
Search Control, Utility, and Concept Induction 85

Search Control, Utility, and Concept Induction"

Brian Carlson, Jerry Weinberg, L· Doug Fisher
Department of Computer Science

Box 1679, Station B
Vanderbilt University
Nashville, TN 37235

Abstract

Our research adapts incremental concep-
tual clustering (or concept formation) to
the task of learning to guide search. We
build on earlier research that uses concept
induction techniques to learn search con-
trol, but our approach differs by virtue of its
reliance on probabilistic, hierarchical clas-
sification schemes that increase certain as-
pects of search efficiency. The system also
includes inductive strategies of 'noise tol-
erance' that mitigate problems of control
knowledge 'utility'. A general lesson is that
recently identified search 'utility ' problems
are synonymous with inductive problems of
'noise'; solutions to the problems of the lat-
ter type can be usefully adapted to the for-
mer.

1 Introduction

An important objective of machine learning research
is to improve the efficiency of search. This includes
the compilation of operator sequences into macro-
operators and the adaptation of object concept learn-
ing methods to guide operator application (Mitchell,
Utgoff, L· Banerji, 1983; Langley, 1985). However,
recent research has qualified the naive application of
these techniques: learned search control knowledge
varies in its utility (Minton, 1988). In the worst
case, learned knowledge can have a detrimental effect
on search since the search to find applicable learned
knowledge can be more costly than the search that an
uninformed system would require.

This paper illustrates that incremental conceptual
clustenng or concept formation can organize search
control knowledge for efficient reuse. In particu-
lar, operator choices made during successful searches
are clustered into 'similarity' classes that capture the

*This research was supported by NASA Ames grant
NCC 2-645.

shared context in which operators were applicable.
Operator selection during later search is guided by
classification of contextual information. However, re-
liance on classification is qualified by 'noise toler-
ant' strategies that demonstrably mitigate the 'utility'
problem. In fact, a general observation of our work is
that problems of 'noise' in inductive concept learning
and problems of 'utility' in search control learning are
closely linked in form and in solution.

2 Search and Concept Induction

There are two facets to the problem of learning search
control knowledge: generating plausible abstractions
of when operators should be applied and filtering these
abstractions for their utility (Etzioni, 1988). These
facets correspond to similar aspects of concept learn-
ing. This connection has been traditionally recognized
with respect to the generation of plausible abstrac-
tions. Early work on systems such as SAGE (Langley,
1985) and LEX (Mitchell, Utgoff, L· Banerji, 1983)
applied empirical concept learning techniques to com-
plete solution traces, thus inducing conditions under
which an operator's application previously led to a
goal state. Using information-theoretic methods, Ren-
dell, Seshu, and Tcheng (1987) used P L S I , a 'util-
ity' clustering system, to group problems with simi-
lar solution strategies. Purely analytic concept learn-
ing approaches to uncovering search control knowl-
edge have also been investigated under the rubric of
explanation-based learning (DeJong & Mooney, 1986;
Mitchell, Keller, L· Kedar-Cabelli, 1986). These tech-
niques use analytic, typically deductive strategies to
find conditions under which Operators' should apply
from a small number of 'solution' traces.

Until recently, work on learning search control has
focused almost exclusively on the generation of plau-
sible abstractions. However, recently there has been
the observation that rule application varies in util-
ity: the degree that rule application alters the number
of steps (i.e., subproblems, states) encountered dur-

Carlson, Weinberg, and Fisher

ing search.1 Rule application in certain contexts may
actually detract from search efficiency. Several ap-
proaches to eliminating harmful rule application have
been examined. For example, related techniques by
Hansson and Mayer (in press) and Wefald and Rus-
sell (1989) assess whether significant information is
gleaned about eventual goal satisfaction from further
state expansion. Probability estimates used in this
assessment are learned by analyzing the state space
expanded during search. With sufficient experience
probability estimates terminate expansion at states
from which it is unlikely that useful information can
be found by further search (e.g., the system may be
very certain about eventual goal achievement from the
current state, thus diminishing the need for further
search since it is unlikely to yield significant new in-
sights about eventual outcomes).

