Uninformed Search of an Explicit Graph Without Costs

Exploring Alternatives With Search

Searching an Explicit Graph
 Without Checking for Repeated Vertices

Function Search (Vertices V, Arcs A, v_{0}, G)
/* Given:
V is a set of atomic labels representing vertices in a graph
A is a set of directed arcs (aka edges) between two nodes in V v_{0} is a starting vertex, in V
G is a set of goal vertices, each in V
Return:
path of vertices (and arcs) from v_{0} to a member of G

Local:

Frontier is a collection of paths */

```
Frontier = [\langlev \ \ ]
```

while Frontier != [] do //search dead ends can eventually in an empty the Frontier select and remove $\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$ from Frontier
if v_{k} in G then return $\left\langle v_{0}, \ldots, v_{k}\right\rangle$
for each v such that $\left(v_{k}, v\right)$ in A
Frontier $=$ Frontier $+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle$
return 〈〉
*A dead end is a vertex from which there are no directed arcs out of the vertex.
Douglas H. Fisher

Searching an Explicit Graph
 Without Checking for Repeated Vertices

```
Function Search (Vertices V, Arcs A, vo, G)
/* Given:
V is a set of atomic labels representing vertices in a graph
A is a set of directed arcs (aka edges) between two nodes in V
5. }\mp@subsup{v}{0}{}\mathrm{ is a starting vertex, in V
6. G is a set of goal vertices, each in V
        while Frontier != [] do
        select and remove \langlev }\mp@subsup{v}{0}{},\ldots,\mp@subsup{v}{k}{}\rangle\mathrm{ from Frontier
        if }\mp@subsup{v}{k}{}\mathrm{ in G then return < }\mp@subsup{v}{0}{},\ldots,\mp@subsup{v}{k}{}
        for each v such that ( (v, v) in A
            Frontier = Frontier + \langlev vo, .., vk, v\rangle
        return 〈>
```


Searching an Explicit Graph
 Without Checking for Repeated Vertices

```
Function Search (Vertices V, Arcs A, vo, G)
/* Given:
    V is a set of atomic labels representing vertices in a graph
    A is a set of directed arcs (aka edges) between two nodes in V
    vo
    G is a set of goal vertices, each in V
    Return:
        path of vertices (and arcs) from }\mp@subsup{v}{0}{}\mathrm{ to a member of G
    Local:
        Frontier is a collection of paths */
    Frontier = [ \langlev vol]
    while Frontier != [] do
        select and remove \langlev
        if }\mp@subsup{v}{k}{}\mathrm{ in G then return }\langle\mp@subsup{v}{0}{},\ldots,\mp@subsup{v}{k}{}
        for each v such that ( }\mp@subsup{v}{k}{},v)\mathrm{ in A
            Frontier = Frontier + \langlevo, .., v
    return 〈〉
```

In this case，we would want to return a path to a goal（e．g．，〈（A B）（B F）（F H）（H J）（J M）〉） rather than just a goal vertex，which we know anyways

Searching an Explicit Graph Without Checking for Repeated Vertices

```
Function Search (Vertices V, Arcs A, vo, G)
/* Given:
    V is a set of atomic labels representing vertices in a graph
    A is a set of directed arcs (aka edges) between two nodes in V
    vois a starting vertex, in V
    G is a set of goal vertices, each in V
    Return:
        path of vertices (and arcs) from v0 to a member of G
    Local:
        Frontier is a collection of paths */
    Frontier = [ \langlevol ]
    while Frontier != [] do
        select and remove \langlev}\mp@subsup{v}{0}{},\ldots,\mp@subsup{v}{k}{}\rangle\mathrm{ from Frontier
        if }\mp@subsup{v}{k}{}\mathrm{ in G then return < }\mp@subsup{v}{0}{},\ldots,\mp@subsup{v}{k}{}
        for each v such that (vk
            Frontier = Frontier + \langlevolo,.., vk,v\rangle
        return 〈>
```

If Frontier is a stack, then depth-first search
If Frontier is a queue, then breadth-first search

Searching an Explicit Graph Without Checking for Repeated Vertices

```
Function Search (Vertices V, Arcs A, vo, G)
/* Given:
    V is a set of atomic labels representing vertices in a graph
    A is a set of directed arcs (aka edges) between two nodes in V
    vo
    G is a set of goal vertices, each in V
    Return:
        path of vertices (and arcs) from vo to a member of G
    Local:
        Frontier is a collection of paths */
    Frontier = [ \langlev vol]
    while Frontier != [ ] do
        select and remove \langlevo, .., vk
        if }\mp@subsup{\mathbf{v}}{\mathbf{k}}{}\mathrm{ in G then return < v
        for each v such that ( }\mp@subsup{\mathbf{v}}{\mathbf{k}}{},\mathbf{v}\mathrm{ ) in A
            Frontier = Frontier + \langlev v, .., vk, v\rangle
        return 〈〉
```


Depth-First Search of an Explicit Graph Without Costs

Exploring Alternatives With Search

Depth-First Search of a Graph
 (Without Checking for Repeated Vertices)

Depth-First Search of a Graph
 (Without Checking for Repeated Vertices)

Frontier (stack of paths)

1. [$\langle\mathrm{A}\rangle$
2. [$\langle\mathrm{A} \underline{B}\rangle\langle\mathrm{A} \underline{C}\rangle]$
3. [$\langle\boldsymbol{A B} \underline{F}\rangle\langle A B \underline{D}\rangle\langle A B \underline{A}\rangle\langle A \underline{C}\rangle]$

4. while Frontier != [] do
5. select and remove $\left\langle v_{0}, \ldots, v_{k}\right\rangle$ from Frontier
6. if v_{k} in G then return $\left\langle v_{0}, \ldots, v_{k}\right\rangle$
7. for each v such that $\left(v_{k}, v\right)$ in A
8. Frontier $=$ Frontier $+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle$

- Every path begins with start vertex $\mathrm{A}, \mathrm{v}_{0}$
- Last vertex in each path is underlined
- Without checking for repeated vertices, redundant and unnecessarily costly paths can be added to the Frontier
- 〈ABA〉 is one example

Depth－First Search of a Graph （Without Checking for Repeated Vertices）

Frontier（stack of paths）

1．$[\langle A\rangle$
2．$[\langle A B C\langle A C D]$

13．while Frontier ！＝［］do
14．select and remove $\left\langle v_{0}, \ldots, v_{k}\right\rangle$ from Frontier
15．if v_{k} in G then return $\left\langle v_{0}, \ldots, v_{k}\right\rangle$
16．for each v such that $\left(v_{k}, v\right)$ in A
17．Frontier $=$ Frontier $+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle$

－Boldface indicates that a path，such as 〈ABE〉 in step 3，was added to the Frontier in the most recent iteration，when its parent 〈A \underline{B} 〉 in step 2 was removed from the Frontier
－Regular font indicates that a path，such as 〈A $\underline{C}\rangle$ in step 3，was on the previous instance of the Frontier

Depth-First Search of a Graph (Without Checking for Repeated Vertices)

Frontier (stack of paths)

1. $[\langle A\rangle]$
2. $[\langle A \underline{B}\rangle\langle A \underline{C}\rangle]$

If you wish, pause the video and complete the next iteration or two before continuing.
13. while Frontier != [] do
14. select and remove $\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$ from Frontier
15. if v_{k} in G then return $\left\langle v_{0}, \ldots, v_{k}\right\rangle$
16. for each v such that $\left(v_{k}, v\right)$ in A
17. Frontier $=$ Frontier $+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle$

Depth-First Search of a Graph
 (Without Checking for Repeated Vertices)

