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Abstract 

Our research adapts incremental concep-
tual clustering (or concept formation) to 
the task of learning to guide search. We 
build on earlier research that uses concept 
induction techniques to learn search con-
trol, but our approach differs by virtue of its 
reliance on probabilistic, hierarchical clas-
sification schemes that increase certain as-
pects of search efficiency. The system also 
includes inductive strategies of 'noise tol-
erance' that mitigate problems of control 
knowledge 'utility'. A general lesson is that 
recently identified search 'utility ' problems 
are synonymous with inductive problems of 
'noise'; solutions to the problems of the lat-
ter type can be usefully adapted to the for-
mer. 

1 Introduction 

An important objective of machine learning research 
is to improve the efficiency of search. This includes 
the compilation of operator sequences into macro-
operators and the adaptation of object concept learn-
ing methods to guide operator application (Mitchell, 
Utgoff, L· Banerji, 1983; Langley, 1985). However, 
recent research has qualified the naive application of 
these techniques: learned search control knowledge 
varies in its utility (Minton, 1988). In the worst 
case, learned knowledge can have a detrimental effect 
on search since the search to find applicable learned 
knowledge can be more costly than the search that an 
uninformed system would require. 

This paper illustrates that incremental conceptual 
clustenng or concept formation can organize search 
control knowledge for efficient reuse. In particu-
lar, operator choices made during successful searches 
are clustered into 'similarity' classes that capture the 
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shared context in which operators were applicable. 
Operator selection during later search is guided by 
classification of contextual information. However, re-
liance on classification is qualified by 'noise toler-
ant' strategies that demonstrably mitigate the 'utility' 
problem. In fact, a general observation of our work is 
that problems of 'noise' in inductive concept learning 
and problems of 'utility' in search control learning are 
closely linked in form and in solution. 

2 Search and Concept Induction 

There are two facets to the problem of learning search 
control knowledge: generating plausible abstractions 
of when operators should be applied and filtering these 
abstractions for their utility (Etzioni, 1988). These 
facets correspond to similar aspects of concept learn-
ing. This connection has been traditionally recognized 
with respect to the generation of plausible abstrac-
tions. Early work on systems such as SAGE (Langley, 
1985) and LEX (Mitchell, Utgoff, L· Banerji, 1983) 
applied empirical concept learning techniques to com-
plete solution traces, thus inducing conditions under 
which an operator's application previously led to a 
goal state. Using information-theoretic methods, Ren-
dell, Seshu, and Tcheng (1987) used P L S I , a 'util-
ity' clustering system, to group problems with simi-
lar solution strategies. Purely analytic concept learn-
ing approaches to uncovering search control knowl-
edge have also been investigated under the rubric of 
explanation-based learning (DeJong & Mooney, 1986; 
Mitchell, Keller, L· Kedar-Cabelli, 1986). These tech-
niques use analytic, typically deductive strategies to 
find conditions under which Operators' should apply 
from a small number of 'solution' traces. 

Until recently, work on learning search control has 
focused almost exclusively on the generation of plau-
sible abstractions. However, recently there has been 
the observation that rule application varies in util-
ity: the degree that rule application alters the number 
of steps (i.e., subproblems, states) encountered dur-
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ing search.1 Rule application in certain contexts may 
actually detract from search efficiency. Several ap-
proaches to eliminating harmful rule application have 
been examined. For example, related techniques by 
Hansson and Mayer (in press) and Wefald and Rus-
sell (1989) assess whether significant information is 
gleaned about eventual goal satisfaction from further 
state expansion. Probability estimates used in this 
assessment are learned by analyzing the state space 
expanded during search. With sufficient experience 
probability estimates terminate expansion at states 
from which it is unlikely that useful information can 
be found by further search (e.g., the system may be 
very certain about eventual goal achievement from the 
current state, thus diminishing the need for further 
search since it is unlikely to yield significant new in-
sights about eventual outcomes). 

Recently, research in explanation-based learning 
has employed similarly-intended, though differently-
implemented methods for controlling search (Minton, 
1988; Mooney, 1989). Research in this area has fo-
cused on the efficacy of exploiting learned rules versus 
simply using the primitive operators. For example, 
Markovitch L· Scott (1989) learn probability estimates 
that subgoals can be satisfied. Learned rules are not 
used in proof attempts of subgoals that are not likely 
to be successful; only primitive rules are used in these 
cases, thus avoiding redundant search. 

