generated path is
placed first. This is unlike previous examples. Might there be
(dis)advantages to this practice?

Douglas H. Fisher




» 4@:
5

Frontier (priority queue organized by f = g + h cost estimates)

[ (A) (10)]

[ (AB) (10) (AC) (10)]

[ (ABF) (10) (AC) (10) {ABD) (14)]

[ (ABFG) (10) (AC) (10) (ABFH) (13) (ABD) (14)]

[ (ABFGI) (10) (AC) (10) (ABFGL) (13) (ABFH) (13) (ABD) (14)]

[ (ABFGIJ) (10) (<AC) (10) (ABFGL) (13) (ABFH) (13) (ABD) (14)]
[ (ABFGIJM) (10) (AC) (10) C(ABFGL) (13) (ABFH) (13) (ABD) (14)

N ok~ oObd-~

Douglas H. Fisher




o
Second Example Graph

Start
12 (A
3
C )
9 2

* In this example, g costs are the same as in every other example,
but the h costs have changed.

* |s the heuristic admissible?

» Perform greedy best-first, heuristic depth-first, and A* search on
this graph.

Douglas H. Fisher




Iterative Deepening

Exploring Alternatives With Search

Douglas H. Fisher
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Iterative Deepening A*

Keep searching to increasing f-thresholds until a goal
is found. The first goal found is guaranteed to be a
least cost from start to goal IF h is admissible.

Frontier (Stack)

1. [ <(A) (4)] IIDFS to f-threshold of 4

2. [(AB) (4 (AC) (7]

3. [(ABF) (8) (ABD) (14) (ABA) (6) (AC) (7)]
4. [ (ABD) (14) (ABA) (6) (AC) (7)

5. [ (ABA) (6) (AC) (7)]

6. [ (AC) (7)] (followed by [])

7. [ (A (4)] /IDFS to f-threshold of 6

8. [(AB) (4) (AC) (7

9.

10. [ (A) (4)] IIDFS to f-threshold of 7

11. [ (AB) (4) (AC) (7)]

12. [ (ABF) (8)_(ABD) (14) (ABA) (6) (AC) (7)]
13. [ (ABD) (14) (ABA) (6
14. [ (ABAB) (6) (ABAC) (8) (AC) (7)]

15. [ (ABABA) (8) (ABABF) (10) (ABABD) (16)
(ACY ()]...

19.[ (AC) (7)]
20.[ {(ACD) (12) {ACE) (7) {(ACA) (10)]

21.[ (ACD) (12) (ACE) (7) (ACA) (10)]

22.[ (ACE) (7) (ACA) (10)]

23.[ (ACEH) (7) (ACED) (17) {ACEC) (11) (ACA) (10)]
4. (ACEHF) (19) ... (ACA) (10)]

30.[ <A) (4)] IIDFS to f-threshold of 8

Douglas H. Fisher




Sugoested Exercises

Consider the search graph below. The h value of a node 1s given adjacent to that node. The actual cost of
traversing an arc (in the indicated directions) is given adjacent to that arc. Node S is the start/initial state.

Nodes Gy and G, are goals. Use this graph for the questions to follow.

4 2 5 .
A) ©
(G,

0

When you have completed all the questions, upload a pdf of the questions and answers to Brightspace. You may
consult the pdf while you take the “quiz” component. Douglas H. Fisher




Sugoested Exercises

1. Give the order in which nodes are visited (i.e., checked for goalness) by heuristic depth first search. In the
case of two or more nodes with the same evaluation score on the frontier, break the tie by visiting the nodes in
alphabetical order as labeled above — this same convention applies to the remaining parts of this question. For
this question ONLY, assume that “reached” (as described in the videos) 1s NOT used.

2. Give the order in which nodes are visited (1.e., checked for goalness) by greedy best-first search.
3. Give the order in which nodes are visited (i.e., checked for goalness) by lowest cost first search.
4. Give the order in which nodes are visited (i.e., checked for goalness) by A*.