Depth-First Search of a Graph
 (Without Checking for Repeated Vertices)

Frontier (stack of paths)

1. $[\langle A\rangle]$
2. $[\langle A \underline{B}\rangle\langle A \underline{C}\rangle]$
3. $[\langle A B E$ F $\langle A B \underline{D}\rangle\langle A B \underline{A}\rangle\langle A \underline{C}\rangle]$

4. $[\langle A B F \underline{G}\rangle\langle A B F \underline{H}\rangle\langle A B F \underline{B}\rangle\langle A B \underline{D}\rangle\langle A B \underline{A}\rangle\langle A \underline{C}\rangle]$
5. [〈A B F G L

Example of redundant, nonloop paths
(two different paths to H)

Depth-First Search of a Graph
 (Without Checking for Repeated Vertices)

Frontier (stack of paths)

1. $[\langle A\rangle]$
2. $[\langle A B C\langle A C D]$
3. [$\langle\mathrm{A} B \underline{\mathrm{~F}}\rangle\langle\mathrm{A} B \underline{\mathrm{D}}\rangle\langle\mathrm{A} \boldsymbol{B} \underline{\mathrm{A}}\rangle\langle\mathrm{A} \underline{\mathrm{C}}\rangle]$

4. [$\langle\mathrm{ABF} \underline{\mathrm{G}}\rangle\langle\mathrm{A} \boldsymbol{B} \boldsymbol{F} \underline{H}\rangle\langle\mathrm{ABF} \boldsymbol{B}\rangle\langle\mathrm{AB} \underline{\mathrm{D}}\rangle\langle\mathrm{AB} \underline{\mathrm{A}}\rangle\langle\mathrm{A} \underline{\mathrm{C}}\rangle$]

〈AB $\underline{A}\rangle\langle A \underline{C}\rangle]$
5. $[\langle A B F G L G \underline{L}\rangle\langle A B F G L G \underline{I}\rangle\langle A B F G L G E\rangle\langle A B F G L \underline{l}\rangle\langle A B F G \underline{I}\rangle\langle A B F G \underline{F}\rangle\langle A B F G \underline{H}\rangle\langle A B F \underline{H}\rangle$〈ABFB $\underline{B}\rangle\langle A B \underline{D}\rangle\langle A B \underline{A}\rangle\langle A \underline{C}\rangle]$
By now, you should see the problem of redundant paths and the potential for looping, which is particularly problematic with depth-first search because of potential for infinite loops-consider G L G L as an example.

Uninformed Search With Checks for Repeated Vertices

Exploring Alternatives With Search

Searching an Explicit Graph With Checking for Repeated Vertices and Redundant Paths

1. Function Search (Vertices V, $\left.\operatorname{Arcs} A, v_{0}, G\right)$
/* ... */
2. Frontier $=\left[\left\langle v_{0}\right\rangle\right]$
3. Reached $=\left\{\left\langle v_{0}\right\rangle\right\}$
4. while Frontier != [] do //search dead ends, loops, and other redundant paths can result in an empty Frontier
5. select and remove $\left\langle v_{0}, \ldots, v_{k}\right\rangle$ from Frontier
6. if v_{k} in G then return $\left\langle v_{0}, \ldots, v_{k}\right\rangle$
7. for each v such that $\left(v_{k}, v\right)$ in A
8. if !exists $\left\langle v_{0}, \ldots, v\right\rangle$ in Reached
9. $\quad \operatorname{or} \operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v_{k}, v\right\rangle\right)<\operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v\right\rangle\right)\right.\right.$
10. Reached $=$ Reached $-\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}\right\rangle+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle$
11. \quad Frontier $=$ Frontier $+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle$
12. return 〈〉

Searching an Explicit Graph With Checking for Repeated Vertices and Redundant Paths

1. Function Search (Vertices $\mathrm{V}, \operatorname{Arcs} \mathrm{A}, \mathrm{v}_{0}, \mathrm{G}$)
/* ... */
2. Frontier $=\left[\left\langle v_{0}\right\rangle\right]$
3. Reached $=\left\{\left\langle v_{0}\right\rangle\right\}$
4. while Frontier != [] do
5. select and remove $\left\langle v_{0}, \ldots, v_{k}\right\rangle$ from Frontier
6. if v_{k} in G then return $\left\langle v_{0}, \ldots, v_{k}\right\rangle$
7. for each v such that ($\left.v_{k}, v\right)$ in A
8. if !exists $\left\langle v_{0}, \ldots, v\right\rangle$ in Reached $/ /$ if a path to v does not already exist in Reached then
add it
9.
10.

$$
\begin{aligned}
& \text { or } \operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v_{k}, v\right\rangle\right)<\operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v\right\rangle\right)\right.\right. \\
& \text { Reached }=\operatorname{Reached}-\left\langle v_{0}, \ldots, v\right\rangle+\left\langle v_{0}, \ldots, v_{k}, v\right\rangle / / \text { if }\left\langle v_{0}, \ldots, v\right\rangle \text { doesn't exist, } \\
&
\end{aligned}
$$

Searching an Explicit Graph With Checking for Repeated Vertices and Redundant Paths

1．Function Search（Vertices V ， $\left.\operatorname{Arcs} A, V_{0}, G\right)$
／＊．．．＊／
11．Frontier $=\left[\left\langle v_{0}\right\rangle\right]$
12．Reached $=\left\{\left\langle v_{0}\right\rangle\right\}$
13．while Frontier ！＝［］do
14．select and remove $\left\langle v_{0}, \ldots, v_{k}\right\rangle$ from Frontier
15．if v_{k} in G then return $\left\langle v_{0}, \ldots, v_{k}\right\rangle$
16．for each v such that $\left(v_{k}, v\right)$ in A
17．if ！exists $\left\langle v_{0}, \ldots, v\right\rangle$ in Reached
18．or $\operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v_{k}, v\right\rangle\right)<\operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v\right\rangle\right) \quad / /\right.\right.$ if a lesser cost path to v is found，
19．Reached＝Reached－〈 $\left.\mathrm{v}_{0}, \ldots, \mathrm{v}\right\rangle+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle \quad / /$ then replace old path to v
20．\quad Frontier $=$ Frontier $+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle$
21．return 〈〉

Searching an Explicit Graph With Checking for Repeated Vertices and Redundant Paths

1. Function Search (Vertices $\left.\mathrm{V}, \operatorname{Arcs} \mathrm{A}, \mathrm{V}_{0}, \mathrm{G}\right)$
/* ... */
2. Frontier $=\left[\left\langle v_{0}\right\rangle\right]$
3. Reached $=\left\{\left\langle v_{0}\right\rangle\right\}$
4. while Frontier != [] do
5. select and remove $\left\langle v_{0}, \ldots, v_{k}\right\rangle$ from Frontier
6. if v_{k} in G then return $\left\langle v_{0}, \ldots, v_{k}\right\rangle$
7. for each v such that $\left(v_{k}, v\right)$ in A
8. if !exists $\left\langle v_{0}, \ldots, v\right\rangle$ in Explored
9. or $\operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v_{k}, v\right\rangle\right)<\operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v\right\rangle\right)\right.\right.$
10. Reached = Reached - $\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}\right\rangle+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle$
11. Frontier $=$ Frontier $+\left\langle v_{0}, \ldots, v_{k}, v\right\rangle$
12. return 〈〉

Breadth-First Search With Checks for Repeated Vertices

Exploring Alternatives With Search

Breadth-First Search of a Graph (With Checking for Repeated Vertices)