As we have noted, work with SAGE and LEX recog-
nized the applicability of concept induction methods 
to generate plausible search control rules. Similarly, 
we believe that utility can be tested by noise-tolerant 
strategies of concept learning. For example, ID3 
(Quinlan, 1986) generates decision trees from train-
ing data using a measure of the information transmit-
ted about class membership (e.g., disease) by each at-
tribute used to describe objects (e.g., patient case his-
tories). The values of the most informative attribute 
label arcs of the tree and are used to divide the train-
ing set; the information-theoretic measure is used to 
recursively divide each training subset, thus forming a 
decision tree. During tree construction, an estimate of 
whether 'significant' information is gained about class 
membership is made by a chi-square heuristic. Similar 
to Wefald and Russell (1989) and Hansson and Mayer 
(in press), tree expansion is terminated at nodes where 
the divisive attribute does not transmit significant in-
formation about class membership; at this point, the 
most common class among the training subset is used 
to label the appropriate leaf of the decision tree. Sub-
sequent data is classified by traversing appropriate 
paths of the tree to a leaf, where an appropriate class 
designation resides. Quinlan and others (Michalski, 

1 Recent work also points out that search control rules 
vary in their match cost - a test of a rule's applicability 
(Minton, 1988; Tambe & Rosenbloom, 1989). Our work 
thus far concentrates on reducing the states examined dur-
ing search, although we will return to issues of match cost 
in Section 5. 

1987) have shown that this general strategy eliminates 
the use of 'low utility' concepts (or portions thereof); 
classification accuracy is not adversely affected or is 
actually improved by the process. 

In the following two sections we describe the appli-
cation of empirical concept learning to the induction, 
organization, and exploitation of search control rules. 
Like earlier research, we are concerned with the gen-
eration of plausible concepts and control rules. Our 
work in this area is distinguished by the use of prob-
abilistic concepts (i.e., control rules), a representation 
scheme that allows partial matching. Moreover, our 
work is further distinguished by its attention to the 
connection between post-generation tests of utility in 
traditional concept learning systems and search con-
trol learning. 

3 The COBWEB Concept Formation 
System 

Empirical concept learning is typically concerned with 
improving prediction accuracy. In search control 
learning this translates into a concern for accurately 
predicting the operator that should be applied under 
current conditions; more accurate predictions result 
in a more directed, efficient search. For example, the 
search-intensive task of language recognition is highly 
anticipatory; a parser expects (i.e., predicts) a par-
ticular symbol next on the input stream. If the next 
symbol is not as expected then the parser has made 
an incorrect prediction; this may actually reflect on 
an incorrect prediction that was made several symbols 
earlier but has only caused a contradiction after sub-
sequent processing. In the case of the phrase big blue 
bugle boy, the subphrase big blue might be a nickname, 
big blue bugle might refer to a large blue brass instru-
ment, but the intent of the phrase is that big, blue, and 
bugle all modify the noun boy. Of the relevant pars-
ing operators, (PARSE adjective) and (PARSE noun), 
neither can be predicted with certainty at intermedi-
ate points in the phrase. As with any search-intensive 
system, the parser must backtrack to an indetermi-
nate depth and try alternatives until contradictions 
are eliminated. 

3.1 Hierarchy Genera t ion 
To reduce backtracking we wish to better predict the 
likelihood that an operator applies under current con-
ditions. Our particular approach to improving search 
efficiency is through a conceptual clustering system, 
COBWEB (Fisher, 1987; 1989). This is an untutored 
system that incrementally builds classification trees 
from objects that are described by nominal attribute-
value pairs. Stored at each node of the tree are the 
value distributions of each attribute over the objects 
classified under the node. For example, if 90% of the 
objects stored under a node, n, are blue, then the 
blue feature would be weighted accordingly: P(Color 
= blue|n) = 0.9. Each node is a probabilistic concept 
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(Smith & Medin, 1981); the classification tree is a 
probabilistic concept tree. 

Each tree level contains sibling classes that collec-
tively partition the observed objects. COBWEB can 
incrementally incorporate a new object into the class 
that best matches the object according to category 
utility (Gluck h Corter, 1985), a measure that rewards 
the formation of object classes that improve 'predic-
tion ability'. More formally, the category utility of a 
class, G*, is a function of the expected number of at-
tribute values that can be correctly predicted about 
members of the class, E(#CorrectPredictions\Ck). 
This expectation can be further formalized in terms of 
conditional probabilities that are stored at tree nodes: 
E(#CorrectPredictions\Ck) = J2i E j p(Ai = 

Vij\Ck) . Category utility has some additional com-
plexities (Gluck L· Corter, 1985; Fisher, 1987), but 
for our purposes it is sufficient to note that category 
utility is a function of: 

* j 

where P(Ck) is the proportion of the observations to 
which the expectation applies; P(Ck) is the probabil-
ity that the benefits (i.e., expectations) of a class will 
be realized. 

