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1 Introduction

A general equilibrium model, with autonomous creative destruction of �rms, is studied which
has predictions for the behavior of asset pricing, and rates of return. This framework is used
to explore the relationship between the stochastic behavior of asset prices, and the underlying
behavior of �rm productivity. The equilibrium behavior of the model yields pricing formulae
for a multitude of assets, which are unique relative to those in the existing literature. It is
shown that the correlation of the asset payo¤ with consumption, or some other related factor,
in�uences the asset price in a manner that is quite di¤erent from that seen in previous models,
and this can contribute to our understanding of excess returns, as well as the volatility of those
returns, for a multitude of assets. The model has the characteristic that there is a predictable
component to asset returns or to the change in asset prices, even if the underlying technology of
the �rm does not have such a feature. The asset pricing function is shown to be the product of
a standard pricing relationship, and a survival function, which re�ects the expected discounted
lifetime of the asset. Furthermore, another prediction is that a substantial fraction of assets
should exhibit extremely volatile prices and returns and that this volatility should be highest
for �rms that have relatively low productivity.

It is well established that there is an organic nature to a growing economy in which new
products and �rms are continually born or introduced, while other products of �rms perish.
This concept was initially developed in the growth literature (see, for example, Aghion and
Howitt [1], Grossman and Helpman [12]). It is natural to conjecture that the behavior of asset
markets should re�ect growth, and the factors that in�uence the rate of growth.1 More recently,
there have been a few papers that have sought to link this creative destruction concept with
the accompanying implications for �nancial markets (see Kogan, Papanikolaou, and Sto¤man
[21], as well as Kung and Schmid [22]).2 The current paper contributes to this literature by
explaining how the creative destruction feature alone can have interesting implications for asset
prices and returns, and how these relationships can depend on �rm productivity. This analysis
takes place within an environment in which both the production technology and preferences of
individuals are both relatively simple or standard.

This topic has taken on added importance in recent years for promoting the understanding
of trends in growth. For example, Hu¤man [17] documents that at the same time that there
appears to be a growth slowdown in recent decades, there also seems to have been a perceptible
reduction in the rates of entry and exit of �rms or establishments, in the US and Canada. In
other words, the reduction in the rates of creation and destruction has been accompanied by a
slowdown in growth.

This paper builds on the work of Hu¤man [17], where the implications of a model of creative
destruction for asset pricing are studied. However, in that model, the agents are risk-neutral
and so the asset prices are of a rather primitive form. In contrast, in the current paper, there
are risk-averse agents, and this introduces consumption risk into the model of asset pricing. It
is then shown that there are three distinct elements or factors of risk: consumption, dividend,
and exit or mortality risk. This model raises other questions, such as how it is possible to
diversify away these separate elements of risk.3

1There are some papers at the intersection of this growth and �nance literature, that feature �rm exit as
part of the growth process (for example, see Gomes, and Schmid [11]), although many of these papers have the
exit at a constant, exogenously speci�ed rate (Gomes, Kogan and Zhang [10], Corhay, Kung and Schmid [6]).
However, these papers do not contain the key insight of this paper, which is that there is a linkage between �rm
productivity and the likelihood of exit (i.e. low productivity �rms are more likely to exit), and that this has
implications for �nancial market outcomes.

2Also, there may be factors in the environment that can in�uence this rate of exit.
3The approach adopted here is slightly related to the ideas explored by others who study the �nancial market
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The model studied here will be valuable for enhancing our understanding of a variety of
�nancial phenomena. First, it has been recognized for some time that asset prices and returns
can display excess volatility, and that some returns can seem excessively large. The model
studied below will provide a unique characterization of asset prices which then implies that
some asset prices can exhibit extreme volatility. But the model is also relevant for enhancing
our understanding of other apparent puzzles, such as the �ndings of Fama and French [8] that
�rm size or book-to-market value ratio seem to in�uence returns in a manner that is inconsistent
with many existing models, such as the CAPM.4 The model studied here will be valuable for
enhancing our understanding of a variety of �nancial phenomena.

Second, there is evidence suggesting that there is a �size e¤ect� where the volatility of
prices or rates of return seem to �uctuate much more for larger (or �high-cap�) �rms, relative
to smaller �rms (e.g. see Banz [3] and Reinganum [26]). Also, average returns for small �rms
tend to be higher, but more variable than for larger, more established �rms. More recently,
·Imrohoro¼glu and Tüzel [18] also document that the variability of returns of �rms in the low
productivity deciles is higher than that in the high productivity deciles. Since these movements
should naturally re�ect similar changes in the underlying technology, one should expect to be
able to see a similar size e¤ect when measuring �rm productivity. But there does not seem
to be any evidence of this, and the model analyzed below can explain why this may be the
case. In the analysis conducted below, it is shown that even if all �rms are subject to the same
standard deviation in the innovations to productivity, the low productivity �rms can exhibit
volatility in asset prices that is arbitrarily larger than that of high productivity �rms. There is
a non-linear relationship between �rm productivity and volatility of the value of the �rm. This
increased volatility results even though the risk-free rate is the same for all assets, and is also
time-invariant.