Breadth－First Search of a Graph （With Checking for Repeated Vertices）

Frontier（queue of paths）	
1．［ $\langle\mathrm{A}\rangle$ ］	1．$\{\langle\mathrm{A}\rangle\}$
2．［ $\langle A B\rangle\langle A C\rangle]$	2．$\{\langle A\rangle\langle A B\rangle\langle A C\rangle\}$
3．$[\langle A C\rangle\langle A B D\rangle\langle A B F\rangle]$	3．$\{\langle A\rangle\langle A B\rangle\langle A C\rangle\langle A B D\rangle\langle A B F\rangle\}$
4．$[\langle A B D\rangle\langle A B F\rangle\langle A C D\rangle\langle A C E\rangle]$	4．$\{\langle A\rangle\langle A B\rangle\langle A C\rangle\langle A B D\rangle\langle A B F\rangle\langle A C E\rangle\}$
14．select and remove $\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$ from Frontier 15．if v_{k} in G then return $\left\langle v_{0}, \ldots, v_{k}\right\rangle$ 16．for each v such that $\left(v_{k}, v\right)$ in A	（ACD）is a redundant，no less costly path to D than 〈A B D ，and so would not be added to Frontier（or Reached） to begin with．Note that
17．if ！exists $\left\langle v_{0}, \ldots, v\right\rangle$ in Reached 18．$\quad \operatorname{or} \operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v_{k}, v\right\rangle\right)<\operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v\right\rangle\right)\right.\right.$	〈ACD〉 is correctly excluded from Reached already．
19．Reached $=$ Reached－$\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}\right\rangle+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle$	
20．Frontier $=$ Frontier $+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle$	Douglas H．Fisher

Breadth-First Search of a Graph (With Checking for Repeated Vertices)

Breadth－First Search of a Graph （With Checking for Repeated Vertices）

Frontier（queue of paths）	Reached					
1．［ $\langle\mathrm{A}\rangle$ ］	1．\｛ $\langle\mathrm{A}\rangle$					
2．［ $\langle A B\rangle\langle A C\rangle]$	2．\｛ $\langle A\rangle$	〈AB				
3．$[\langle A C\rangle\langle A B D\rangle\langle A B F\rangle]$	3．\｛ $\langle A\rangle$	$\langle A B$	$\langle A C\rangle\langle A B D\rangle$	）\langle A B F \rangle \}		
4．［ $\langle A B D\rangle\langle A B F\rangle\langle A C E\rangle]$	4．\｛ $\langle A\rangle$	$\langle A B\rangle$	$\langle A C\rangle\langle A B D\rangle$	D \langle ABF〉 \langle A C		
5．［ $\langle A B F\rangle\langle A C E\rangle]$	5．\｛ $\langle A\rangle$	$\langle A B$	$\langle A C\rangle\langle A B D\rangle$	D $\langle A B F\rangle\langle A C$		
6．［ $\langle A C E\rangle\langle A B F G\rangle\langle A B F H\rangle]$	6．$\{\langle A\rangle$	〈AB	〈AC〉 〈ABD	）$\langle A B F\rangle\langle A C$		
			〈ABFH〉\}			
8．［ $\langle\mathrm{ABFH}$ H \langle A BFGI〉］	7．\｛ $\langle A\rangle$	〈AB	\ldots ．．． $\mathrm{ABFH}^{\text {B }}$ ，\}			
	8．\｛ $\langle A\rangle$	$\langle A B$	$\ldots\langle A B F H\rangle$	〈ABFGI〉\}		
	9．\｛ $\langle A\rangle$	$\langle A B$	$\ldots\langle A B F G I\rangle$	〈ABFHJ〉〈AB	K ${ }^{\text {l }}$ \}	
	10．\｛ \langle A	$\langle A B$	\ldots ．．．\langle ABFHK〉	〈ABFGIL〉\}		
Finding a goal， M ，is two dequeues away．	11．\｛	$\langle A B$	\ldots ．．．\langle B F GIL〉	〈A B F J M ¢ \}	Doug	glas H．Fisher

Early Goal Test With Breadth-First Search

while Frontier != [] do
select and remove $\left\langle v_{0}, \ldots, v_{k}\right\rangle$ from Frontier
if v_{k} in G then return $\left\langle v_{0}, \ldots, v_{k}\right\rangle$
for each v such that $\left(v_{k}, v\right)$ in A
if !exists $\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}\right\rangle$ in Reached or
$\operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v_{k}, v\right\rangle\right)<\operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v\right\rangle\right)\right.\right.$
if v in G then return $\left\langle v_{0}, \ldots, v_{k}, v\right\rangle$
Reached = Reached - $\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}\right\rangle+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle$
Frontier $=$ Frontier $+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle$

No late-goal test after dequeue

Comparing costs not necessary in breadth-first search and paths will automatically be enumerated in order of length

Rather make early-goal test before enqueue

If not goal, then go ahead and enqueue it

- An early goal test in breadth-first search will still ensure that minimal length paths to goal are found.
- And it is more space- and runtime-efficient than a late goal test in breadth-first search.
- So, we would probably use an early goal test if we knew we would use a breadth-first search, which would be rare, since we would probably use iterative-deepening depth first search (IDDFS) instead (coming up).
- This is a good example that generality, in the form of the generic search algorithm, can be elegant, but not always as efficient when we can make specializing assumptions.
- Question: Can we do an early goal test with IDDFS and still be guaranteed a minimal-length solution?

Early Goal Test With Breadth-First Search (cont.)

while Frontier != [] do
select and remove $\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$ from Frontier
if v_{k} in G then return $\left\langle v_{0}, \ldots, v_{k}\right\rangle$
for each v such that $\left(v_{k}, v\right)$ in A
if !exists $\left\langle v_{0}, \ldots, v\right\rangle$ in Reached or
$\operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v_{k}, v\right\rangle\right)<\operatorname{Cost}\left(\left\{\left\langle v_{0}, \ldots, v\right\rangle\right)\right.\right.$
if v in G then return $\left\langle\mathbf{v}_{0}, \ldots, \mathbf{v}_{\mathbf{k}}, \mathbf{v}\right\rangle$
Reached = Reached - $\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}\right\rangle+\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}\right\rangle$
Frontier $=$ Frontier $+\left\langle\mathbf{v}_{0}, \ldots, \mathbf{v}_{\mathrm{k}}, \mathbf{v}\right\rangle$

No late-goal test after dequeue

Comparing costs not necessary in breadth-first search and paths will automatically be enumerated in order of length

Rather make early-goal test before enqueue

If not goal, then go ahead and enqueue it

How do we know there is no goal here at level d?

Because had there been, it would have been

Iterative Deepening

Exploring Alternatives With Search

Iterative Deepening Depth-First Search of a Graph (Without Checking for Repeated Vertices)

Frontier (stack of paths)

IDDFS is preferred over BFS, but why?!?

DFS to depth 2

Keep searching to increasing depths until a goal is found. The first goal found is guaranteed to be a shortest path from start to goal.

Iterative Deepening Depth-First Search of a Graph (Without Checking for Repeated Vertices)

Frontier (stack of paths)
$\left.\begin{array}{lll}\left.\begin{array}{lll}\text { 1. } & {[\langle A\rangle]} & \text { (followed by }[]) \\ \text { 2. } & {[\langle A\rangle]} & \\ \text { 3. } & {[\langle A \underline{B}\rangle} & \langle A \underline{C}\rangle] \\ \text { 4. } & {[\langle A \underline{C}\rangle]}\end{array}\right\} \text { (followed by }[1)\end{array}\right\}$ DFS to depth 0

IDDFS is preferred over BFS, but why?!?