Recently, research in explanation-based learning
has employed similarly-intended, though differently-
implemented methods for controlling search (Minton,
1988; Mooney, 1989). Research in this area has fo-
cused on the efficacy of exploiting learned rules versus
simply using the primitive operators. For example,
Markovitch L· Scott (1989) learn probability estimates
that subgoals can be satisfied. Learned rules are not
used in proof attempts of subgoals that are not likely
to be successful; only primitive rules are used in these
cases, thus avoiding redundant search.

As we have noted, work with SAGE and LEX recog-
nized the applicability of concept induction methods
to generate plausible search control rules. Similarly,
we believe that utility can be tested by noise-tolerant
strategies of concept learning. For example, ID3
(Quinlan, 1986) generates decision trees from train-
ing data using a measure of the information transmit-
ted about class membership (e.g., disease) by each at-
tribute used to describe objects (e.g., patient case his-
tories). The values of the most informative attribute
label arcs of the tree and are used to divide the train-
ing set; the information-theoretic measure is used to
recursively divide each training subset, thus forming a
decision tree. During tree construction, an estimate of
whether 'significant' information is gained about class
membership is made by a chi-square heuristic. Similar
to Wefald and Russell (1989) and Hansson and Mayer
(in press), tree expansion is terminated at nodes where
the divisive attribute does not transmit significant in-
formation about class membership; at this point, the
most common class among the training subset is used
to label the appropriate leaf of the decision tree. Sub-
sequent data is classified by traversing appropriate
paths of the tree to a leaf, where an appropriate class
designation resides. Quinlan and others (Michalski,

1 Recent work also points out that search control rules
vary in their match cost - a test of a rule's applicability
(Minton, 1988; Tambe & Rosenbloom, 1989). Our work
thus far concentrates on reducing the states examined dur-
ing search, although we will return to issues of match cost
in Section 5.

1987) have shown that this general strategy eliminates
the use of 'low utility' concepts (or portions thereof);
classification accuracy is not adversely affected or is
actually improved by the process.

In the following two sections we describe the appli-
cation of empirical concept learning to the induction,
organization, and exploitation of search control rules.
Like earlier research, we are concerned with the gen-
eration of plausible concepts and control rules. Our
work in this area is distinguished by the use of prob-
abilistic concepts (i.e., control rules), a representation
scheme that allows partial matching. Moreover, our
work is further distinguished by its attention to the
connection between post-generation tests of utility in
traditional concept learning systems and search con-
trol learning.

3 The COBWEB Concept Formation
System

Empirical concept learning is typically concerned with
improving prediction accuracy. In search control
learning this translates into a concern for accurately
predicting the operator that should be applied under
current conditions; more accurate predictions result
in a more directed, efficient search. For example, the
search-intensive task of language recognition is highly
anticipatory; a parser expects (i.e., predicts) a par-
ticular symbol next on the input stream. If the next
symbol is not as expected then the parser has made
an incorrect prediction; this may actually reflect on
an incorrect prediction that was made several symbols
earlier but has only caused a contradiction after sub-
sequent processing. In the case of the phrase big blue
bugle boy, the subphrase big blue might be a nickname,
big blue bugle might refer to a large blue brass instru-
ment, but the intent of the phrase is that big, blue, and
bugle all modify the noun boy. Of the relevant pars-
ing operators, (PARSE adjective) and (PARSE noun),
neither can be predicted with certainty at intermedi-
ate points in the phrase. As with any search-intensive
system, the parser must backtrack to an indetermi-
nate depth and try alternatives until contradictions
are eliminated.