Third, there has been a great deal of research into the study of the risk or equity premium.
The model can also shed some insight into why the US equity or risk premia is countercyclical,
or higher at business cycle troughs than at peaks (see Harvey [15], Schwert [27], Chou, Engle
and Kane [5], or Li [23]). The model can illuminate which factors can in�uence this premium
because there is an inverse, non-linear relationship between the productivity of the �rm, and
the size of this premium. Also, there has been considerable work investigating how asset prices
and rates of return should co-vary with consumption growth since dynamic economic models
generally imply that there should be such a linkage. The model studied here will be used to
show new avenues through which this covariance can in�uence asset prices and returns. This
framework will yield a greater understanding of the risk premium, and the asset-speci�c factors
that can help determine the unique risk premium for each asset. The risk premium depends
on consumption risk in a unique manner. Additionally, it is shown that an asset may exhibit
a risk premium even if its dividend payo¤ is uncorrelated with consumption growth, and this
risk premium will be determined by a productivity-dependent hazard function. Another unique
result is that in the model it is possible for the risk premium of an asset to �switch sign�
(i.e. switch from being positive to negative) as the relative productivity of the asset changes
even though the underlying correlations and standard deviations have not changed. This means
that there is not some unique value for the risk premium for an asset, even if the underlying

implications of growth models. These include in Garleanu, Panageas, and Yu [9] as well as Kung and Schmid
[22]. However, these papers do not explicitly address the how the endogenous exit or �destruction� feature can
directly in�uence returns, and the models studied in these papers is quite di¤erent, and in most cases much more
complicated, than the one proposed here.

4Gomes, Kogan and Zhang [10] make a serious contribution to explaining these observations using a general
equilibrium model. However, the notion of "creative destruction" plays virtually no role in their analysis, since
�rms exit randomly at a constant rate (as discussed in section 4.1 below). In other words, in their model there
is no linkage between �rm productivity, and the exit probability.
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parameters (i.e. variance and correlation) of the asset payo¤ are unchanged.
The asset pricing formula that results from the equilibrium of the model is unique in that it

introduces new channels through which other factors, including consumption risk, can in�uence
asset prices and returns. This new channel is represented by a productivity-dependent survival
function that measures the likelihood and value associated with the asset exiting the market
in the future - a result of the creative destruction process.5 It is shown that the rates of return
of these asset prices have a predictable component, which is based on the productivity of the
�rm. That is, changes in the prices of a �rm�s shares will have a predictable component that
is a function of the productivity of the �rm. This component is nearly constant for high-
productivity �rms. However, for �rms with relatively low productivity, their asset prices can
be extremely sensitive to changes in productivity. Here the price of the asset re�ects the usual
value of the correlation of the payo¤ of the asset with consumption. However, there is also
an additional avenue through which sources of risk can in�uence the asset price because the
ultimate shutdown of the �rm is correlated with other factors, which might include aggregate
consumption. For example, if the �rm is very likely to cease operations when consumption is
low, then the asset may exacerbate consumption risk. On the other hand, if the �rm has reduced
mortality (i.e. is unlikely to cease operations) when consumption is low then the asset provides
insurance against consumption risk. This risk, and insurance capability, will be re�ected in
the asset�s price and rate of return. The size of this new e¤ect becomes more pronounced, the
lower is the relative productivity of the �rm. An additional source of risk, that is re�ected in
the risk premium of these assets, is captured by a productivity-dependent hazard function, that
is conveniently characterized. One conclusion is that the risk-return frontier is a considerably
more Byzantine territory than was previously thought, and it can depend on a multitude of
factors and parameters.

To arrive at these results, the model does not rely on irrationality, asset bubbles, portfolio or
borrowing constraints, externalities, or any unusual preferences, such as extreme risk-aversion,
non-additively separable utility, or habit formation.6 To facilitate the straightforward com-
parison of the �ndings here with results in the existing literature, the traditional risk-averse
preferences will be employed. The behavior of the owners of the assets is passive or competitive
and typical of those in representative agent models. These agents will have identical prefer-
ences and will hold identical, perfectly diversi�ed portfolios of assets in the economy. Nor does
the model require any unusual volatility for the equilibrium risk-free rate. In fact, this rate
is constant. Furthermore, the model does not employ any complex features in the production
function. The innovative features of the asset pricing equation will then be the result of the
introduction of a new attribute into the model, which is a by-product of the creative destruction
feature of the economy. The implication is that traditional models of the consumption-based
asset pricing model have been omitting an important and simple factor that is capable of ex-
plaining much of the observed volatility in prices and returns. In other words, the strong focus
on how consumption volatility could a¤ect the random discount factor for asset payo¤s may
have been omitting some important features that can contribute to in�uencing prices and rates
of return.

The remainder of this analysis will proceed as follows. First, a general equilibrium model

5Kogan, Papanikolaou, Seru, and Sto¤man [20] develop an innovative method of quantifying some factors that
can in�uence the degree of creative destruction. They �nd that the number of citations that a patent receives
can be an important factor. This is (perhaps distantly) related to the �ndings here, because the results of Section
5 suggest that such a factor can show up in the asset price of (vulnerable) competitor �rms.

6There are numerous papers that rely on non-additively separable preferences to study �nancial phenomenon
(for example, see Kung and Schmid [22], or Jermann [19], who employs these preferences in addition to introducing
production). Other papers, such as that of Kogan Papanikolaou and Sto¤man [21] make use of the non-additively
separable feature together with that of the agent caring about relative consumption as well.
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of endogenous growth will be presented in which it is shown how new �rms are created and
eventually perish. Shareholders of these �rms will then determine how the prices of these assets
will be priced. This will give rise to a unique asset pricing relationship. More general pricing
formulae will then be derived and studied in several steps. It is shown that if there is no
mortality risk for the �rm, the price of these shares looks very familiar. Then if this mortality
or creative destruction risk is introduced, these prices and returns re�ect this risk in a novel
manner. Finally, a model is studied in which this creative destruction risk is in�uenced by time-
varying factors, and this feature adds some novel features to the pricing formula for assets, as
well as the rate of return. The level and volatility of asset prices and rates of return can be
characterized as novel functions of the relative level of productivity, as well as other factors. It
is also shown that prices and rates of return re�ect a new correlation, which is not necessarily
the same as the correlation of the asset return with aggregate consumption.