- The space requirements of BFS are $O\left(B^{d}\right)$
- e.g., with $B=10$, and $d=20, O\left(10^{20}\right)$ stuff starts breaking
- The space requirements for IDDFS are $\mathrm{O}\left(\mathrm{B}^{*} \mathrm{~d}\right)$
- The runtime cost of BFS is $\mathrm{O}\left(\sum_{k=0}^{d} B^{k}\right)=\mathrm{O}\left(B^{\mathrm{d}}\right)$, and this is also the runtime cost of IDDFS to depth d! Why?

Uninformed Search of an Explicit Graph With Costs

Exploring Alternatives With Search

Lowest-Cost First Search (aka Uniform Cost Search, aka Dijkstra's Algorithm) of a Graph

- Arc costs label each arc.
- Path costs are the sum of costs on arcs in the path.
- For example, $\langle\mathrm{A} \mathrm{B} \mathrm{F} \mathrm{G〉(6)} \mathrm{has} \mathrm{cost} 1+1+4=6$.
- Double arrow arcs (\longleftrightarrow) is shorthand for two single arrow $\operatorname{arcs}(\longleftrightarrow)$ and costs, if any, being equal in both directions.
- But in many applications, arcs in each direction have different costs (e.g., one direction corresponds to uphill, the other to downhill; one direction is with rush hour traffic, the other is with the lighter flow).
- But for now, simplifying assumptions apply.

Lowest－Cost First Search（aka Uniform Cost Search，aka Dijkstra＇s Algorithm）of a Graph （With Checking for Repeated Vertices）

Frontier（priority queue of paths）
1．$[\langle A\rangle(0)]$
2．$[\langle A B\rangle(1)\langle A C\rangle(3)]$
3．$[\langle A B F\rangle(2)\langle A C\rangle(3)\langle A B D\rangle(6)]$
4．$[\langle A C\rangle(3)\langle A B C\rangle(6)\langle A B F G\rangle(6)\langle A B F H\rangle(9)]$

Reached
1．$\{\langle A\rangle(0)\}$
2．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\}$
3．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\langle A B F\rangle(2)\langle A B C\rangle(6)\}$
4．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\langle A B F\rangle(2)\langle A B D\rangle(6)$ $\langle A B F G\rangle(6)\langle A B F H\rangle(9)\}$
－Path costs，the sum of costs on arcs in the path，are in parentheses have been added for easy reference．
－For example，〈A B F G〉（6）has cost $1+1+4=6$ ．
－Redundant，more costly paths to a vertex，are not added to Reached or to Frontier．
－For example，when $\langle A B\rangle(1)$ is expanded into $\langle A B D\rangle(6)$ and $\langle A B F\rangle(2),\langle A B A\rangle(2)$ is not added since it is a redundant path that is more costly than 〈A〉（0）．

Lowest－Cost First Search（aka Uniform Cost Search，aka Dijkstra＇s Algorithm）of a Graph （With Checking for Repeated Vertices）

Frontier（priority queue of paths）
1．$[\langle A\rangle(0)]$
2．$[\langle A B\rangle(1)\langle A C\rangle(3)]$
3．$[\langle A B F\rangle(2)\langle A C\rangle(3)\langle A B C\rangle(6)]$
4．$[\langle A C\rangle(3)\langle A B D\rangle(6)\langle A B F G\rangle(6)\langle A B F H\rangle(9)]$
5．［ $\langle A C D\rangle(4)\langle A C E\rangle(5)\langle A B C\rangle(6)\langle A B F G\rangle(6)$〈A B F H〉（9）］

Reached
1．$\{\langle A\rangle(0)\}$
2．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\}$
3．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\langle A B F\rangle(2)\langle A B D\rangle(6)\}$
4．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\langle A B F\rangle(2)\langle A B D\rangle(6)$ $\langle A B F G\rangle(6)\langle A B F H\rangle(9)\}$
5．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\langle A B F\rangle(2)\langle A B-D\rangle-(6)$ $\langle A B F G\rangle(6)\langle A B F H\rangle(9)\langle A C D\rangle(4)\langle A C E\rangle(5)\}$

The path to D ，〈A B D〉（6），was added before 〈A C D〉（4），and the earlier redundant path 〈A B D〉（6）is removed from Reached，but not from Frontier．Why not Frontier，too？

Lowest－Cost First Search（aka Uniform Cost Search，aka Dijkstra＇s Algorithm）of a Graph （With Checking for Repeated Vertices）

Frontier（priority queue of paths）
1．$[\langle A\rangle(0)]$
2．$[\langle A B\rangle(1)\langle A C\rangle(3)]$
3．$[\langle A B F\rangle(2)\langle A C\rangle(3)\langle A B C\rangle(6)]$
4．$[\langle A C\rangle(3)\langle A B D\rangle(6)\langle A B F G\rangle(6)\langle A B F H\rangle(9)]$
5．［ $\langle A C D\rangle(4)\langle A C E\rangle(5)\langle A B C\rangle(6)\langle A B F G\rangle(6)$〈A B F H〉（9）］

Reached
1．$\{\langle A\rangle(0)\}$
2．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\}$
3．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\langle A B F\rangle(2)\langle A B D\rangle(6)\}$
4．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\langle A B F\rangle(2)\langle A B D\rangle(6)$ $\langle A B F G\rangle(6)\langle A B F H\rangle(9)\}$
5．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\langle A B F\rangle(2)\langle A B-D\rangle-(6)$ $\langle A B F G\rangle(6)\langle A B F H\rangle(9)\langle A C D\rangle(4)\langle A C E\rangle(5)\}$

The path to D ，〈A B D〉（6），was added before 〈A C D〉（4），and the earlier redundant path 〈A B D〉（6）is removed from Reached，but not from Frontier．Why not Frontier，too？

Lowest－Cost First Search（aka Uniform Cost Search，aka Dijkstra＇s Algorithm）of a Graph （With Checking for Repeated Vertices）

Frontier（priority queue of paths）

```
1. [\langleA\rangle(0)]
2. [ \langleA B\rangle(1)\langleAC\rangle(3)]
3. [\langleABF\rangle(2)\langleAC\rangle(3)\langleABD\rangle(6)]
4. [ \langleA C\rangle(3)\langleA B D\rangle(6)\langleA B F G\rangle(6) \langleA B F H\rangle(9)]
5. [ \langleA C D\rangle (4)\langleAC E\rangle (5)\langleABD\rangle (6) \langleA B F G\rangle (6)
    <ABFH\rangle(9)]
6. [\langleACE\rangle(5)\langleABD\rangle(6)\langleABFG\rangle(6)\langleABFH\rangle(9)]
7. [\langleABD\rangle(6)\langleABFG\rangle(6)\langleACEH\rangle(6)
    <ABFH\rangle(9)]
```

2．［ $\langle A B\rangle(1)\langle A C\rangle(3)]$
3．$[\langle A B F\rangle(2)\langle A C\rangle(3)\langle A B D\rangle(6)]$
4．$[\langle A C\rangle(3)\langle A B D\rangle(6)\langle A B F G\rangle(6)\langle A B F H\rangle(9)]$
5．$[\langle A C D\rangle(4)\langle A C E\rangle(5)\langle A B D\rangle(6)\langle A B F G\rangle(6)$〈ABFH〉（9）］
6．$[\langle A C E\rangle(5)\langle A B D\rangle(6)\langle A B F G\rangle(6)\langle A B F H\rangle(9)]$
7．$[\langle A B D\rangle(6)\langle A B F G\rangle(6)\langle A C E H\rangle(6)$〈ABFH〉（9）］

Reached
1．$\{\langle A\rangle(0)\}$
2．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\}$
3．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\langle A B F\rangle(2)\langle A B D\rangle(6)\}$
4．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\langle A B F\rangle(2)\langle A B D\rangle(6)$ $\langle A B F G\rangle(6)\langle A B F H\rangle(9)\}$