5. Which nodes would be checked for goalness on the first iteration of iterative deepening A*?

Notes:

* Gl is alphabetically before G2
* A misconception on the part of some is that the "order that nodes are visited" is the same as "the final path
returned". This is not typically the case. Most search strategies will visit vertices that are not part of the final path. Douglas H. Fishet



Searching an Implicit Graph

Exploring Alternatives With Search

Douglas H. Fisher
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—
Searching an Implicit Graph

* All of the search methods studied for an explicit graph can be adapted
straightforwardly to search of an implicit graph.

* An implicit graph 1s one with “vertices” (states) that are created “on
demand,” as search proceeds.

* As with explicit graphs, we are generally most interested in using search to
find one or more paths to a goal, rather than simply finding a goal per se.

* Thus, search is used to find a “plan” in virtual space that can be executed in
the real world later.

Douglas H. Fisher
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o
Searching an Implicit Graph (cont.)

Delivery Robot Example

iy Rather, the task for service robot

This may look like another pr.oblem of (9 [T | Sam' Rob is to find a path of actions
searching a graph for a location (off) from a given situation defined by
(vert(.a>.<) that S?’fiSﬁeS some goal / features on the left (e.g., human
condition, but it's not! Mail | (5:; Sam wants coffee but has none),
(mr) for a goal situation (e.g., that Sam
has coffee).

Actions:

mc — move clockwise

mcc — move counterclockwise
puc — pickup coffee

Features:
RLoc — Rob's location
RHC — Rob has coffee

Sy o wams coffee dc — deliver coffee “Operation” is synonymous with
MW — Mail is waiting ~ oick " R
RHM — Rob has mail pum = pickup ma action.

dm — deliver mail

©D.L. Poole and A.K. Mackworth 2010-2020 Artificial Intelligence, Lecture 6.1

Adapted from Slide 13 Chapter 6, Lecture 1 (https://artint.info/2e/slides/ch06/lect1.pdf) of Slides for Poole, D., & Mackworth, A. (2017). Artificial
intelligence: Foundations of computational agents (2nd ed.). Cambridge University Press. Copyright © Poole and Mackworth, 2017 and are licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/).

Douglas H. Fisher
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o
Delivery Robot Example

We could treat this problem like an explicit graph problem, with each situation description as an atomic, indivisible vertex, and vertices are
connected by labeled, directed arcs. I'll write each vertex as lab-rhc-swc-mw-rhm (with hyphens) to stress the indivisibility.

Source vertex Arc Resulting vertex
If every situation is really lab-rhc-swe-mw-rhm mc mr-rhc-swe-mw-rhm 24 = 16 different vertex-arc-
indivisible, then lab-rhc-swe-mw-~rhm mc mr-rhc-swc-mw-~rhm vertex triples are needed to
lab-rhc-swc-mw-rhm has no  lab-rhc-swe-~mw-rhm mc mr-rhc-swc-~mw-rhm represent that the move-
more in common with lab-rhc-swe-~mw-~rhm mc mr-rhc-swc-~mw-~rhm clockwise (mc) action will
off-rhc-swe-mw-rhm than it lab-rhc-~swec-mw-rhm mc mr-rhc-~swc-mw-rhm move Rob from the lab to
does with lab-rhc-~swc-mw-~rhm mc mr-rhc-~swc-mw-~rhm the mail room (mr). And
off-~rhc-~swe-~mw-~rhm. lab-rhc-~swc-~mw-rhm mc mr-rhc-~swc-~mw-rhm that’s only the start!
lab-rhc-~swc-~mw-~rhm mc mr-rhc-~swc-~mw-~rhm
lab-~rhc-swec-mw-rhm mc mr-~rhc-swc-mw-rhm
lab-~rhc-~swc-~mw-~rhm mc mr-~rhc-~swc-~mw-~rhm
~
v}
) mcc ) mcc <
< v
off-~rhc-swc-mw-~rhm mc lab-~rhc-swc-mw-~rhm mc mr-~rhc-swc-mw-~rhm o
s
mcc / / mc ~~ pum Z
—
puc 20
cs-~rhc-swe-mw-~rhm > cs-rhc-swe-mw-~rhm mr-~rhc-swc-~mw-rhm Do