COBWEB incrementally filters objects into appro-
priate classes based on category utility. A new ob-
ject is evaluated with respect to a class by tentatively 
placing the object in the class; each class's attribute-
value distributions are tentatively updated to reflect 
the values of the new object. Probabilities are com-
puted from the tentatively updated distributions and 
the category utility of the class is computed. The 
class that maximizes category utility after adding the 
new object is chosen to classify the object and appro-
priate distributions are updated permanently. This 
process is recursively applied to the subtrees rooted 
at the selected child until a leaf is reached. A leaf 
is a singleton class that represents a previously ob-
served object. While objects are predominantly in-
corporated with respect to existing classes, operators 
also exist for new node (class) creation, node com-
bination (merging), and node division (splitting). A 
more complete description of COBWEB can be found 
in Fisher (1987). 

Object incorporation is easily adapted to allow 
object classification and prediction: category utility 
guides an object along a path of nodes to a 'best' 
matching leaf. If any value(s) are missing from the 
new observation, they may be predicted from the 
known values of the leaf. While COBWEB trees are 
reminiscent of decision trees, probabilistic concepts 
are polythetic in that multiple attributes guide clas-
sification. If an object has missing attribute values 
then category utility acts as a partial-matching func-
tion with summation limited to probabilities of known 
attributes. 

3.2 Hierarchy Evaluation: Pruning and 
Utility 

COBWEB'S strategy of prediction at best matching 
leaves demonstrably yields good results in many do-
mains, but like early versions of ID3 this strategy can 
often diminish prediction accuracy (cf., Section 2). 
More generally, all inductive learning systems require 
that a domain exhibit regularities (i.e., dependencies 
between attributes) if learning is to be beneficial. If 
the learning system is too persistent in trying to un-
cover regularities where no significant ones exist, then 
this can result in Overfitting'. This is also the case 
in learning to search: if no or little correlation exists 
between the conditions of a state and the eventual 
success of an operator application, then persistence 
in trying to discover such a connection will result in 
overfitting. In search control tasks, overfitting reduces 
the accuracy with which operator applications are pre-
dicted, thus causing greater backtracking. In both 
concept learning and search control learning, the util-
ity of certain 'rules' is negligible or detrimental. 

A recent version of COBWEB (Fisher, 1989) employs 
a past-performance method for disposing of low utility 
rules. This method was inspired by Quinlan's (1987) 
reduced error pruning, but the general approach is also 
related to Hansson and Mayer's and Wefald and Rus-
sell's strategies for terminating search.2 In particu-
lar, as COBWEB classifies an object it determines at 
each node whether an attribute would be correctly 
predicted at the node. To do this, it compares the ob-
ject's actual value along this attribute with the most 
common (i.e., most probable) value of the attribute at 
the node. If the two values are equal, then COBWEB 
would have correctly predicted the attribute's value if 
it had been required to; in this case, a counter is in-
cremented indicating that a correct prediction would 
have been made at this node. In addition, COBWEB 
also records whether the attribute would have been 
correctly predicted at a descendant of the node. Thus, 
each node holds two counts for an attribute: one of 
how often a correct prediction would have been made 
at the node, and one of how often a correct predic-
tion would have been made at a descendent of the 
node. When a prediction of an attribute is actually 
necessary (i.e., the attribute's value is unknown), then 
classification descends to a node at which the unknown 
attribute is more accurately predicted relative to its 
descendants; the most common value of the attribute 
is used as COBWEB'S prediction. 

Our summary of this past-performance 'pruning' 
2Fisher (1989) also experimented with a chi-square 

method of terminating classification that directly assesses 
the significance of the information gained by deeper classi-
fication. Gennari, Langley, and Fisher (1989) used a cut-
off parameter to prune a classification subtree based on 
a user-supplied threshold of required 'information gain'. 
This method was not sensitive to differences between at-
tributes and relied entirely on the user to specify 'signifi-
cant' gain thresholds. 