2 A Model of Endogenous Growth with Creative Destruction

The model is a variant of the general equilibrium framework developed in Hu¤man [16],[17]
in which growth is produced through the continuous creation (or entry) of new technologies
(or �rms), concurrently with the destruction (or exit) of old technologies. The present model
will build on these developments, to yield some insights into the behavior of �nancial markets.
The �creative destruction�features of the model are quite primitive, since the focus here is not
to study the complex factors that can in�uence the mechanics of entry and exit of new �rms.
Instead, the objective is to study the �nancial implications that this issue has for the pricing
of assets of these �rms.

This section will describe a basic economy in which some simple technologies and assets can
be priced. The characterization of these prices will be presented in Section 4. But these assets
will be a subset of a much broader, and more interesting class of assets that will be studied in
Section 5.

There will be two groups of agents in the economy: managers and shareholders (or �rm
owners). The former will manage or run the �rm, but will also decide when to quit operating
the �rm, at which point it ceases operations. The manager�s payo¤ or consumption is pro-
portional to the productivity of the �rm. The shareholders are identical and own a perfectly
diversi�ed portfolio of shares of the �rms, and receive dividends that are also proportional to
the productivity of the �rm.

Then there are a group of N managers, who have preferences that are linear in consumption.
Each of these managers operates one, and only one �rm. If the �rm has a productivity of �zt�
then they receive income proportional to this productivity. They do not own the business,
so much as they manage it, and therefore they share the income produced by the �rm, with
the owners or shareholders. If at any date t, the manager chooses to cease operating the
business, then they bear a cost of h (z) > 0; and they can then begin a new business that has
productivity Zt. The manager must then decide at which point it will be optimal to shut down
the old business and begin the new one. This evolution of business from new to old, entry
to exit, or from higher to lower productivity has the �avor of a model of creative destruction.
However, since the focus here is on asset pricing, the process by which new �rms enter will be
modeled in its most trivial form.

However, when these new businesses are initiated, they must be seeded with income or
capital (or something), and this is done by the shareholders. Let this cost be "Zt. Hence, if
there are �� new �rms created over any short span of time �, then this total seeding cost is
"Zt��. Since the population of shareholders is normalized to unity, this is then also the cost
per shareholder.
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The shareholders are identical, and as such, they will each hold an identical portfolio of
assets that contains all of the �rms in the economy. Hence if zt;i represents the productivity
of �rm i at date t, and G (�) represents the distribution of these productivities, then at each
moment t a shareholder will then consume the following:Z 1

0
zt;idG (zt;i)� "Zt (1)

It will be shown below that this quantity will be proportional to the productivity level Zt.

2.1 A Stochastic Characterization of Technology

At any date t � 0, all new entrants or �rms enter with a productivity of Zt where

dZt
Zt

= �Zdt+ �ZdW; (2)

where W is a standard Brownian motion. The growth rate (�) will be taken as a parameter,
beyond the control of all agents. The goal here is not to provide an innovative theory of
innovation and growth, but rather to study the implications that the features produced by
growth will have for �nancial outcomes. Firms in each cohort are identical initially, but not for
long! Following entry, the productivity of a �rm that was a date-t entrant, but which is now of
age a, evolves according to the following:

zt;a = Zte
(�1a+�wwa);

where wa is a standard Brownian motion that is independent across �rms. It is assumed for
now that wa and W are uncorrelated, but in Section 5 this assumption will be relaxed to
permit a consideration of a multitude of di¤erent assets, with di¤erent correlation properties.7

Nevertheless, this current approach is useful because at any date t, all operational technologies
at that date will be measured against the singular value of that of new entrants (Zt), and this
will serve as a unique reference point. Note that this assumption implies that an older �rm
bene�ts from technological change that has happened since it began operations, because zt�a;a
is linked to Zt. Once a �rm ceases operations, zt;a becomes zero forever. So here �Z represents
the growth rate of the technology for new entrants, while �1 will represent the growth rate of
technology for incumbents.8 If we consider t �xed then as the �rm ages we have

dzt;a
zt;a

= �1da+ �wdwa: (3)

Next, consider a �rm that began operations at date t� a. It will be convenient to let s be an
index of the productivity of a �rm relative to that of a new entrant at date t. That is

st � ln
�
zt�a;a
Zt

�
and so for this particular �rm

ds = �sdt+ �sdws

7Letting these processes be correlated does not change the behavior of the asset holders or managers. It only
in�uences the value of the assets.

8 In this way, there will be innovation, or productivity growth, by both incumbents and entrants, as is docu-
mented by Decker, Haltiwanger, Jarmin and Miranda [7]. However, only the productivity growth by entrants is
determined by the decisions of agents.
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where
�s = (�1 � �Z) ; �sdws = �wdwa + �ZdW

or
�s =

q
�2w + �

2
Z :

Here �s < 0 denotes the trend growth of the productivity index of an incumbent �rm, relative
to that of new entrants. In the analysis below it will be convenient to assume that �s < 0, which
means that that there may be growth in the productivity of incumbents, but that aggregate
growth is driven by that of new entrants.9

Note that in the analysis below, the age (a) of the �rm is not really relevant. That is, for
two �rms that are of di¤erent ages a 6= a0, if it turns out that zt�a;a = zt�a0;a0 , then these �rms
will be treated identically at that moment. This is important because this will mean that it will
not be necessary to keep track of the distribution of technologies for all past entrants. Instead,
at any date, it will only be necessary to know the distribution of �rm�s technologies at that
particular moment.