o
Delivery Robot Example

A factored (or feature vector or attribute-value pairs) representation

* rloc (Rob’s location) is four-valued. * swc (Sam wants coffee) is binary-valued. * rhm (Rob has mail) is binary-valued.
* rhc (Rob has coffee) is binary-valued. * mw (mail waiting) is binary-valued.
State Action Resulting State
Coffee Sam’s < lab, rhc, swc, mw, rhm> mc < mr, rhc, swc, mw, rhm>
shop —— office <lab, rhc, swc, mw, ~rhm> mc < mr, rhc, swc, mw, ~rhm>
f <lab, rhc, swc, ~mw, rhm> mc < mr, rhc, swc, ~mw, rhm> 16
(CS) (0 ) < lab, rhc, swc, ~mw, ~rhm> mc < mr, rhc, swc, ~mw, ~rhm> T me
<lab, ~rhc, ~swc, ~mw, ~rhm> mc < mr, ~rhc, ~swc, ~mw, ~rhm>
Mail Lab -
room ————— <lab, ?V1, ?V2, ?V3, ?V4> mc <mr, ?2V1, ?V2, ?V3, ?2V4> Represented as
(mr) (lab) <mr, 2V1, 2V2, 2V3, 2V4> mc <cs, V1, 2V2, 2V3,?va> | four patterns
<cs, ?V1, ?V2, ?V3, ?V4> mc <off, ?V1, ?V2, ?V3, ?V4> with factored
<off, ?V1, ?V2, ?2V3, ?V4> mc <lab, ?V1, ?V2, ?V3, ?V4> representation
Different representations for actions B <cs, ~rhc, ?V1, ?V2, ?V3> puc <cs, rhc, ?V1, ?V2, ?2V3>
possible, (e.g., perhaps Rob can't be <off, rhc, ?V1, ?V2, ?2V3> dc <off, ~rhc, ~swc, ?V2, ?V3>
holding coffee to pick up mail) but must = <mr, ?V1, ?V2, mw, ~rhm> pum <mr, ?V1, ?V2, ~mw, rhm>
choose one set of definitions. <off, ?2V1, ?2V2, ?V3, rhm> dm <off, ?V1, ?V2, ~V3, ~rhm>

_ Douglas H. Fisher
e



o
Delivery Robot Example

* rloc (Rob’s location) is four-valued. Initial Goal
+ rhc (Rob has coffee) is binary-valued. state states
* swc (Sam wants coffee) is binary-valued.  <cs, ~rhc, swec, mw, ~rhm>  <?V1, ?V2, ~swc, ?V3, ~V4>

* mw (mail waiting) is binary-valued.
* rhm (Rob has mail) is binary-valued.

Coffee Sam’s
shop —— office
(cs) (off)
et
(mr) (lab)

Douglas H. Fisher
e



o
Delivery Robot Example

« rloc (Rob’s location) is four-valued. Initial state Goal states

« rhc (Rob has coffee) is binary-valued. <cs, ~rhc, swc, mw, ~rhm> Seens TSWE, L2

» swc (Sam wants coffee) is binary-valued. ouC

* mw (mail waiting) is binary-valued. mc

* rhm (Rob has mail) is binary-valued. <cs, rhc, swc, mw, ~rhm> <off, ~rhc, swc, mw, ~rhm> <mr ~rhc, swc, mw, ~rhm>

Coffee Sam’s
shop —— office
(cs) (off)
et
(mr) (lab)

States are realized through operator application.

Douglas H. Fisher



o
Delivery Robot Example

* rloc (Rob’s location) is four-valued. Initial state Goal states

« rhc (Rob has coffee) is binary-valued. <cs, ~rhc, swc, mw, ~rhm> S TSWE, -2

» swc (Sam wants coffee) is binary-valued. ouc mcc

* mw (mail waiting) is binary-valued. mc

» rhm (Rob has mail) is binary-valued. <cs, rhc, swc, mw, ~rhm> <off, ~rhc, swc, mw, ~rhm> <mr ~rhc, swc, mw, ~rhm>

Coffee Sam’s mc k
shop —— office \
(cs) (off)

<off, rhc, swc, mw, ~rhm> <mr, rhc, swc, mw, ~rhm>

Frontier, a stack in this case
of depth-first search

vat
(mr) (lab)