87 
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Figure 1: A NPDA transition diagram for simplified-
English parsing. 

strategy has been brief of necessity, but it does not 
add to the asymptotic cost of learning or classification 
and it considerably improves prediction accuracy over 
the initial s trategy of always classifying an object to 
a leaf. With this in mind, we turn to the application 
of these concept formation strategies to our primary 
goal: the effective management of search control. 

4 An Example: Search Control in 
Parsing 

Our objective is to demonstrate tha t C O B W E B (and 
by implication other conceptual clustering systems as 
well) can effectively direct search by predicting op-
erators tha t are best applied under 'current circum-
stances' . Consider a detailed parsing example sim-
ilar to the one given at the beginning of Section 3. 
Figure 1 shows a nondeterministic (i.e., backtracking) 
push-down au tomata (NPDA) for recognizing an ar-
tificial, but nontrivial language. Arcs have two types 
of labels: those preceded by an up /down arrow, and 
those tha t are a lower case letter. The lower case let-
ters denote input symbols tha t are to be parsed. A 
down arrow, (J) , followed by a letter denotes a sym-
bol to be pushed on a stack when the arc is crossed in 
parsing. An arc labeled by an up arrow, ( j ) , denotes 
tha t the symbol must reside at the top of the stack, 
and is popped from the stack. It is assumed tha t the 
stack contains only a $ when parsing begins. A sen-
tence is accepted (i.e., successfully parsed) if there is 
at least one way to enter the final state of the machine 
(i.e., s tate 17) with an empty stack and an empty in-
put s tream. 

Consider " a b d a b b d b a b d e e e e d e " , which 
is a string accepted by the NPDA. A successful parse 

begins by pushing S on the stack in crossing from state 
0 to state 1, parsing "a b d a b" leaving the system in 
state 7. At s ta te 7, a T is pushed on the stack, then 
an S leaving the system in s ta te 1. Next the symbols, 
"b d b a b d e e e e" are parsed, and then the S and T 
are popped off the stack. Next "d e" are parsed and 
the final S and $ are popped off the stack, leaving the 
system in s ta te 17, the final s tate . 

Our example illustrates the moves necessary for a 
successful parse, but the NPDA contains 4 points of 
nondeterminism: s ta te 4 given an 'a', s tate 7 given a 
'b ' , s tate 8 given a 'd' , and s ta te 9 given an V . The 
arcs out of s ta te 9 model precisely the dilemma of 
the noun/adjective example at the beginning of Sec-
tion 3. This nondeterminism is the cause of search: 
each point of nondeterminism must be tried and may 
result in backtracking if the wrong choice is made. 
The NPDA is constructed so tha t certain incorrect 
guesses are discovered rather quickly, while others are 
not uncovered for several moves. 

To reduce backtracking we present information 
about successful parses to C O B W E B , in the hope that 
the system can use this information to guide future 
parsing. In particular, after a sentence is successfully 
parsed, a complete trace of the choices required from 
the s tar t s ta te through the final s ta te is returned; this 
does not include the choices tha t were retracted via 
backtracking. Each choice is regarded as an operator 
to be predicted from decisions tha t were made previ-
ously. Thus , the complete trace is segmented into 'ob-
jects ' (i.e., windows) of seven at t r ibutes: one object 
for each choice made in the trace. The values of four of 
these a t t r ibutes are the four choices (operators) that 
were made just prior to the current choice; two of these 
a t t r ibutes are the top two stack symbols at the time of 
the current choice; finally, the seventh at t r ibute is the 
current choice. Thus , a single parse of ten choices will 
be segmented into ten distinct objects.3 After sen-
tence recognition, the successful parse is segmented 
and the constituent objects are incorporated into a 
C O B W E B hierarchy. During subsequent parsing C O B -
W E B is used as an oracle for predicting the current 
choice, given a window of four previous choices and 
the top-most stack symbols. 

To test the savings provided by a C O B W E B oracle, 
a CoBWEB-enhanced parser was trained on success-
ful parses. Training sentences were generated so as to 
usually adhere to two rules, although neither was fol-
lowed 100% of the time, thus introducing some 'noise'. 
The first rule was tha t pushing a T or a U (lead-
ing into s tate 15) was dependent upon the path from 
state 1 to s tate 4. The second regularity was that 
roughly 4 consecutive e's should occur when in state 
9. The CoBWEB-enhanced parser was trained on five 
randomly generated sentences (under the above men-

3 Note that the initial choices - those without four pre-
decessors - are still represented but without some initial 
attributes. 
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Figure 2: Backtracks required by CoBWEB-guided 
parser and best of 16 alternative parsers. 