2.2 Managers

There is a mass of managers, which is normalized to unity, who manage but do not own the �rm.
Each manager operates one �rm and receives a �ow of income proportional to the productivity
(z) of the �rm. The managers do not save or invest, and therefore do not make any decision
concerning asset pricing. The manager is free at any time to shut down that �rm and dispose of
the technology, and this is their only decision. The cost of doing so will be h (z). The manager
can then obtain a new technology or �rm, which has immediate productivity of Zt. One might
think of these managers as engaging in a non-market form of research and development that
leads to innovative technologies or products.10

Managers have preferences that are linear in consumption:

E

Z 1

0
e�r̂t [ct � h (zt)] dt: (4)

Here r̂ is the rate of time preference for the manager, while h (zt) is the instantaneous disutility
that a manager will bear if they decide to shut down their present �rm, and seek to create
a new one.11 To maintain simplicity, will be assumed that h (zt) = h � zt.12 Momentarily,
consider the value function (W (�)) for such a manager of a �rm with productivity zt. It will

be best to write this as a function of s = ln
�
zt
Zt

�
. Hence if s = 0 then the manager�s �rm

has productivity equal to that of a newly created �rm (Zt) at that date. Also let s denote the
relative productivity of a �rm that indi¤erent between continuing to operate, and alternatively
shutting down. Let ZtW (st) denote the value function of a manager with a �rm with relative
productivity of st. The linearity of the preferences in equation (4), the assumed functional form
for h (zt), and the assumption that consumption of the manager is proportional to productivity,

9 In other words, innovation can be produced by both new entrants and incumbents. Decker, Haltiwanger,
Jarmin and Miranda [7] document the roles of these �rms in contributing to increased productivity. In a more
sophisticated model, there could be innovation by both new entrants and incumbents. This would not a¤ect
the fundamental issue exploited below, which is that there is a relationship between �rm productivity and their
mortality.
10This feature is similar to the assumption, and intuitive idea, in Kogan, Papanikolaou and Sto¤man [21] that

market for ideas, and especially new ideas, is incomplete.
11That is, this cost is zero immediately before and after the manager shuts down the �rm.
12 It is important that this cost be a function of productivity (zt) so that the costs grow in size as the productivity

grows in the economy.

6



together imply homogeneity of the manager�s problem. The value function for this problem
will then be proportional to Zt. The expression W (st) might be termed the normalized value
function. The HBJ equation for the manager�s problem is then the following

r̂W (st) = e
st +W 0 (st)�s +W

00 (st)

�
�2s
2

�
. (5)

This problem has the following boundary condition:

W (s) =W (0)� hes. (6)

or
ZtW (s) = ZtW (0)� h (zt) .

It is shown in the appendix that the manager�s problem can be characterized as follows:

Proposition 1 The solution to the manager�s problem is the following value function:

W (s) = �1e
s +

�
�1 [1� es]� hes
[1� e�s�] :

�
e(s�s)�:

where

�1 =

�
r̂ � �s �

�
�2s
2

���1
> 0;

and the root � of the characteristic equation must satisfy the following:

� =
��s �

q
(�s)

2 + 2�2s r̂

�2s
< 0:

Furthermore, there is a unique value of s such that satis�es the condition (6) that is given by
the following:

s = ln

�
[1� e�s]� (hes=�1)

[1� e�s�]

�
+ ln (��)

Proof. See Appendix
Here, as a more general interpretation, the function (W (s)) represents an amalgam of all

the factors, external to the �rm, that can a¤ect the �rm�s existence. Here the market forces
that in�uence both the entry and exit decision are embedded in the payo¤ (es), which in turn
in�uences the value function (W (s)). In a more detailed or complicated model, there could be
many additional market factors that could in�uence the opportunity cost of operating a �rm,
or producing a product, and also for innovation. The point here is that factors that in�uence
the incentives for innovation and the opportunity cost of operating a �rm are intertwined (as
can be seen by equations (5) and (6)), and policies or at parameters do not just in�uence one
of these in isolation from the other.

The focus of this paper is not to develop a novel theory of endogenous growth, but instead to
study the asset pricing implications of a model with endogenous entry and exit. In this frame-
work it is the managers, and not the passive shareholders, who make decisions that ultimately
in�uence the growth rate, while the shareholders determine the asset prices. Altering the in-
centives of these managers to innovate, or instead to not shut down their �rms, will in�uence
the growth rate.
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2.3 The Distribution of Firms

Let the relative technology of a �rm be denoted by s = ln (z=Z), so that if s > 0 then this
particular �rm has a productivity greater than that of new �rms.13 Let s denote the exit barrier
so that s=ln (z=Z). The entry level of relative productivity is s = 0. The process for s has drift
�s < 0, and standard deviation �

p
�t. We want to characterize the steady-state distribution

of this process. To do this we must study the Kolmogorov forward equation, which is written
as follows:

@f (s)

@t
= ��s

@f (s)

@s
+

�
�2s
2

�
@2f (s)

@s2
, for x 2 (s; 0) [ (0;1) : (7)

Note that for a stationary distribution the left side of this equation will be zero. Continuity of
the distribution dictates that

lim
s%0

f (s) = lim
s&0

f (s) :

For s to be an absorbing barrier, and for f () to be integrable it must be that the following
boundary conditions must be satis�ed

f (s) = f (1) = 0. (8)

It will be the case that the �ow of �rms exiting at the boundary will be

�2s
2

@f (s)

@s

����
s=s

: (9)

Hence, for a stationary distribution we must have a quantity entering at the point s = 0. Using
equation (8), as well as the fact that the left side of equation (7) is zero, and integrating this
latter expression yields

0 =
�2s
2

"
@f (s)

@s

����
s%0

� @f (s)

@s

����
s=s

� @f (s)

@s

����
s&0

#
:

This implies that the entry rate of �rms is given by the following

@f (s)

@s

����
s=s

=
@f (s)

@s

����
s%0

� @f (s)

@s

����
s&0

: (10)

This equates the rate of entry to the rate of exit. Now that since the left side of equation (7)
is zero, the root of this di¤erential equation is the following

� =
2�s
�2s

< 0: (11)

It is then possible to show that the steady-state distribution of relative technologies is charac-
terized as follows:

f (s) =

8<:
�
1
�s

� �
1� e�(s�s)

�
for s 2 (s; 0)�

1
�s

� �
1� e��s

�
e�s for s 2 (0;1)

: (12)

Note also that

f 0 (s)
��
s=s

=

�
1

s

�
� > 0:

13This section follows the analysis of Harrison[14] and Luttmer[24].
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2.4 Observations

There are a few interesting properties of the equilibrium that can be noted at these points.
These are listed as follows, and the proofs are listed in the Appendix.