3.1 Hierarchy Genera t ion
To reduce backtracking we wish to better predict the
likelihood that an operator applies under current con-
ditions. Our particular approach to improving search
efficiency is through a conceptual clustering system,
COBWEB (Fisher, 1987; 1989). This is an untutored
system that incrementally builds classification trees
from objects that are described by nominal attribute-
value pairs. Stored at each node of the tree are the
value distributions of each attribute over the objects
classified under the node. For example, if 90% of the
objects stored under a node, n, are blue, then the
blue feature would be weighted accordingly: P(Color
= blue|n) = 0.9. Each node is a probabilistic concept

86

Search Control, Utility, and Concept Induction

(Smith & Medin, 1981); the classification tree is a
probabilistic concept tree.

Each tree level contains sibling classes that collec-
tively partition the observed objects. COBWEB can
incrementally incorporate a new object into the class
that best matches the object according to category
utility (Gluck h Corter, 1985), a measure that rewards
the formation of object classes that improve 'predic-
tion ability'. More formally, the category utility of a
class, G*, is a function of the expected number of at-
tribute values that can be correctly predicted about
members of the class, E(#CorrectPredictions\Ck).
This expectation can be further formalized in terms of
conditional probabilities that are stored at tree nodes:
E(#CorrectPredictions\Ck) = J2i E j p(Ai =

Vij\Ck) . Category utility has some additional com-
plexities (Gluck L· Corter, 1985; Fisher, 1987), but
for our purposes it is sufficient to note that category
utility is a function of:

* j

where P(Ck) is the proportion of the observations to
which the expectation applies; P(Ck) is the probabil-
ity that the benefits (i.e., expectations) of a class will
be realized.

COBWEB incrementally filters objects into appro-
priate classes based on category utility. A new ob-
ject is evaluated with respect to a class by tentatively
placing the object in the class; each class's attribute-
value distributions are tentatively updated to reflect
the values of the new object. Probabilities are com-
puted from the tentatively updated distributions and
the category utility of the class is computed. The
class that maximizes category utility after adding the
new object is chosen to classify the object and appro-
priate distributions are updated permanently. This
process is recursively applied to the subtrees rooted
at the selected child until a leaf is reached. A leaf
is a singleton class that represents a previously ob-
served object. While objects are predominantly in-
corporated with respect to existing classes, operators
also exist for new node (class) creation, node com-
bination (merging), and node division (splitting). A
more complete description of COBWEB can be found
in Fisher (1987).

Object incorporation is easily adapted to allow
object classification and prediction: category utility
guides an object along a path of nodes to a 'best'
matching leaf. If any value(s) are missing from the
new observation, they may be predicted from the
known values of the leaf. While COBWEB trees are
reminiscent of decision trees, probabilistic concepts
are polythetic in that multiple attributes guide clas-
sification. If an object has missing attribute values
then category utility acts as a partial-matching func-
tion with summation limited to probabilities of known
attributes.

3.2 Hierarchy Evaluation: Pruning and
Utility

COBWEB'S strategy of prediction at best matching
leaves demonstrably yields good results in many do-
mains, but like early versions of ID3 this strategy can
often diminish prediction accuracy (cf., Section 2).
More generally, all inductive learning systems require
that a domain exhibit regularities (i.e., dependencies
between attributes) if learning is to be beneficial. If
the learning system is too persistent in trying to un-
cover regularities where no significant ones exist, then
this can result in Overfitting'. This is also the case
in learning to search: if no or little correlation exists
between the conditions of a state and the eventual
success of an operator application, then persistence
in trying to discover such a connection will result in
overfitting. In search control tasks, overfitting reduces
the accuracy with which operator applications are pre-
dicted, thus causing greater backtracking. In both
concept learning and search control learning, the util-
ity of certain 'rules' is negligible or detrimental.