Douglas H. Fisher




Delivery Robot Example

: : . iti | stat
rloc (Rob’s location) is four-valued. Initial state Goal states
rhc (Rob has coffee) is binary-valued. <cs, ~rhc, swc, mw, ~rhm> Seen TSWE, L2
swc (Sam wants coffee) is binary-valued. ouC
mw (mail waiting) is binary-valued. mc
rhm (Rob has mail) is binary-valued. <cs, rhc, swc, mw, ~rhm> <off, ~rhc, swc, mw, ~rhm> <mr ~rhc, swc, mw, ~rhm>
Coffee Sam’s mc mcc
shop — office
(cs) (off)
<off, rhc, swc, mw, ~rhm> <mr, rhc, swc, mw, ~rhm>
Mail dc mc mcc
room el
(mr) (lab)
<off, ~rhc, ~swc, mw, ~rhm> <lab, rhc, swc, mw, ~rhm> <cs, rhc, swc, mw, ~rhm>

Douglas H. Fisher




Delivery Robot Example

* rloc (Rob’s location) is four-valued.

* rhc (Rob has coffee) is binary-valued.
» swc (Sam wants coffee) is binary-valued.
* mw (mail waiting) is binary-valued.

* rhm (Rob has mail) is binary-valued.

Coffee
shop
(cs)

Mail
room
(mr)

Sam’s
office
(off)

Lab
(lab)

Initial state Goal states
<cs, ~rhc, swc, mw, ~rhm> <..., ~SWg, ...>
puc
mc
<cs, rhc, swc, mw, ~rhm> <off, ~rhc, swec, mw, ~rhm> <mr ~rhc, swc, mw, ~rhm>
mc mcc
<off, rhc, swc, mw, ~rhm> <mr, rhc, swc, mw, ~rhm>
b
(D]
<
4
dc mc mcc [
T
<
<off, ~rhc, ~swc, mw, ~rhm> <lab, rhc, swc, mw, ~rhm> <cs, rhc, SX mw, ~rhm> B0
5
Goal Repeated state 5




Searching an Implicit Graph:
A World Trade Game

Exploring Alternatives With Search

Douglas H. Fisher
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World Trade Game Example

A simulation in which fictional countries that are actually fronts for Al game players build and trade
resources in pursuit of bettering each of their own circumstances as well as the fictional world’s
circumstances, each country using utility metrics of their software designer’s and Al's choosing.

Metalic Metallic
Population Elements  Timber Metallic Alloys  Electronics Electronics Housing = Housing
Country M) (IU) (IU)  Alloys (IU) Waste (IU) (IU) Waste (IU) M) Waste (IU)
Atlantis PA NAME nNaT NAMA NAMA NAR NARW NAy NARW
Brobding-
nag PB NpME npt NpMA NpMA Npg NBEW Ny NBHW
Carpania PC NCME ner NeMa NeMa ncg NCEwW Ney NcHw
Dinotopia PD NpME Ny npMA NpMA Npg NpEw Npy NpHwW
Erewhon PE NEvE Ngr NEMA NEMA Ngg NEpw Ngy NEHY

Douglas H. Fisher
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—
World Trade Game Example

TRANSFORMSs are within-country actions that allow a country, given by the value of variable ?C, to create composite
resources (OUTPUTS) from raw resources and other composite resources (INPUTS). Templates show relative amounts
of resources, which can be multiplicatively adjusted, so that the Alloys Template can be used to transform INPUTS of

3*1 population and 3*2 MetallicElements into OUTPUTS of 3*1 Population, 3*1 MetallicAlloys, and
3*MettalicAlloysWaste.

Housing template Alloys template Electronics template
(TRANSFORM ?C (TRANSFORM ?C (TRANSFORM ?C

(INPUTS (INPUTS (INPUTS
(Population 5) (Population 1) (Population 1)
(MetallicElements 1) (MetallicElements 2)) (MetallicElements 3)
(Timber 5) (OUTPUTS (MetallicAlloys 2))
(MetallicAlloys 3)) (Population 1) (OUTPUTS

(OUTPUTS (MetallicAlloys 1) (Population 1)
(Housing 1) (MetallicAlloysWaste 1))) (Electronics 2)
(HousingWaste 1) (ElectronicsWaste 1)))