Lemma 2 Aggregate output is proportional to Zt.

Lemma 3 The average lifetime of a �rm, which is the expected �rst passage time from s = 0
to s = s is

E (T ) =
s

�s
: (13)

and the standard deviation of this time is given by

�s�sp
2 j�sj

:

3 Shareholders or Firm-Owners

There will be a population of shareholders, which is also normalized to unity. To show that none
of the results derived below rely on any unusual assumptions about preferences of shareholders,
the typical CRRA preferences will be employed. This will permit the easy comparison of the
results with those in the existing literature.14

Therefore, the environment will be one in which each shareholder has the following prefer-
ences:

E0

Z 1

0
e�rt

 
c1��t � 1
1� �

!
dt (14)

with � � 0. To show that the results do not depend on any peculiar features of the asset
market, it will be assumed that all of the shareholders will hold the same perfectly diversi�ed
portfolio of assets issued by all of the �rms. In this way, there is no further portfolio insurance
that is missing from this economy. The budget constraint for these agents is simple. At each
date, they can buy/sell a portfolio of assets (x� ), which are indexed by � 2 [0; 1]. Let the price
of these assets be denoted by V� , and let the instantaneous dividend be �� . At each moment t
the budget constraint for such an agent can then be written as follows:

c+

Z 1

0
V� _x�d� =

Z 1

0
��x�d� (15)

In a steady-state of the equilibrium, since the shareholders are identical, and the supply of
assets is time-invariant, it will be the case that c =

R 1
0 � (�)x (�) d� .

The shareholders are identical and will each hold a perfectly diversi�ed portfolio of assets.
Because lemma 2 states that aggregate output, and therefore consumption is proportional to
Zt, in what follows it will be assumed that the consumption of shareholders will be equal to Zt.

14 In the interest of clarity, the present analysis abstracts from these intricate formulations, and instead employs
the standard, yet simple, CRRA formulation. This will be expedient because this yields a standard and simple
pricing kernel that facilitates a comparison with other pricing formulae. This contrasts with the common practice
in many recent articles to employ somewhat exotic or complicated speci�cations of preferences in order to account
for certain facts. For example, Kung and Schmid [22] as well as Corhay, Kung and Schmid [6] employ Epstein-Zin
preferences. Then there are papers, such as Garleanu, Panageas, and Yu [9], that use non-additively separable
preferences together with an external habit formulation so that individuals care about �relative consumption�.
Additionally there are papers such as Kogan, Papanikolaou, and Sto¤man [21] which use the Du¢ e-Epstein
preferences together with agents caring about consumption relative to the aggregate.
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The consumption of all managers is measured by equation (1), which is their income minus net
of costs. This is proportional to Zt. The shareholders collectively consume an amount equal to
the �rst term in this equation. So total output or consumption is equal to the net amount in
equation (1), plus the addition again of the �rst term of this equation.15

Before proceeding to an analysis of the price of each speci�c asset, it will be useful to price
a few other benchmark assets which can then be used as reference points.

It will be helpful in the following analysis to adopt the notation of �q = �1; �q = �w.

3.1 Pricing of Some Benchmark Assets

It is of interest to then price an asset that has a payo¤ proportional to that of aggregate
consumption. It is then straightforward to establish the following result.

Lemma 4 The price of an asset that has a payo¤ equal to that of aggregate consumption is

P (Zt) =
Zt

r � �Z (1� �)�
�2Z(1��)

2

2

:

The instantaneous expected rate of return on this asset is given by�
r + ��Z +

� (2� �)�2Z
2

�
; (16)

and the risk-free rate of return is

Rrf =

�
r + �Z� �

�
�2Z
2

�
�2
�
: (17)

Of course, the instantaneous percentage change in the price is then given by

dP (Z)

P (Z)
=

�
�Z +

�
�2Z
2

��
dt+ �ZdW:

This establishes the following conventional results.

Lemma 5 For an asset that has a payo¤ proportional to aggregate consumption, the risk pre-
mium is ��2Z , and the Sharpe ratio for this asset is ��Z .

These typical results are what one would normally expect in such an environment. This is
useful because the novel results established below then are an outcome of an environment that
is otherwise rather traditional.

It is important to note that, because of the random-walk nature of consumption, the risk-
free rate (17) will be constant. This in turn is determined by the process described in equation
(2). Therefore, the high sensitivity or volatility of some assets, which is shown below, cannot
be attributable to movements of this rate.
15The value of " is not particularly relevant here, since this merely reduces the level of consumption of mangers,

but does not change the fact that their aggregate consumption is, like that of the share-holders, proportional to
Zt. That is, the value of " will not show up in the formulae for asset prices or returns. .
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4 Pricing the Value of any Single Firm

It is then appropriate to price the value of the �rms or assets in this economy. First, note that
it is straightforward to show that consumption is proportional to Zt. To do this we will once
again make use of the fact that for the shareholders, ct ' Zt. Note that this is determined by
equation (2).