A recent version of COBWEB (Fisher, 1989) employs
a past-performance method for disposing of low utility
rules. This method was inspired by Quinlan's (1987)
reduced error pruning, but the general approach is also
related to Hansson and Mayer's and Wefald and Rus-
sell's strategies for terminating search.2 In particu-
lar, as COBWEB classifies an object it determines at
each node whether an attribute would be correctly
predicted at the node. To do this, it compares the ob-
ject's actual value along this attribute with the most
common (i.e., most probable) value of the attribute at
the node. If the two values are equal, then COBWEB
would have correctly predicted the attribute's value if
it had been required to; in this case, a counter is in-
cremented indicating that a correct prediction would
have been made at this node. In addition, COBWEB
also records whether the attribute would have been
correctly predicted at a descendant of the node. Thus,
each node holds two counts for an attribute: one of
how often a correct prediction would have been made
at the node, and one of how often a correct predic-
tion would have been made at a descendent of the
node. When a prediction of an attribute is actually
necessary (i.e., the attribute's value is unknown), then
classification descends to a node at which the unknown
attribute is more accurately predicted relative to its
descendants; the most common value of the attribute
is used as COBWEB'S prediction.

Our summary of this past-performance 'pruning'
2Fisher (1989) also experimented with a chi-square

method of terminating classification that directly assesses
the significance of the information gained by deeper classi-
fication. Gennari, Langley, and Fisher (1989) used a cut-
off parameter to prune a classification subtree based on
a user-supplied threshold of required 'information gain'.
This method was not sensitive to differences between at-
tributes and relied entirely on the user to specify 'signifi-
cant' gain thresholds.

87

88 Carlson, Weinberg, and Fisher

Figure 1: A NPDA transition diagram for simplified-
English parsing.

strategy has been brief of necessity, but it does not
add to the asymptotic cost of learning or classification
and it considerably improves prediction accuracy over
the initial s trategy of always classifying an object to
a leaf. With this in mind, we turn to the application
of these concept formation strategies to our primary
goal: the effective management of search control.

4 An Example: Search Control in
Parsing

Our objective is to demonstrate tha t C O B W E B (and
by implication other conceptual clustering systems as
well) can effectively direct search by predicting op-
erators tha t are best applied under 'current circum-
stances' . Consider a detailed parsing example sim-
ilar to the one given at the beginning of Section 3.
Figure 1 shows a nondeterministic (i.e., backtracking)
push-down au tomata (NPDA) for recognizing an ar-
tificial, but nontrivial language. Arcs have two types
of labels: those preceded by an up /down arrow, and
those tha t are a lower case letter. The lower case let-
ters denote input symbols tha t are to be parsed. A
down arrow, (J) , followed by a letter denotes a sym-
bol to be pushed on a stack when the arc is crossed in
parsing. An arc labeled by an up arrow, (j) , denotes
tha t the symbol must reside at the top of the stack,
and is popped from the stack. It is assumed tha t the
stack contains only a $ when parsing begins. A sen-
tence is accepted (i.e., successfully parsed) if there is
at least one way to enter the final state of the machine
(i.e., s tate 17) with an empty stack and an empty in-
put s tream.

Consider " a b d a b b d b a b d e e e e d e " , which
is a string accepted by the NPDA. A successful parse

begins by pushing S on the stack in crossing from state
0 to state 1, parsing "a b d a b" leaving the system in
state 7. At s ta te 7, a T is pushed on the stack, then
an S leaving the system in s ta te 1. Next the symbols,
"b d b a b d e e e e" are parsed, and then the S and T
are popped off the stack. Next "d e" are parsed and
the final S and $ are popped off the stack, leaving the
system in s ta te 17, the final s tate .

Our example illustrates the moves necessary for a
successful parse, but the NPDA contains 4 points of
nondeterminism: s ta te 4 given an 'a', s tate 7 given a
'b ' , s tate 8 given a 'd' , and s ta te 9 given an V . The
arcs out of s ta te 9 model precisely the dilemma of
the noun/adjective example at the beginning of Sec-
tion 3. This nondeterminism is the cause of search:
each point of nondeterminism must be tried and may
result in backtracking if the wrong choice is made.
The NPDA is constructed so tha t certain incorrect
guesses are discovered rather quickly, while others are
not uncovered for several moves.