(Population 5)))

A single across-country operator template exists, (TRANSFER ?C_i ?C_k ((?R_1j ?X_1j))), for ?C __i to
give ?C_k any amount, ?X_1j, of resource ?R_1j in ?C_i’s possession.
Douglas H. Fisher
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World Trade Game Example

A(tlantis)
R1: 500
R2: 700
R3: 100
R21:0
R21: 0
R22: 0
R22: 0
R23: 0
R23: 0

State, n,

E(rewon)
R1: 100
R2: 50
R3: 2000
R21: 30
R21: 0
R22: 0
R22: 0
R23: 0
R23: 0

Alloys template

((TRANSFORM 7?C (INPUTS (R1 1) (R2, 2)) (OUTPUTS (R1 1) (R21, 1) (R21° 1)),
preconditions are of the form ?ARj <= ?7C(?R)j)

Electronics template

(TRANSFORM ?C (INPUTS (R1 3) (R2 2) (R21 2)) (OUTPUTS (R22 2) (R22’ 2) (R1 3)),
preconditions are of the form ?ARj <= ?7C(?R)j)

Housing template

(TRANSFORM ?C (INPUTS (R1 5) (R2, 1) (R3 5) (R21 3) (OUTPUTS (R1 5) (R23, 1)
(R23' 1)),

preconditions are of the form ?Alk <= ?C(?RKk)

(TRANSFER ?Cj1 ?Cj2 ((?Ri ?ARi)), where ?ARi <= 2Cj1(?Ri)

Templates can be used to
generate a large number of
successors to state n.

While an explicit graph
representation could have
been used with the small
robot delivery example, with
nontrivial numbers of
countries and resources (and
possible amounts of
resources), an explicit graph
is not practical here.

The graph is implicit in the
actions and is generated on
demand.

Douglas H. Fisher
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World Trade Game Example

Alloys template

(TRANSFORM A (INPUTS (R1 50*1) (R2, 50*2)) (OUTPUTS (R1 50) (R21, 50) (R21’ 50)),
preconditions 50 <= 500, 100 <= 700

Electronics template

A(tlantis) E(rewon)

R1: 500 R1: 100

R2: 700 R2: 50

531 180 2212380 (TRANSFORM A (INPUTS (R1 30) (R2 20) (R21 20)) (OUTPUTS (R22 20) (R22’ 20) (R1 30)),
R21" 0 R21" 0 preconditions 30 <= 500, 20 <= 700, 20 !<=0

R22: 0 R22: 0 Housing template

R22: 0 R22: 0

R23: 0 R23: 0

R23: 0 R23: 0

(TRANSFORM E (INPUTS (R1 10*5) (R2, 10*1) (R3 10*5) (R21 10*3) (OUTPUTS (R1 10*5) (R23, 10*1) (R23" 10*1)),
preconditions are of the form 50 <= 100, 10 <= 50, 50 <= 2000, 30 <= 30

(TRANSFER ?Cj1 ?Cj2 ((?Ri ?ARi)), where ?ARi <= ?Cj1(?Ri)
(TRANSFER E A ((R3 500)), preconditions 500 <= 2000

Douglas H. Fisher



World Trade Game Example

A(tlantis)
R1: 500
R2: 700
R3: 100
R21:0
R21: 0
R22: 0
R22: 0
R23: 0
R23: 0

E(rewon)
R1: 100

R2: 50
R3: 200(R¥Housing template (one instantiation)

R21: 30
R21:0
R22: 0
R22: 0
R23:0
R23: 0

Alloys template (one instantiations

(TRANSFORM A (INPUTS (R1 50%1) (R2, 50*2)) (OUTPUTS (R1 50) (R21, 50) (R21’
50)),

preconditions 50 <= 500, 100 <= 700

No successor
Electronics template (one instantiation) X

(TRANSFORM A (INPUTS (R1 30) (R2 20) (R21 20)) (OUTPUTS (R22 20) (R22’ 20) (R1
30)),

preconditions 30 <= 500

I<=

0. (insufficient resources)