In this environment the dividend paid by the term is synonymous with the productivity of
the �rm (zt). Therefore, let the dividend or payo¤ from any one particular �rm be denoted by

zt = e
qt , while keeping in mind that the �rm exits when qt =qt. Let ~V

�
Zt; qt; qt

�
denote the

utility value function that measures the value of the asset with current payo¤ zt = eqt ; with
exit threshold eqt = Zt (e

s), when current consumption is ct = Zt.The HBJ equation for this
problem is then written as follows:

r ~V
�
Zt; qt; qt

�
= (Zt)

�� eqt +A ~V
�
Zt; qt; qt

�
(18)

and where the drift term is determined as follows:

A ~V
�
Z; q; q

�
= �Z ~V1

�
Z; q; q

�
+ �2Z ~V11

�
Z; q; q

�
=2 + �q ~V2

�
Z; q; q

�
+ �2q ~V22

�
Z; q; q

�
=2(19)

+�Z ~V3
�
Z; q; q

�
+ �2Z

~V33
�
Z; q; q

�
=2 + �2Z

~V13
�
Z; q; q

�
:

The last term involving ~V13 arises here because Zt and qt are perfectly correlated.16

In this environment, the asset continues to payo¤ until qt =q, at which point the asset is
worthless. Therefore, a necessary boundary condition for this price is the following

~V
�
x; q

t
; q
t

�
= 0:

It is shown in the appendix that the solution to this problem can be shown to be of the
following form.

~V
�
x; qt; qt

�
=
�
e(��xt)

�
B
h
1� e(��1)(qt�qt)

i
(eqt) :

It then follows that the price of the asset measured in consumption units is given by the
following.

Proposition 6 The real price or value of the asset current payo¤ zt = eqt ; with exit threshold
eqt, when current consumption is ct = Zt is given by the following:

V
�
qt; qt

�
= B (eqt)

h
1� e(��1)(qt�qt)

i
: (20)

where

B =

"
r + �Z� �

�
�2Z
2

�
�2 � �q �

 
�2q
2

!#�1
: (21)

� =

�b�
r
b2 + 4a

�
r + �Z (� � 1) +

�
�2Z
2

� �
1� �2 + 2�

��
2a

; (22)

a =

 
�2q
2

!
�
�
�2Z
2

�
, b = �q � �Z + �2Z (1 + �) :

and
q
t
= s+ ln (Zt) : (23)

16The terms involving V12 and V23 are absent in this expression because it is assumed that the processes for
each asset�s productivity growth (wa) is uncorrelated with that for consumption.(W ).
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Proof. See Appendix.
There is then the following special case to consider.

Corollary 7 In the special instance in which a = 0 then it is the case that

� =
r + �Z (� � 1) +

�
�2Z
2

� �
1� �2 + 2�

�
�q � �Z + �2Z (1 + �)

:

Despite the simplicity of the equation, there are several features embedded in the pricing
equation in Proposition 6 that are important to note.

In the case in which qt = �1, the price is merely B (eqt), which is the discounted value of all
future payo¤s for an asset with the current payo¤ of (eqt), when the asset is assumed to continue
to pay o¤ forever. But the asset may not continue to pay o¤ forever. When the �rst passage
time of qt =qt is reached then the asset has zero value. Therefore, this equation shows that the
mortality risk of the �rm is capitalized into the price of the �rm�s shares. When the current
payo¤ of the asset is (eqt), the discounted value of the loss of the remaining dividends is then

B
h
e(��1)(qt�qt)

i
(eqt). It will be useful to refer to this additional feature as �mortality risk�

since it re�ects that the likely death of the value of the asset, and it should be distinguished
from the risk inherent in the payo¤ of the asset, or consumption risk.17

The term � has a complicated interpretation. Note �rst that the exit time (when qt =qt)
is a random variable in this environment. Hence the discount factor associated with these exit
dates is also random. The term e(��1)(qt�qt) in equation (20) is then the expected value of this
random discount factor, when the current payo¤ is (eqt) while the exit barrier is (eqt). With
this in mind, � acts as a type of discount rate, but it is not a discount rate with respect to
time. Instead, it is the discount factor with respect to relative productivity. Note also that in
principle, it is possible that di¤erent assets (or �rm shares) would have di¤erent values of �
associated with each of them. Since it acts as a type of discount rate, it is best to consider the
case in which � < 0.

Obviously the price of the asset in equation (20) is a function of the productivity of the asset

(qt), and the relative productivity
�
qt � qt

�
. It will be shown below that the rate of return and

the volatility of the price will depend on these features as well. That is, the productivity of the
asset will help predict the price change of the asset.

There are other natural questions that arise for this economy. For example, one might
inquire about the relationship between the rate of �rm destruction (or exit) and the volatility
of asset prices. Such a relationship is not easy or natural to study, since parameters that a¤ect
these outcomes do so in a complicated manner. That is, the values of � and s are complicated
non-linear functions of the underlying parameters. However, one can conduct some super�cial,
or �rst order analysis. To do this, let us momentarily let equation (13) be an inverse measure of
�rm destruction, since it is the average length of time a �rms exits. To simplify the analysis, let
us assume that s is �xed. Then a change in the volatility of returns for each asset (�q) does not
change the rate of exit in equation (13). The rate of exit would be in�uenced by �s = �q � �Z ,
which would in�uence the average (but not the standard deviation of the) growth rate. This
in turn would in�uence the value of �. This would not a¤ect the standard deviation of asset

prices with high relative productivity
�
qt � qt

�
; which is in�uenced by �q, but would in�uence

the volatility of returns for low-productivity assets.
This pricing relationship can also yield some insight as to observed co-movement in asset

prices and returns. Consider two di¤erent assets in this environment that have payo¤s (z = eq)

17Obviously this is analogous to default risk.
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that are uncorrelated. Notice from equation (20) that the corresponding asset prices, and
therefore returns may exhibit co-movement because they both have a common factor of Z��1 =
e(��1)q.18 In other words, as long as the productivity of the assets (q) is not too high, the prices
and returns of the assets can exhibit co-movement even if the payo¤s of the assets themselves
are independent. This can explain some of the important �ndings of Fama and French [8], as
well as Gomes, Kogan and Zhang [10].