5．$\{\langle A\rangle(0)\langle A B\rangle(1)\langle A C\rangle(3)\langle A B F\rangle(2)\langle A B F B\rangle(6)$ $\langle A B F H\rangle(9)\langle A C D\rangle(4)\langle A C E\rangle(5)\}$
6．$\{\langle A\rangle(0) \ldots\langle A B F H\rangle(9)\langle A C D\rangle(4)\langle A C E\rangle(5)\}$
7．$\{\langle A\rangle(0) \ldots\langle A B F H\rangle(9)\langle A C D\rangle(4)\langle A C E\rangle(5)\langle A C$ E H〉（6）\}

Will Early Goal Test Work for Least－Cost First Search？

No，not while guaranteeing a least cost solution in any case！ Look at steps 12－15 of example of previous slide，repeated here：

```
12.[〈A C E H K\rangle(8) \langleA B F H\rangle(9) \langleA C E H J\rangle(9)]
13.[〈ABFH\rangle(9) 〈A C E H J\rangle(9) 〈A C E H K M\ (12)]
14.[\langleACE H J\rangle(9) \langleA C E H K M \ (12)]
15.[〈A C E H J M\(10) 〈A C E H K M \(12)]
```

If $\langle\mathrm{ACEHK} \mathrm{K}\rangle$（12）were returned immediately after it was found in step 13，and before placing it on Frontier，then 〈ACEH J M〉 （10）would not have been discovered in step 15

Embedding Path Information in State Descriptions

Exploring Alternatives With Search

A Revision to Generic Search Algorithm for Explicit Graphs

Some observations

1．In the last example of least－cost first search we have this entry in the Frontier：

```
10.[〈ABFGI\rangle(8)\langleABFGL\rangle(8)\langleACEHK\rangle(8)\langleABFH\rangle(9)\langleACEHJ\rangle(9)]
    The sub-path \langleA B F\rangle is stored thrice, \langleABFG\rangle is stored twice, and \langleACEH\rangle is stored twice.
```

2．Generally，in both the Frontier and Reached structures，there are redundancies across paths．

3．We can eliminate redundancy while retaining the capability of remembering paths（and returning paths to goals）by distinguishing the vertex and arc space（i．e．，the state space）and the search space of that contains information to efficiently recover requisite information such as vertices，arcs，paths，and costs（e．g．，an implementation of［ 〈A B F G I〉（8）］）．

structure SearchNode

State（e．g．，vertex v）in state space
Parent is a SearchNode with state v_{k} ，where v_{k} is a directed neighbor of v in state space $\left(v_{k}, v\right)$（accessible by pointer or hashing）
Path－Cost is the cost of the $\operatorname{arc}\left(v_{k}, v\right)$ in state space plus the Path Cost of Parent
Children is a set of SearchNodes，each of which corresponds to a reachable
neighbor，v＇，of v in state space；not every v＇need have an associated child

A Revision to Generic Search Algorithm for Explicit Graphs

structure SearchNode（State Parent Path－Cost Children）

A Revision to Generic Search Algorithm for Explicit Graphs

```
structure SearchNode (State Parent Path-Cost Children)
SearchNode Search (Vertices V, Arcs A, vo, G)
    /* ... assume that each entry in A now includes a cost c (vi, vj, c) where c */
    SearchNode N = new SearchNode(State vo, Parent NULL, Path-Cost 0, Children NULL)
    Frontier = [N]
    Reached = {N}
    while Frontier != [ ] do
    select and remove N from Frontier
    if N.State in G then return N // from which the path from vo to N.State can be recovered
    for each v such that ( }\mp@subsup{v}{k}{},v,c) in 
    SearchNode L = new SearchNode(State v, Parent N, Path-Cost N.Path-Cost + c, Children NULL)
    if !exists Node M in Explored s.t. M.State == v or L.Path-Cost < M.Path-Cost
        N}.\mathrm{ Children = N.Children + L
        Reached = reached - M + L. /lif M doesn't exist then Reached - M is a no-op
        Frontier = Frontier + L
return 〈〉
```


Multiple Arcs Between Vertices

The use of a SearchNode structure also facilitates something else. There can be multiple arcs between the same vertices, perhaps with different costs. For example, a mapping app can consider two different direct routes between two towns, one along highway 70 and one along Interstate 40 . In this case, we would probably want to store the arc taken from parent to child with each node as well to disambiguate.

Informed (or Heuristic) Search of an Explicit Graph

Exploring Alternatives With Search

An Example Graph

Douglas H. Fisher

An Example Graph (cont.)

In the graph of the previous slide, which we will use going forward:

- Arc costs, also called g costs, label arcs, again under the assumption that costs are the same in each direction, which is not necessary or even typical
- Heuristic estimates of remaining cost, called h, from each vertex to a goal (M) along leastcost path label each vertex
- In this example, the h cost of each node happens to be exact; this would be rare, but we'll start with this illustration
- Though we learned a representation for the search space that used a SearchNode structure, which comes with space advantages, we will continue representing paths separately for ease of illustration

Greedy Best-First Search of an Explicit Graph

Exploring Alternatives With Search

Greedy Best-First Search

Frontier (priority queue organized by h cost estimates only)

1. [$\langle\mathrm{A}\rangle(10)]$
2. $[\langle A C\rangle(7)\langle A B\rangle(9)]$
3. $[\langle A C E\rangle(5)\langle A C D\rangle(8)\langle A B\rangle(9)]$
4. $[\langle A C E H\rangle(4)\langle A C D\rangle(8)\langle A B\rangle(9)]$

Reached is not shown, but it is still computed and used to censor $\langle A C E D\rangle(8)$ and $\langle A C E C\rangle(7)$ in step 4 after 〈ACE〉(5) is expanded in step 3, for example.

Greedy Best－First Search（cont．）

Frontier（priority queue organized by h cost estimates only）
1．［ $\langle\mathrm{A}\rangle(10)]$
2．$[\langle A C\rangle(7)\langle A B\rangle(9)]$
3．$[\langle A C E\rangle(5)\langle A C D\rangle(8)\langle A B\rangle(9)]$
4．［ $\langle\mathrm{ACEH} \mathrm{\rangle}(4)\langle A C D\rangle(8)\langle A B\rangle(9)]$
5．［〈ACEHJ〉（1）〈ACEHK〉（4）〈ACEHG〉（4）〈ACD〉（8）〈ACEHF（8）〈AB〉（9）］
6．［ 〈A C E H J M 〉（0）〈A C E H J I〉（2）〈ACEHK〉（4）〈ACEHG〉（4）〈ACD〉（8）〈ACEHF〉（8）〈AB〉（9）］

Heuristic Depth-First Search of an Explicit Graph

Exploring Alternatives With Search

Heuristic Depth－First Search

Regular DFS，but on each expansion，push children in inverse order by h （highest to lowest）

Frontier（stack with siblings pushed using h cost estimates）

1．［ $\langle\mathrm{A}\rangle(10)]$
2．$[\langle A C\rangle(7)\langle A B\rangle(9)]$
3．［ $\langle\mathrm{A} C \mathrm{E}\rangle(5)\langle\mathrm{A} C \mathrm{D}\rangle(8)\langle\mathrm{A} B\rangle(9)]$
4．［ $\langle\mathrm{ACEH}$（4）$\langle\mathrm{ACD}$（8）$\langle\mathrm{AB}\rangle(9)]$
5．［〈ACEHJ〉（1）〈ACEHK〉（4）〈ACEHG〉（4）〈ACEHF〉（8）〈ACD〉（8）〈AB〉（9）］
6．［ 〈ACEHJM〉（0）〈ACEHJI〉（2）〈ACEHK〉（4）〈ACEHG〉（4）〈ACEHF〉（8）〈ACD〉（8）〈AB〉（9）］

A* Search of an Explicit Graph

Exploring Alternatives With Search

A*

Use both actual cost so far plus (g) estimated cost to go (h). This sum is called f .