To reduce backtracking we present information
about successful parses to C O B W E B , in the hope that
the system can use this information to guide future
parsing. In particular, after a sentence is successfully
parsed, a complete trace of the choices required from
the s tar t s ta te through the final s ta te is returned; this
does not include the choices tha t were retracted via
backtracking. Each choice is regarded as an operator
to be predicted from decisions tha t were made previ-
ously. Thus , the complete trace is segmented into 'ob-
jects ' (i.e., windows) of seven at t r ibutes: one object
for each choice made in the trace. The values of four of
these a t t r ibutes are the four choices (operators) that
were made just prior to the current choice; two of these
a t t r ibutes are the top two stack symbols at the time of
the current choice; finally, the seventh at t r ibute is the
current choice. Thus , a single parse of ten choices will
be segmented into ten distinct objects.3 After sen-
tence recognition, the successful parse is segmented
and the constituent objects are incorporated into a
C O B W E B hierarchy. During subsequent parsing C O B -
W E B is used as an oracle for predicting the current
choice, given a window of four previous choices and
the top-most stack symbols.

To test the savings provided by a C O B W E B oracle,
a CoBWEB-enhanced parser was trained on success-
ful parses. Training sentences were generated so as to
usually adhere to two rules, although neither was fol-
lowed 100% of the time, thus introducing some 'noise'.
The first rule was tha t pushing a T or a U (lead-
ing into s tate 15) was dependent upon the path from
state 1 to s tate 4. The second regularity was that
roughly 4 consecutive e's should occur when in state
9. The CoBWEB-enhanced parser was trained on five
randomly generated sentences (under the above men-

3 Note that the initial choices - those without four pre-
decessors - are still represented but without some initial
attributes.

Search Control, Utility, and Concept Induction 89

1000^

3 4 5 6 7

Sentence Number

Figure 2: Backtracks required by CoBWEB-guided
parser and best of 16 alternative parsers.

tioned regularity constraints) , which after windowing
constituted a total of one to two hundred training ob-
jects. Four more sentences were randomly generated
to use as additional test sentences.4 For compara-
tive purposes, the number of backtracks required by
a CoBWEB-enhanced parser was compared with six-
teen h a rd-coded parsers: recall tha t the NPDA of Fig-
ure 1 has four points of nondeterminism - two choices
per point. The sixteen hard-coded parsers correspond
to the (24 =) 16 possible orderings on these choices.
These orderings roughly correspond to all the possible
ways tha t an 'exper t ' might order choice preferences
with sufficient knowledge of individual choice frequen-
cies. All nine (training and test) sentences were run
against the 16 hard-coded machines; C O B W E B was
trained on the first 5 of these sentences and like the
hard-coded machines was tested against all nine.

Figure 2 compares the number of backtracks re-
quired by the CoBWEB-enhanced parser and the num-
ber required by the best hard-coded machine (per sen-
tence) for each of the nine sentences (note the loga-
rithmic vertical scale). The CoBWEB-enhanced parser
out performs the minimums of the hard-coded ma-
chines on all sentences, except one (sentence # 5)
where the number of backtracks was one in each case.
A nonparametr ic sign test reveals tha t the C O B W E B -
enhanced parser properly minimized backtracks over
the collective minimum of the hard-coded machines
in a statistically-significant (a = 0.01) number of
cases (i.e., 8, with 1 tie); even if we could deter-
mine a priori the best hardcoded machine to parse
each sentence, the enhanced parser would still win in
terms of required backtracks. Overall, the C O B W E B -
enhanced parser requires 60 backtracks for all nine

400 -i

300

200

100

378

■ COBWEB (0,3)
□ COBWEB (0,5)
B COBWEB (2,3)
E3 COBWEB (2,5)
ü Min of 16

(stack size, window size)

90

I
112

1 / / /
I >■ s

1 ^ \

l·// 1 s s

V^'^' 1 s N

ΙΛ.Λ.Χ

1 s x

ΙΛ.Λ.Χ

1 ^ ^

73
60

Machines

Figure 3: Sensitivity to input window and stack sym-
bols.