Further analysis of this pricing equation, and the implications for rates of return, is certainly
in order. But since the equations presented above are special cases of more general pricing
expressions, it seems proper to develop the general asset pricing equation �rst. This will be
presented in Section 5.

4.1 The Importance of Creative Destruction (or Non-random Exit)

It is essential to note the importance of Creative Destruction, or the role of endogenous �rm exit,
is to the pricing of an asset. Equation (20) shows that the price of the �rm�s assets is a function
of the �rm�s productivity, and when this productivity reaches some lower bound (or absorbing
barrier), the �rm exits and the value of the asset is zero. Here it is vital to understand the
importance of the endogeneity of this relationship. One could consider an alternative framework
in which �rms exited (or died) with some constant, time-invariant probability �, irrespective of
the level of productivity. Then, it is easy to show that the price of a share in the �rm would be

(eqt)

"
r + �+ �c� �

��c
2

�
�2 � �q �

 
�2q
2

!#�1
: (24)

Now contrast this expression with equation (20). In equation (24), the probability of exit lowers
the value of the asset for all levels of productivity. However, the expected change in the price, as
well as the variance of the price are the same for all levels of productivity. This is quite di¤erent
from that in the model with creative destruction. This shows that not only is exit important,
but in order to fully understand the behavior of asset prices it is critical to understand and
capture the reasons for this exit. In a more comprehensive analysis of asset returns it would be
imperative to investigate what factors can in�uence this exit decision.

4.2 Diversi�cation

In this environment, there are three distinct sources of risk. First, there is the systemic risk
associated with consumption. Shareholders cannot eliminate this risk, but in this environment
where consumption follows a random walk, this does not change over time. Secondly, there
is the idiosyncratic, or asset-speci�c risk associated with (eqt). It is possible to diversify one�s
portfolio to reduce this risk by holding many similar assets. In particular, if one were to hold a
portfolio of assets with similar values of productivity (qt), then one could certainly reduce this
risk.

But next, and uniquely, there is the mortality risk that is inherent in all assets - but perhaps
to di¤ering degrees. Since this risk is inherent in all assets, it cannot be fully diversi�ed away.
In particular, consider a portfolio of assets with similar values of productivity (qt). Then this
type of diversi�cation can reduce the mortality risk, but can never eliminate it.

18This operates through equation (23).
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5 A More General Analysis of Asset Prices

The assets studied in the previous section have very well-de�ned characteristics that are speci�c
to that environment. However, those assets are a special case of more general assets that will
be characterized and studied next. In particular, within the context of the environment studied
in Section 4, it is possible to price a multitude of assets, with a rich set of covariance properties,
that have zero net supply in this economy. It will be of considerable interest to investigate how
the properties of these assets will in�uence the prices and rates of return.19

It will be useful to preserve as much of the environment of Section 4 as possible, and to
merely change some of the characteristics of the assets under study. With this in mind, it will
be assumed that the stochastic process for consumption will be the same as that used in Section
4, and so similar to that of equation (2). However, it will be convenient to distinguish between
consumption and the process for Zt in this section, so consumption will be assumed to obey
the following process

dct
ct
= �cdt+ �cdWc:

Note then that this implies that in the subsequent analysis, the risk-free rate is given by
equation (17) where �Z and �Z are replaced by �c and �c respectively. Next, we will consider
hypothetical assets that have payo¤s of (eqt = zt), where this process is given by equation
(3). Additionally, a variety of processes will be considered for the exit barrier (eqt): However,
another useful assumption will be to let it follow the process used in Section 4, Therefore, the
following assumptions will be made about these processes:

dqt = �qdt+ �qdWq; and dq
t
= �Zdt+ �ZdWZ : (25)

This is intended to embody the idea that there can be threats to a �rm�s existence (i.e. exit)
other than merely innovators or competitors.20 This will be explored more below. Of course,
another case considered below is where �Z = �Z = 0.21

It will also be of interest to study the cases in which these processes are correlated. Therefore,
it will be useful to employ the following notation:

�1 = corr(Wc;Wq), �2 = corr(Wc;WZ), �3 = corr(Wq;WZ):

In the special case of the economy studied in Section 4, �1 = �3 = 0, while �2 = 1. In much
of the existing literature, the focus is usually on �1, which is the correlation of the asset payo¤
with contemporaneous consumption growth. However, as will be shown below, these separate
correlations will appear in the expressions for asset prices and returns. It will be important to
highlight the distinction and the importance of each of these correlations, and how they each
contribute to understanding excess returns of assets.

19That is, in this section the pricing of new assets will be conducted. These assets are similar to those present
in Section 4, but not identical since they may have di¤erent volatility or correlation properties. It would seem
possible to amend Section 3 and 4 to make assets with these di¤erent covariance properties appear endogenously,
since nothing substantial in that section rested on the independence of these assets.
20As was indicated above, it would also be possible to present a simpler version of the model, along the lines of

that presented in Luttmer [24] in which the �rm exits or ceases operations when it fails to cover its �xed costs.
One could then suppose that these �xed costs vary over time, and then qt is the productivity necessary to cover
the �xed costs.
21This environment is not inconsistent with that of Sections (3) and (4). Previously consumption of the asset

holders was perfectly correlated with Zt, whereas now these features are distinct. One might make this more
palatable by assuming that there is some non-capital income on the right side of the budget constraint, and this
income equals

R 1
0
� (�)x (�) d� � ct.
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It is appropriate to pause and consider the fact that qt need not be constant, and think
about the factors that might in�uence this process within the context of a more detailed model.
Clearly, qt acts as a type of threat to the existence of the benchmark asset under consideration.
The higher is the growth rate (�Z), the greater is this threat, and the lower is likely to be the

resulting price
�
V
�
qt; qt

��
. Similarly, variability in the process for qt is likely to add to the

volatility of the price.
First, note the fact that qt is time-varying is consistent with the benchmark model described

above. If the �outside option� of the manager were to vary over time, then so would qt (see
equation (23)).