(TRANSFORM E (INPUTS (R1 10*5) (R2, 10*1) (R3 10*5) (R21 10*3) (OUTPUTS (R1
10*5) (R23, 10*1) (R23’ 10*1)),

preconditions are of the form 50 <= 100, 10 <= 50, 50 <= 2000, 30 <= 30

Transfer (one instantiation)
(TRANSFER E A ((R3 500)), preconditions 500 <= 2000

A(tlantis)
R1: 500
R2: 600
R3: 100
R21: 50
R21: 50

A(tlantis)
R1: 500
R2: 700
R3: 100
R21:0
R21: 0
R22: 0
R22: 0
R23: 0
R23: 0

A(tlantis)
R1: 500
R2: 700
R3: 600
R21:0
R21: 0

E(rewon)
R1: 100
R2: 50
R3: 2000
R21: 30
R21: 0

E(rewon)
R1: 10
R2: 40
R3: 1950
R21: 0
R21: 0
R22: 0
R22: 0
R23: 10
R23’: 10

E(rewon)
R1: 100
R2: 50
R3: 1500
R21: 30
R21: 0

Ddﬁglas H. Fisher
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A Revision to Generic (Heuristic)
Search Algorithm for Implicit Graphs

structure SearchNode (State Parent Action Path-Cost DistEst, Children)
SearchNode Search (Mertices-V, Ares Actions A, S,, Goal Condition G HeuristicFn H)
/* ... assume that each entry in A, a, now includes an operator a.op and cost a.cost;
G is a Boolean goal condition */

SearchNode N = new SearchNode(State Sy, Parent NULL, Action NULL, Path-Cost 0, DistEst H(S,, G), Children
NULL)

Frontier = [N]
Reached = {N}
while Frontier =[] do
select and remove N from Frontier

if N.State satisfies G then return N // from which the path from Sy to N.State can be recovered
Otherwise, generate successors of N (next slide).

return ()

Douglas H. Fisher
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A Revision to Generic (Heuristic)
Search Algorithm for Implicit Graphs (cont.)

structure SearchNode (State Parent Action Path-Cost DistEst, Children)
SearchNode Search (Mertices-V, Ares Actions A, S,, Goal Condition G HeuristicFn H)
... (previous slide)
if N.State satisfies G then return N // from which the path from S, to N.State can be recovered
for each action a in A that is applicable to N.State )
SearchNode L = new SearchNode(State Apply(a.op, N.State), Parent N, Action a,
Path-Cost N.Path-Cost + a.cost, DistEst default,
Children NULL)

Generate
L.DistEst = H(L.State, G)

if lexists Node M in Reached s.t. M.State == L.State or L.Path-Cost < M.Path-Cost
N.Children = N.Children + L
Reached = Reached -M + L

Frontier = Frontier + L

Successors (N, A)

—

This is no longer a simple check of a reencountered atomic
and extant vertex but now requires a check to see if the two
are exact copies (of factored or structured representations). Douglas H. Fisher

return ()




Delivery Robot Example of
Redundant Paths With Implicit Graphs

* rloc (Rob’s location) is four-valued.

* rhc (Rob has coffee) is binary-valued.

» swc (Sam wants coffee) is binary-valued. me

« mw (mail waiting) is binary-valued. <lab, ~rhc, swc, mw, ~rhm>

* rhm (Rob has mail) is binary-valued. mc

<mr, ~rhc, swc, mw, ~rhm>

pum
Coffee Sam’s
shop —— office <mr, ~rhc, swc, ~mw, rhm>
(cs) (off) me
<cs, ~rhc, swc, ~mw, rhm>
puc
Mail -
Lab <cs, rhc, swc, ~mw, rhm>
room (lab) _
(mr) ¢

<off, rhc, swc, ~mw, rhm>

Initial state

<off ~rhc, swc, mw, ~rhm>

mcc

<cs, ~rhc, swc, mw, ~rhm>

puc

<cs, rhc, swc, mw, ~rhm>

I mccC

<mr, rhc, swc, mw, ~rhm>

pum

<mr, rhc, swc, ~mw, rhm>

<lab, rhc, swc,

mccC

~mw, rhm>

mccC

<off, rhc, swc, ~mw, rhm>

Redundant paths assuming state copy equality

Douglas H. Fisher



The Generic Algorithm for Searching Implicit Graphs

The End