sentences, while the sum of the hard-coded machine
minimums comes to 378 backtracks. If we compare the
CoBWEB-enhanced parser to the individual machines
then the savings become even more pronounced: the
backtracks required by the individual machines ranged
from 643 to 2626, as compared to 378 for their collec-
tive minimum and 60 for our C O B W E B parser.5

We also investigated the sensitivity of the C O B W E B -
enhanced parser to window size and number of stack
symbols tha t were used during learning. In the results
tha t we report above, we assumed a input window
size of 5 and access to the top 2 stack symbols.6 Fig-
ure 3 compares the total number of backtracks over
all sentences for various window/stack sizes and the
sum total of the min imum parse of each sentence for
any of the stat ic machines (Min of 16). For each of

4Originally, five additional test sentences were gener-
ated, but one was identical to a training sentence and was
removed from consideration.

5There are several interesting issues that arise when
we consider using concept formation techniques to guide
language parsing. In particular, the relative performance
merits of and conceptual links between our heuristically-
guided parser and efficient parsers for such things as LR(k)
grammars are of some interest, but are tangential to the
objectives of this paper. Notably, our heuristic parser as-
sumes that statistical correlations exist between parsing
transitions; if such correlations exist then concept induc-
tion techniques can hope to provide some speedup over
standard parsing methods, regardless of the language class.
If no such correlations exist, then inductive techniques will
provide no speedups over the standard parsing methods for
a language. More generally, the objectives of this paper
are to illustrate links between inductive concept formation
and search control management, and thus we will defer dis-
cussion of parsing-specific issues.

6 As we stated earlier, during testing. 4 of the 5 window
symbols will correspond to the 4 previous choices, while
the 5th will correspond to the choice to be predicted.

90 Carlson, Weinberg, and Fisher

5 Concluding Remarks

1 2 3 4 5 6 7 8 9
Sentence Number

Figure 4: Backtracks required with and without noise-
tolerant classification strategy.

the window/stack combinations that we investigated,
the number of backtracks required by the COBWEB
parser is considerably less than the hardcoded mini-
mums. A second observation is that the performance
of our parser appears to improve as the amount of in-
formation (input and stack symbols) available to guide
classification increases. The exception to this trend
occurs between (0,3) and (0,5), but we believe this to
be an aberration caused by an exceptional sentence.
In fact, the (0,5) properly minimized the backtracks
relative to the (0,3) condition for 6 of the 9 sentences,
with 1 tie and 2 cases in which (0,3) minimized back-
tracks. Though our experiments are not sufficient to
make statistically-justified claims for the relative ad-
vantage of differing (stack, window) conditions at the
a = 0.05 level, we nonetheless believe that more ex-
tensive experiments will confirm the trend within cer-
tain limits.

Finally, the COBWEB results reported above assume
the classification strategy designed to avoid overfitting
that was described Section 3. To test our contention
that this strategy avoids overfitting and the detrimen-
tal use of low-utility control knowledge, we compared
these results to a parser that made predictions sug-
gested by best-matching leaves of the learned concept
tree. Figure 4 compares these alternative versions;
classification to a leaf yields less reliable results and is
often much more costly in terms required backtrack-
ing. The past-performance strategy outperforms clas-
sification to a leaf in 7 of the 9 cases, with 2 ties.
This is significant using the nonparametric sign test
at a = 0.05. This supports our specific claim that
our past-performance strategy gives a good measure
of rule utility. More generally, a promising conjecture
is that strategies designed to enhance noise tolerance
in concept learning may be useful in mitigating utility
problems in search control.

We have demonstrated the efficacy of concept forma-
tion in the management of search control knowledge.
COBWEB'S probabilistic representation of search con-
trol facilitates greater flexibility in guiding search: in
addition to hard-and-fast rules, tendencies ('hunches')
also guide search. This characteristic is particularly
important in tasks like parsing since it may be impos-
sible to tell with certainty whether a particular oper-
ator is applicable prior to its invocation.