tioned regularity constraints) , which after windowing 
constituted a total of one to two hundred training ob-
jects. Four more sentences were randomly generated 
to use as additional test sentences.4 For compara-
tive purposes, the number of backtracks required by 
a CoBWEB-enhanced parser was compared with six-
teen h a rd-coded parsers: recall tha t the NPDA of Fig-
ure 1 has four points of nondeterminism - two choices 
per point. The sixteen hard-coded parsers correspond 
to the (24 = ) 16 possible orderings on these choices. 
These orderings roughly correspond to all the possible 
ways tha t an 'exper t ' might order choice preferences 
with sufficient knowledge of individual choice frequen-
cies. All nine (training and test) sentences were run 
against the 16 hard-coded machines; C O B W E B was 
trained on the first 5 of these sentences and like the 
hard-coded machines was tested against all nine. 

Figure 2 compares the number of backtracks re-
quired by the CoBWEB-enhanced parser and the num-
ber required by the best hard-coded machine (per sen-
tence) for each of the nine sentences (note the loga-
rithmic vertical scale). The CoBWEB-enhanced parser 
out performs the minimums of the hard-coded ma-
chines on all sentences, except one (sentence # 5) 
where the number of backtracks was one in each case. 
A nonparametr ic sign test reveals tha t the C O B W E B -
enhanced parser properly minimized backtracks over 
the collective minimum of the hard-coded machines 
in a statistically-significant ( a = 0.01) number of 
cases (i.e., 8, with 1 tie); even if we could deter-
mine a priori the best hardcoded machine to parse 
each sentence, the enhanced parser would still win in 
terms of required backtracks. Overall, the C O B W E B -
enhanced parser requires 60 backtracks for all nine 
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Figure 3: Sensitivity to input window and stack sym-
bols. 

sentences, while the sum of the hard-coded machine 
minimums comes to 378 backtracks. If we compare the 
CoBWEB-enhanced parser to the individual machines 
then the savings become even more pronounced: the 
backtracks required by the individual machines ranged 
from 643 to 2626, as compared to 378 for their collec-
tive minimum and 60 for our C O B W E B parser.5 

We also investigated the sensitivity of the C O B W E B -
enhanced parser to window size and number of stack 
symbols tha t were used during learning. In the results 
tha t we report above, we assumed a input window 
size of 5 and access to the top 2 stack symbols.6 Fig-
ure 3 compares the total number of backtracks over 
all sentences for various window/stack sizes and the 
sum total of the min imum parse of each sentence for 
any of the stat ic machines (Min of 16). For each of 

4Originally, five additional test sentences were gener-
ated, but one was identical to a training sentence and was 
removed from consideration. 

5There are several interesting issues that arise when 
we consider using concept formation techniques to guide 
language parsing. In particular, the relative performance 
merits of and conceptual links between our heuristically-
guided parser and efficient parsers for such things as LR(k) 
grammars are of some interest, but are tangential to the 
objectives of this paper. Notably, our heuristic parser as-
sumes that statistical correlations exist between parsing 
transitions; if such correlations exist then concept induc-
tion techniques can hope to provide some speedup over 
standard parsing methods, regardless of the language class. 
If no such correlations exist, then inductive techniques will 
provide no speedups over the standard parsing methods for 
a language. More generally, the objectives of this paper 
are to illustrate links between inductive concept formation 
and search control management, and thus we will defer dis-
cussion of parsing-specific issues. 

6 As we stated earlier, during testing. 4 of the 5 window 
symbols will correspond to the 4 previous choices, while 
the 5th will correspond to the choice to be predicted. 
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5 Concluding Remarks 
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Figure 4: Backtracks required with and without noise-
tolerant classification strategy. 

the window/stack combinations that we investigated, 
the number of backtracks required by the COBWEB 
parser is considerably less than the hardcoded mini-
mums. A second observation is that the performance 
of our parser appears to improve as the amount of in-
formation (input and stack symbols) available to guide 
classification increases. The exception to this trend 
occurs between (0,3) and (0,5), but we believe this to 
be an aberration caused by an exceptional sentence. 
In fact, the (0,5) properly minimized the backtracks 
relative to the (0,3) condition for 6 of the 9 sentences, 
with 1 tie and 2 cases in which (0,3) minimized back-
tracks. Though our experiments are not sufficient to 
make statistically-justified claims for the relative ad-
vantage of differing (stack, window) conditions at the 
a = 0.05 level, we nonetheless believe that more ex-
tensive experiments will confirm the trend within cer-
tain limits. 