Frontier (priority queue organized by $\mathrm{f}=\mathrm{g}+\mathrm{h}$ cost estimates)

1. [$\langle A\rangle(10)]$
2. [$\langle A B\rangle(10)\langle A C\rangle(10)]$
3. $[\langle A B F\rangle(10)\langle A C\rangle(10)\langle A B C\rangle(14)]$
4. $[\langle A B F G\rangle(10)\langle A C\rangle(10)\langle A B F H\rangle(13)\langle A B D\rangle(14)]$

- Reached is not shown, but it is still being used to prevent redundant paths.
- Note that, in cases of ties, the most recent generated path is placed first. This is unlike previous examples. Might there be (dis)advantages to this practice?

Douglas H. Fisher

A＊（cont．）

Frontier（priority queue organized by $\mathrm{f}=\mathrm{g}+\mathrm{h}$ cost estimates）
1．［ $\langle\mathrm{A}\rangle(10)]$
2．$[\langle A B\rangle(10)\langle A C\rangle(10)]$
3．［ $\langle A B F\rangle(10)\langle A C\rangle(10)\langle A B D\rangle(14)]$
4．$[\langle A B F G\rangle(10)\langle A C\rangle(10)\langle A B F H\rangle(13)\langle A B C\rangle(14)]$
5．［ 〈A B F G I〉（10）〈A C〉（10）〈A B F G L〉（13）〈A B F H〉（13）〈A B D〉（14）］

7．［ $\langle\mathrm{A} B \mathrm{~F}$ GIJ M〉（10）$\langle\mathrm{AC}\rangle(10)\langle\mathrm{ABFGL} \mathrm{\rangle}(13)\langle A B F H\rangle(13)\langle A B D\rangle(14)$

Second Example Graph

- In this example, g costs are the same as in every other example, but the h costs have changed.
- Is the heuristic admissible?
- Perform greedy best-first, heuristic depth-first, and A^{*} search on this graph.

Iterative Deepening

Exploring Alternatives With Search

Iterative Deepening A＊

Keep searching to increasing f－thresholds until a goal is found．The first goal found is guaranteed to be a least cost from start to goal IF h is admissible．

Frontier（Stack）
1．［ $\langle A\rangle(4)] \quad / / D F S$ to f－threshold of 4
2．$[\langle A B\rangle(4)\langle A C\rangle(7)]$
3．$[\langle A B F\rangle(8)\langle A B D\rangle(14)\langle A B A\rangle(6)\langle A C\rangle(7)]$
4．$[\langle A B D\rangle(14)\langle A B A\rangle(6)\langle A C\rangle(7)]$
5．［ $\langle\mathrm{A} \mathrm{B} \mathrm{A}\rangle(6)\langle\mathrm{A} C\rangle(7)]$
6．$[\langle\mathrm{A} C\rangle(7)]$（followed by［］）
7．［ $\langle\mathrm{A}\rangle(4)] \quad / / D F S$ to f－threshold of 6
8．$[\langle A B\rangle(4)\langle A C\rangle(7)]$
9．．．．

10．［ $\langle\mathrm{A}\rangle(4)] \quad / / \mathrm{DFS}$ to f －threshold of 7
11．［ $\langle A B\rangle(4)\langle A C\rangle(7)]$
12．［ $\langle A B F\rangle(8)\langle A B D\rangle(14)\langle A B A\rangle(6)\langle A C\rangle(7)]$
13．［ $\langle A B D\rangle(14)\langle A B A\rangle(6)\langle A C\rangle(7)]$
14．［ $\langle\mathrm{A} B \mathrm{~A} B\rangle(6)\langle\mathrm{A} B \mathrm{~A} C\rangle(8)\langle A C\rangle(7)]$
15．［〈ABABA〉（8）〈ABABF〉（10）〈ABABD〉（16） $\langle A C\rangle(7)] \ldots$

20．［ $\langle\mathrm{A} C \mathrm{D}\rangle(12)\langle\mathrm{A} C \mathrm{E}\rangle(7)\langle\mathrm{A} C \mathrm{~A}\rangle(10)]$
21．［ $\langle\mathrm{A} C \mathrm{D}\rangle(12)\langle\mathrm{A} C \mathrm{E}\rangle(7)\langle\mathrm{A} C \mathrm{~A}\rangle(10)$ ］
22．［〈A C E〉（7）〈A C A〉（10）］
23．［〈A C E H〉（7）〈A C E D〉（17）〈A C E C〉（11）〈A C A〉（10）］
24．［〈A C E H F〉（19）．．．$\langle\mathrm{A} C \mathrm{~A}\rangle(10)$ ］

30．［〈A〉（4）］I／DFS to f－threshold of 8
Douglas H．Fisher

Suggested Exercises

Consider the search graph below. The h value of a node is given adjacent to that node. The actual cost of traversing an arc (in the indicated directions) is given adjacent to that arc. Node S is the start/initial state. Nodes G_{1} and G_{2} are goals. Use this graph for the questions to follow.

When you have completed all the questions, upload a pdf of the questions and answers to Brightspace. You may consult the pdf while you take the "quiz" component.

Suggested Exercises

1. Give the order in which nodes are visited (i.e., checked for goalness) by heuristic depth first search. In the case of two or more nodes with the same evaluation score on the frontier, break the tie by visiting the nodes in alphabetical order as labeled above - this same convention applies to the remaining parts of this question. For this question ONLY, assume that "reached" (as described in the videos) is NOT used.
2. Give the order in which nodes are visited (i.e., checked for goalness) by greedy best-first search.
3. Give the order in which nodes are visited (i.e., checked for goalness) by lowest cost first search.
4. Give the order in which nodes are visited (i.e., checked for goalness) by \mathbf{A}^{*}.
5. Which nodes would be checked for goalness on the first iteration of iterative deepening $A *$?

Notes:

- G1 is alphabetically before G2
- A misconception on the part of some is that the "order that nodes are visited" is the same as "the final path returned". This is not typically the case. Most search strategies will visit vertices that are not part of the final path.

Searching an Implicit Graph

Exploring Alternatives With Search

Searching an Implicit Graph

- All of the search methods studied for an explicit graph can be adapted straightforwardly to search of an implicit graph.
- An implicit graph is one with "vertices" (states) that are created "on demand," as search proceeds.
- As with explicit graphs, we are generally most interested in using search to find one or more paths to a goal, rather than simply finding a goal per se.
- Thus, search is used to find a "plan" in virtual space that can be executed in the real world later.

Searching an Implicit Graph (cont.)

Delivery Robot Example

This may look like another problem of searching a graph for a location (vertex) that satisfies some goal condition, but it's not!

Features:

RLoc - Rob's location RHC - Rob has coffee SWC - Sam wants coffee MW - Mail is waiting RHM - Rob has mail

Actions:

$m c$ - move clockwise
mcc - move counterclockwise
puc - pickup coffee
dc - deliver coffee
pum - pickup mail
$d m$ - deliver mail

Rather, the task for service robot Rob is to find a path of actions from a given situation defined by features on the left (e.g., human Sam wants coffee but has none), for a goal situation (e.g., that Sam has coffee).