Although our approach was tested on a parsing
task we believe that it can be adapted to other
search-intensive tasks, though this may require that
we overcome representational limitations. In partic-
ular, COBWEB requires nominal attribute-value rep-
resentations. This representation is sufficient to deal
with certain other domains that have been examined
in search control research such as the 8-tile puzzle
and other games (Wefald fz Russell, 1989), but more
complicated search tasks such as planning and those
found in EBL research will require relational repre-
sentations. In fact, extensions of CoBWEB-like strate-
gies that deal with relational representations are be-
ing investigated (Yoo L· Fisher, 1990; Yang, Fisher, L·
Franke, in press).

A second, but more subtle, representation issue
arises when we examine more deeply the meaning
of rule 'utility'. In particular, we have ignored the
'match-cost' aspect of utility (Tambe L· Rosenbloom,
1989); the COBWEB-enhanced parser uniformly re-
quires greater execution time because of increased
match cost. In part, this is due to 'uninteresting'
factors such as (1) inefficiencies of the COBWEB im-
plementation, which we have not tailored to this do-
main, and (2) the exceedingly low cost of backtrack-
ing with an NPD A. More fundamentally though, it
appears that match costs are magnified by probabilis-
tic concepts, which require that we match many at-
tributes of a concept - even those that may be sta-
tistically irrelevant to class membership. Fortunately,
the same noise-tolerance strategies that identify when
an attribute is best predicted are also useful in deter-
mining when attributes are irrelevant for classification
purposes. Thus, we believe that these strategies sug-
gest a promising path for mitigating the match-cost
factor of probabilistic-rule utility (Gennari, 1989).

Finally, we believe that a notable contribution of
this work is that it illustrates a link between concept
induction strategies for noise tolerance and search con-
trol issues of utility: classification/search should ter-
minate at points that do not helpfully inform pre-
diction. In Section 2 we alluded to a point that
we more forcefully argue elsewhere (Fisher L· Chan,
in press; Yoo & Fisher, 1990) - that overfitting is
also at the root of the utility problem as it per-
tains to EBL and domain theory search. Learned
rules may represent logically possible, though statis-
tically idiosyncratic connections between patterns of

Search Control, Utility, and Concept Induction 91

operational predicates and target consequences. The
application/consideration of such rules may actually
have a detr imental effect on subsequent problem solv-
ing (Mooney, 1989; Markovitch L· Scott, 1989). Our
current work seeks to unify inductive issues of noise
and explanation-based issues of utility in the context
of concept formation over problem-solving experience
(Yoo L· Fisher, 1990) and plans (Yang, Fisher, L·
Franke, in press).7 Our work tentatively suggests tha t
EBL mechanisms of selective retention (Markovitch
L· Scott, 1989; Minton, 1988) and selective utiliza-
tion (Markovitch & Scott, 1989; Mooney, 1989)8 are
synonymous in spirit to , and bet ter implemented by,
much studied inductive methods of pruning (Quinlan,
1986; Michalski, 1987) and preference identification
(Fisher, 1989), respectively.

A c k n o w l e d g e m e n t s
We thank the reviewers for helpful suggestions on con-
tent and exposition.

R e f e r e n c e s
DeJong, G., L· Mooney, R. (1986). Explanation-

based learning: An alternative view. Machine
Learning, 1, 145-176.

Etzioni, O. (1988). Hypothesis filtering: a practical
approach to reliable learning. Proceedings of the
Fifth International Conference Machine Learn-
ing. (416-428). Ann Arbor, MI: Morgan Kauf-
mann.

Fisher, D. H. (1987). Knowledge acquisition via in-
cremental conceptual clustering. Machine Learn-
ing, 2, 139-172.

Fisher, D. H. (1989). Noise-tolerant conceptual clus-
tering. Proceedings of the International Joint
Conference Artificial Intelligence (pp. 825-830).
Detroit , MI: Morgan Kaufmann.