Finally, the COBWEB results reported above assume 
the classification strategy designed to avoid overfitting 
that was described Section 3. To test our contention 
that this strategy avoids overfitting and the detrimen-
tal use of low-utility control knowledge, we compared 
these results to a parser that made predictions sug-
gested by best-matching leaves of the learned concept 
tree. Figure 4 compares these alternative versions; 
classification to a leaf yields less reliable results and is 
often much more costly in terms required backtrack-
ing. The past-performance strategy outperforms clas-
sification to a leaf in 7 of the 9 cases, with 2 ties. 
This is significant using the nonparametric sign test 
at a = 0.05. This supports our specific claim that 
our past-performance strategy gives a good measure 
of rule utility. More generally, a promising conjecture 
is that strategies designed to enhance noise tolerance 
in concept learning may be useful in mitigating utility 
problems in search control. 

We have demonstrated the efficacy of concept forma-
tion in the management of search control knowledge. 
COBWEB'S probabilistic representation of search con-
trol facilitates greater flexibility in guiding search: in 
addition to hard-and-fast rules, tendencies ('hunches') 
also guide search. This characteristic is particularly 
important in tasks like parsing since it may be impos-
sible to tell with certainty whether a particular oper-
ator is applicable prior to its invocation. 

Although our approach was tested on a parsing 
task we believe that it can be adapted to other 
search-intensive tasks, though this may require that 
we overcome representational limitations. In partic-
ular, COBWEB requires nominal attribute-value rep-
resentations. This representation is sufficient to deal 
with certain other domains that have been examined 
in search control research such as the 8-tile puzzle 
and other games (Wefald fz Russell, 1989), but more 
complicated search tasks such as planning and those 
found in EBL research will require relational repre-
sentations. In fact, extensions of CoBWEB-like strate-
gies that deal with relational representations are be-
ing investigated (Yoo L· Fisher, 1990; Yang, Fisher, L· 
Franke, in press). 

A second, but more subtle, representation issue 
arises when we examine more deeply the meaning 
of rule 'utility'. In particular, we have ignored the 
'match-cost' aspect of utility (Tambe L· Rosenbloom, 
1989); the COBWEB-enhanced parser uniformly re-
quires greater execution time because of increased 
match cost. In part, this is due to 'uninteresting' 
factors such as (1) inefficiencies of the COBWEB im-
plementation, which we have not tailored to this do-
main, and (2) the exceedingly low cost of backtrack-
ing with an NPD A. More fundamentally though, it 
appears that match costs are magnified by probabilis-
tic concepts, which require that we match many at-
tributes of a concept - even those that may be sta-
tistically irrelevant to class membership. Fortunately, 
the same noise-tolerance strategies that identify when 
an attribute is best predicted are also useful in deter-
mining when attributes are irrelevant for classification 
purposes. Thus, we believe that these strategies sug-
gest a promising path for mitigating the match-cost 
factor of probabilistic-rule utility (Gennari, 1989). 

Finally, we believe that a notable contribution of 
this work is that it illustrates a link between concept 
induction strategies for noise tolerance and search con-
trol issues of utility: classification/search should ter-
minate at points that do not helpfully inform pre-
diction. In Section 2 we alluded to a point that 
we more forcefully argue elsewhere (Fisher L· Chan, 
in press; Yoo & Fisher, 1990) - that overfitting is 
also at the root of the utility problem as it per-
tains to EBL and domain theory search. Learned 
rules may represent logically possible, though statis-
tically idiosyncratic connections between patterns of 
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operational predicates and target consequences. The 
application/consideration of such rules may actually 
have a detr imental effect on subsequent problem solv-
ing (Mooney, 1989; Markovitch L· Scott, 1989). Our 
current work seeks to unify inductive issues of noise 
and explanation-based issues of utility in the context 
of concept formation over problem-solving experience 
(Yoo L· Fisher, 1990) and plans (Yang, Fisher, L· 
Franke, in press).7 Our work tentatively suggests tha t 
EBL mechanisms of selective retention (Markovitch 
L· Scott, 1989; Minton, 1988) and selective utiliza-
tion (Markovitch & Scott, 1989; Mooney, 1989)8 are 
synonymous in spirit to , and bet ter implemented by, 
much studied inductive methods of pruning (Quinlan, 
1986; Michalski, 1987) and preference identification 
(Fisher, 1989), respectively. 
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