Adapted from Slide 13 Chapter 6, Lecture 1 (https://artint.info/2e/slides/ch06/lect1.pdf) of Slides for Poole, D., \& Mackworth, A. (2017). Artificial intelligence: Foundations of computational agents (2nd ed.). Cambridge University Press. Copyright © Poole and Mackworth, 2017 and are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Delivery Robot Example

We could treat this problem like an explicit graph problem, with each situation description as an atomic, indivisible vertex, and vertices are connected by labeled, directed arcs. l'll write each vertex as lab-rhc-swc-mw-rhm (with hyphens) to stress the indivisibility.

	Source vertex	Resulting vertex		
If every situation is really lab	lab-rhc-swc-mw-rhm	mc	mr-rhc-swc-mw-rhm	$2^{4}=16$ different vertex-arc-
indivisible, then	lab-rhc-swc-mw-~rhm	mc	mr-rhc-swc-mw-~rhm	vertex triples are needed to
lab-rhc-swc-mw-rhm has no lab	lab-rhc-swc-~mw-rhm	mc	mr-rhc-swc-~mw-rhm	represent that the move-
more in common with lab	lab-rhc-swc-~mw-~rhm	mc	mr-rhc-swc-~mw-~rhm	clockwise (mc) action will
off-rhc-swc-mw-rhm than it lab	lab-rhc-~swc-mw-rhm	mc	mr-rhc-~swc-mw-rhm	move Rob from the lab to
does with	lab-rhc-~swc-mw-~rhm	mc	mr-rhc-~swc-mw-~rhm	the mail room (mr). And
off-~rhc-~swc-~mw-~rhm. laber	lab-rhc-~swc-~mw-rhm	mc	mr-rhc-~swc-~mw-rhm	that's only the start!
	lab-rhc-~swc-~mw-~rhm	mc	mr-rhc-~swc-~mw-~rhm	
	lab-~rhc-swc-mw-rhm	mc	mr-~rhc-swc-mw-rhm	
	lab-~rhc-~swc-~mw-~rhm	mc	mr-~rhc-~swc-~mw-~rhm	
	mcc		mcc	
off-~rhc-swc-mw-~rhm	mc	lab-~rhc-swc-mw-~rhm	mc	mr-~rhc-swc-mw-~rhm
mcc				pum
cs-~rhc-swc-mw-~rhm	$\xrightarrow{\text { puc }}$	cs-rhc-swc-mw-~rhm		mr-~rhc-swc-~mw-rhm

Delivery Robot Example

A factored (or feature vector or attribute-value pairs) representation

- rloc (Rob's location) is four-valued.
- rhc (Rob has coffee) is binary-valued.

Coffee shop (cs)	Sam's office (off)
\mid	
Mail	
room	
(mr)	

Different representations for actions possible, (e.g., perhaps Rob can't be holding coffee to pick up mail) but must choose one set of definitions.

- swc (Sam wants coffee) is binary-valued.
- mw (mail waiting) is binary-valued.
\quad State
< lab, rhc, swc, mw, rhm>
< lab, rhc, swc, mw, \sim rhm>
< lab, rhc, swc, $\sim \mathrm{mw}$, rhm>
< lab, rhc, swc, $\sim \mathrm{mw}, \sim$ rhm>
‥
< lab, \sim rhc, \sim swc, $\sim \mathrm{mw}, \sim$ rhm>

Action
mc
mc
mc
mc
mc

<lab, ?V1, ?V2, ?V3, ?V4>	mc
<mr, ?V1, ?V2, ?V3, ?V4>	mc
<cs, ?V1, ?V2, ?V3, ?V4>	mc
<off, ?V1, ?V2, ?V3, ?V4>	mc
<cs, ~rhc, ?V1, ?V2, ?V3>	puc
<off, rhc, ?V1, ?V2, ?V3>	dc
<mr, ?V1, ?V2, mw, ~rhm>	pum
<off, ?V1, ?V2, ?V3, rhm>	dm

- rhm (Rob has mail) is binary-valued.

Resulting State
< mr, rhc, swc, mw, rhm>
< mr, rhc, swc, mw, ~rhm>
< mr, rhc, swc, ~mw, rhm>
$<\mathrm{mr}$, rhc, swc, $\sim \mathrm{mw}, \sim \mathrm{rhm}>$
$<\mathrm{mr}, \sim \mathrm{rhc}, \sim \mathrm{swc}, \sim \mathrm{mw}, \sim \mathrm{rhm}>$
.

Delivery Robot Example

- rloc (Rob's location) is four-valued.
- rhc (Rob has coffee) is binary-valued.
- swc (Sam wants coffee) is binary-valued.
- mw (mail waiting) is binary-valued.
- rhm (Rob has mail) is binary-valued.

Delivery Robot Example

- rloc (Rob's location) is four-valued.
- rhc (Rob has coffee) is binary-valued.
- swc (Sam wants coffee) is binary-valued.
- mw (mail waiting) is binary-valued.
- rhm (Rob has mail) is binary-valued.
<cs, rhc, swc, mw, ~rhm>

Initial state
Goal states
<..., ~SWC, ...>
<CS, ~rhc, swc, mw, ~rhm>

States are realized through operator application.

Delivery Robot Example

- rloc (Rob's location) is four-valued.
- rhc (Rob has coffee) is binary-valued.
- swc (Sam wants coffee) is binary-valued.
- mw (mail waiting) is binary-valued.
- rhm (Rob has mail) is binary-valued.
ued.

Delivery Robot Example

- rloc (Rob's location) is four-valued.
- rhc (Rob has coffee) is binary-valued.
- swc (Sam wants coffee) is binary-valued.
- mw (mail waiting) is binary-valued.
- rhm (Rob has mail) is binary-valued.

Delivery Robot Example

- rloc (Rob's location) is four-valued.
- rhc (Rob has coffee) is binary-valued.
- swc (Sam wants coffee) is binary-valued.
- mw (mail waiting) is binary-valued.
- rhm (Rob has mail) is binary-valued.
<cs, rhc, swc, mw, ~rhm>
Initial state
Goal states
<..., ~swc, ...>
<cs, ~rhc, swc, mw, ~rhm>

<off, rhc, swc, mw, ~rhm> <mr, rhc, swc, mw, ~rhm>

Searching an Implicit Graph: A World Trade Game

Exploring Alternatives With Search

World Trade Game Example

A simulation in which fictional countries that are actually fronts for AI game players build and trade resources in pursuit of bettering each of their own circumstances as well as the fictional world's circumstances, each country using utility metrics of their software designer's and Al's choosing.

Country	Population (M)	Metalic Elements (IU)	Timber (IU)	Metallic Alloys (IU)	Metallic Alloys Waste (IU)	Electronics (IU)	Electronics Waste (IU)	Housing (M)	Housing Waste (IU)
Atlantis	PA	$\mathrm{n}_{\text {AME }}$	$\mathrm{n}_{\text {AT }}$	$\mathrm{n}_{\text {AMA }}$	$\mathrm{n}_{\text {AMA }}$	$\mathrm{n}_{\text {AE }}$	$\mathrm{n}_{\text {AEW }}$	$\mathrm{n}_{\text {AH }}$	$\mathrm{n}_{\text {AHW }}$
Brobdingnag	PB	$\mathrm{n}_{\text {BME }}$	n_{BT}	$\mathrm{n}_{\text {BMA }}$	$\mathrm{n}_{\text {BMA }}$	n_{BE}	$\mathrm{n}_{\text {BEW }}$	n_{BH}	$\mathrm{n}_{\text {BHW }}$
Carpania	PC	$\mathrm{n}_{\text {CME }}$	n_{CT}	$\mathrm{n}_{\text {CMA }}$	$\mathrm{n}_{\text {CMA }}$	n_{CE}	$\mathrm{n}_{\text {CEW }}$	n_{CH}	$\mathrm{n}_{\text {CHW }}$
Dinotopia	PD	$\mathrm{n}_{\text {DME }}$	n_{DT}	$\mathrm{n}_{\text {DMA }}$	$\mathrm{n}_{\text {DMA }}$	n_{DE}	$\mathrm{n}_{\text {DEW }}$	n_{DH}	$\mathrm{n}_{\text {DHW }}$
Erewhon	PE_{E}	$\mathrm{n}_{\text {EME }}$	n_{ET}	$\mathrm{n}_{\text {EMA }}$	$\mathrm{n}_{\text {EMA }}$	n_{EE}	$\mathrm{n}_{\text {EEW }}$	n_{EH}	$\mathrm{n}_{\text {EHW }}$