Fisher, D., L· Chan, P. (in press). Statistical guid-
ance in symbolic learning. Annals of Mathemat-
ics and Artificial Intelligence.

Gennari , J (1989). Focused concept formation. Pro-
ceedings of the Sixth International Workshop on
Machine Learning (pp. 379-382). I thaca, NY:
Morgan Kaufmann.

Gennari , J., Langley, P., L· Fisher, D. (1989). Models
of concept formation. Artificial Intelligence, 40,
11-62.

Gluck, M. A., L· Corter, J . E. (1985). Information,
uncertainty, and the utility of categories. Pro-
ceedings of the Seventh Annual Conference of the
Cognitive Science Society (pp. 283-287). Irvine,
CA: Lawrence Erlbaum.

7Unification appears to be a similar, though implicit,
intention behind the work of Etzioni (1988).

8 We believe that these terms were coined by
Markovitch and Scott.

Hansson, O., L· Mayer, A. (in press). Probabilistic
heuristic est imates. Annals of Mathematics and
Artificial Intelligence.

Langley, P. (1985). Learning to search: from weak
methods to domain-specific heuristics. Cognitive
Science, 9, 217-260.

Markovitch, S. h Scott, P . (1989). Information fil-
ters and their implementation in the syllog sys-
tem. Proceedings of the International Workshop
on Machine Learning (404-407). Ithaca, NY:
Morgan Kaufmann.

Michalski, R. (1987). How to learn imprecise con-
cepts: a method for employing a two-tiered
knowledge representation in learning. Proceed-
ings of the Fourth International Workshop on
Machine Learning (50-58). Irvine, CA: Morgan
Kaufmann.

Minton, S. (1988). Qualitative results concerning
the utility of explanation-based learning. Pro-
ceedings of the Seventh National Conference on
Artificial Intelligence (pp. 564-569). St. Paul,
MN: Morgan Kaufmann.

Mitchell, T., Keller, R., L· Kedar-Cabelli , S. (1986).
Explanation-based learning: a unifying view.
Machine Learning, 1, 47-80.

Mitchell, T. , Utgoff, P., L· Banerji, R. (1983). Learn-
ing problem solving heuristics by experimenta-
tion. In R. Michalski, J . Carbonell, L· T . Mitchell
(Eds.) Machine Learning: An Artificial Intelli-
gence Approach, Palo Alto, CA: Morgan Kauf-
mann.

Quinlan, J . R. (1986). Induction of decision trees.
Machine Learning, 1, 81-106.

Quinlan, J. R. (1987). Simplifying decision trees.
International Journal of Man-machine Studies.

Rendell, L., Seshu, R., L· Tcheng, D. (1987).
More robust concept learning using dynamically-
variable bias. Proceedings of the Fourth Interna-
tional Workshop on Machine Learning (pp. 66-
78). Irvine, CA: Morgan Kaufmann.

Smith, E. E., L· Medin, D. L. (1981). Categories and
concepts. Cambridge, MA: Harvard University
Press.

Tambe, M. L· Rosenbloom, P. (1989). Eliminating
expensive chunks by restricting expressiveness.
Proceedings of the International Joint Confer-
ence Artificial Intelligence (pp. 731-737). De-
troit , MI: Morgan Kaufmann.

Wefald, E. & Russell, S. (1989). Adaptive learn-
ing of decision-theoretic search control knowl-
edge. Proceedings of the International Workshop
on Machine Learning (408-411). Ithaca, NY:
Morgan Kaufmann.

92 Carlson, Weinberg, and Fisher

Yang, H., Fisher, D., L· Franke, H. (in press). Im-
proving planning efficiency by conceptual clus-
tering. The Third International Conference on
Industrial & Engineering Applications of Artifi-
cial Intelligence & Expert Systems. Charleston,
SC: ACM Press.

Yoo, J., L· Fisher, D. (1990). Concept formation
over explanations and problem-solving experi-
ence. Technical Report. Department of Com-
puter Science, Vanderbilt University.