World Trade Game Example

TRANSFORMs are within-country actions that allow a country, given by the value of variable ?C, to create composite resources (OUTPUTS) from raw resources and other composite resources (INPUTS). Templates show relative amounts of resources, which can be multiplicatively adjusted, so that the Alloys Template can be used to transform INPUTS of $3 * 1$ population and $3^{*} 2$ MetallicElements into OUTPUTS of $3 * 1$ Population, $3^{* 1}$ MetallicAlloys, and 3*MettalicAlloysWaste.

Housing template	Alloys template	Electronics template
(TRANSFORM ?C	(TRANSFORM ?C	
(INPUTS	(INPUTS	
(Population 5)	(Population 1)	(TRANSFORM ?C
(MetallicElements 1)	(MetallicElements 2))	(Population 1)
(Timber 5)	(OUTPUTS	(MetallicElements 3)
(MetallicAlloys 3))	(Population 1)	(MetallicAlloys 2))
(OUTPUTS	(MetallicAlloys 1)	(Populs
(Housing 1)	(MetallicAlloysWaste 1)))	(Electronics 2)
(HousingWaste 1)		(ElectronicsWaste 1)))
(Population 5)))		

A single across-country operator template exists, (TRANSFER ?C_i ?C_k ((?R_1j ?X_1j))), for ?C_i to give ?C_k any amount, ?X_1j, of resource ?R_1j in ?C_i's possession.

World Trade Game Example

A(tlantis)	E(rewon)	(TRANSFORM ?C (INPUTS (R1 3) (R2 2) (R21 2)) (OUTPUTS (R22 2) (R22' 2) (R1 3)),
R1: 500	R1: 100	preconditions are of the form ?ARj <= ?C(?Rj)
R2: 700	R2: 50	
R3: 100	R3: 2000	
R21: 0	R21: 30	Housing template
R21': 0	R21': 0	(TRANSFORM ?C (INPUTS (R1 5) (R2, 1) (R3 5) (R21 3) (OUTPUTS (R1 5) (R23, 1)
R22: 0	R22: 0	(R23' 1)),
R22': 0	R22': 0	preconditions are of the form ?Alk <= ?C(?Rk)
R23: 0	R23: 0	
R23': 0	R23': 0	
State, n_{k}		

Templates can be used to generate a large number of successors to state n_{k}.

While an explicit graph representation could have been used with the small robot delivery example, with nontrivial numbers of countries and resources (and possible amounts of resources), an explicit graph is not practical here.

The graph is implicit in the actions and is generated on demand.

World Trade Game Example

		Alloys template
		((TRANSFORM ?C (INPUTS (R1 1) (R2, 2)) (OUTPUTS (R1 1) (R21, 1) (R21' 1)),
		preconditions are of the form ? ARj <= ? $\mathrm{C}($? Rj$)$
		(TRANSFORM A (INPUTS (R150*1) (R2, 50*2)) (OUTPUTS (R150) (R21, 50) (R21'50)),
		preconditions $50<=500,100<=700$
		Electronics template
A(tlantis) R1:500	E(rewon)	(TRANSFORM ?C (INPUTS (R1 3) (R2 2) (R21 2)) (OUTPUTS (R22 2) (R22' 2) (R1 3)),
R2: 700	R2: 50	preconditions are of the form ?ARj <= ? $\mathrm{C}(? \mathrm{Rj})$
R3: 100	R3: 2000	
R21: 0	R21: 30	prensitions $30<=500,20<=700,20 \mathrm{l}=0$ (R2 20)) (OUTPUTS (R22 20) (R22 20) (R1 30)),
R21: 0	R21': 0	preconditions $30<=500,20<=700,20!<=0$
R22: 0	R22: 0	Housing template
R22': 0	R22': 0	
R23: 0	R23: 0	(TRANSFORM ?C (INPUTS (R15) (R2, 1) (R3 5) (R21 3) (OUTPUTS (R1 5) (R23, 1) (R23' 1)),
R23': 0	R23': 0	preconditions are of the form ?Alk <= ?C(?Rk)
		(TRANSFORM E (INPUTS (R1 10*5) (R2, 10*1) (R3 10*5) (R21 10*3) (OUTPUTS (R1 10*5) (R23, 10*1) (R23' 10*1)),
		preconditions are of the form $50<=100,10<=50,50<=2000,30<=30$
		(TRANSFER ?Cj1 ?Cj2 ((?Ri ?ARi)), where ?ARi <= ?Cj1 (?Ri)
		(TRANSFER E A ((R3 500)), preconditions $500<=2000$

World Trade Game Example

The Generic Algorithm for Searching Implicit Graphs

Exploring Alternatives With Search

A Revision to Generic (Heuristic)
 Search Algorithm for Implicit Graphs

structure SearchNode (State Parent Action Path-Cost DistEst, Children)
SearchNode Search (Vertices V, Ares Actions A, S_{0}, Goal Condition G HeuristicFn H)
$/^{*} . .$. assume that each entry in A, a, now includes an operator a.op and cost a.cost;
G is a Boolean goal condition */
SearchNode N = new SearchNode(State S_{0}, Parent NULL, Action NULL, Path-Cost 0, DistEst H(S \mathbf{S}_{0}, G), Children NULL)

Frontier = [N]
Reached $=\{N\}$
while Frontier != [] do
select and remove N from Frontier
if N.State satisfies G then return N // from which the path from S_{0} to N. State can be recovered
Otherwise, generate successors of N (next slide).
return 〈〉

A Revision to Generic (Heuristic) Search Algorithm for Implicit Graphs (cont.)

structure SearchNode (State Parent Action Path-Cost DistEst, Children)
SearchNode Search (Vertices V, Ares Actions A, S_{0}, Goal Condition G HeuristicFn H)
... (previous slide)
if N.State satisfies G then return $N / /$ from which the path from S_{0} to N. State can be recovered
for each action a in A that is applicable to N.State
SearchNode L = new SearchNode(State Apply(a.op, N.State), Parent N, Action a, Path-Cost N.Path-Cost + a.cost, DistEst default, Children NULL)

Generate
L.DistEst = H(L.State, G)
if !exists Node M in Reached s.t. M.State $==$ L.State or L.Path-Cost < M.Path-Cost
N.Children $=$ N.Children +L

Reached = Reached - M + L
Frontier = Frontier +L
return 〈〉

This is no longer a simple check of a reencountered atomic and extant vertex but now requires a check to see if the two are exact copies (of factored or structured representations). Douglas H. Fisher

Delivery Robot Example of Redundant Paths With Implicit Graphs

- rloc (Rob's location) is four-valued.
- rhc (Rob has coffee) is binary-valued.
- swc (Sam wants coffee) is binary-valued.
- mw (mail waiting) is binary-valued.
- rhm (Rob has mail) is binary-valued.

The Generic Algorithm for Searching Implicit Graphs
The End