But what sort of phenomenon or policies are likely to in�uence the process for, or level of
qt? Any government policy that advantages new entrants, or innovation for new entrants, at
the expense of incumbents, is likely to raise the level or growth rate of qt: Similarly, policies
that reduce the innovation of outsiders will lower the level of qt. These are important consider-
ations because that one would like to have some knowledge regarding the appropriate values for
parameters such as �2; �3; �Z ; �Z , as well as the factors that might in�uence these parameters,
since these parameters will have an important impact on the value of the underlying asset. For
example, to the extent that qt re�ects innovation by outsiders or potential new entrants, one
would like to know how this is correlated with aggregate consumption (�2) or with the payo¤
with the benchmark asset (�3).

But additionally, there may be factors unrelated to the productivity of outside innovators
that may a¤ect the viability or mortality of the benchmark asset or �rm, and hence could be
embodied in the process for qt. For example, the sustainability of a �rm may depend tenuously
on a single key employee, and their future tenure with the �rm would certainly a¤ect the value
of the �rm through qt. Similarly, there could be other factors internal to the �rm that do not
directly impinge on contemporaneous productivity that could be important in determining its
future value. Examples of this would be the makeup of the �rm�s debt, the status of licenses
or patents, management expertise, intangible capital, or government regulation. Additionally,
the behavior or status of foreign or domestic competitors, or even foreign government policies,
can also pose a threat to the viability of a domestic �rm. Lastly, exchange rate risk can also
pose a problem for the existence of domestic �rms. All of these factors could a¤ect the current
price of the asset, but may not directly in�uence current productivity (qt).

In subsequent sections the actual decisions that give rise to the behavior of qt will not be
studied or modeled explicitly, since the goal here is merely to study the behavior of the price
of the benchmark asset. Instead, the process described in equation (25) will be assumed.

5.1 The Asset Pricing Equation and the Survival Function

In this environment, where the consumption of shareholders follows the process described above,
it is possible to price arbitrary assets, which may have zero net supply in the economy. To this
end, consider pricing an arbitrary benchmark asset that has a continuous payo¤ (eqt), and the

process for (qt) is as described above. Using same notation as above, let V
�
qt; qt

�
denote the

price of the asset, measured in units of current consumption. An additional constraint is that

V
�
q
t
; q
t

�
= 0. It is shown in the appendix that the price can be characterized as follows.

Proposition 8 The real price or value of the asset current payo¤ zt = eqt ; with exit threshold
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eqt, is given by the following:22

V
�
qt; qt

�
= B (eqt)

h
1� e(��1)(qt�qt)

i
; (26)

where

B =

"
r + �c� �

�
�2c
2

�
�2 � �q �

 
�2q
2

!
+ �c�q�1�

#�1
; (27)

� =
�b�

p
b2 � 4ac
2a

(28)

where

a =

" 
�2q
2

!
�
�
�2Z
2

�
� (�q�Z�3)

#
b =

�
�q � �Z + �2Z � (�c�q�1) � + (�c�Z�2) � + (�q�Z�3)

�
(29)

c = �
�
r + �c� �

�
�2c
2

��
�2
�
� �Z + (�c�Z�2) � +

�
�2Z
2

��
:

Proof. See Appendix.

Corollary 9 In the special instance in which a = 0 then it is the case that

� =

�
r + �c� �

�
�2c
2

�
�2 � �Z +

�
�2Z
2

�
+ (�c�Z�2) �

�
�q � �Z + �2Z � (�c�q�1) � + (�c�Z�2) � + (�q�Z�3)

:

There are many unique cases to consider in the analysis below. However, in the interests
of focusing the investigation, unless it is stated otherwise, the analysis will study the case in
which � < 0.

5.1.1 Unique Features of the Pricing Equation

It is important to pause to consider some of the unique properties that are intrinsic to this
pricing relationship. This pricing relationship has the potential to enhance our understanding
of various asset pricing puzzles. For example, it may yield insight into why two seemingly very
similar assets could have radically di¤erent values, or could behave quite di¤erently.

First, note that equation (26) can be written as V
�
qt; qt

�
= B (eqt)S

�
qt � qt

�
, where

S
�
qt � qt

�
= 1� e(��1)(qt�qt). (30)

This latter function has the form of a productivity-dependent survival function, and so it is
related to the likelihood of the asset �surviving�, or maintaining qt > qt: But this is a unique
survival function in that it involves not just the likelihood of surviving at all future dates,
but then discounting those exit times back to the current date. The in�uence of this survival
function will be shown to arise in the expected returns, which will be explored below.23 While
22This formula, and analysis, is easily generalized to having multiple absorbing barriers (q). This could be a

situation in which there were multiple threats, or factors that contribute to the �rm�s existence.
23The term �Survival function�is indeed appropriate here since there are cyclical and low-frequency movements

in the longevity of �rms. A study by McKinsey (Hillenbrand, Kiewell et al, [25]) �nds that the median age of
�rms in the S&P has fallen from 85 years in 2000 to 33 years in 2018. The average lifespan fell from 61 years
in 1958 to 18 years in 2016. These are remarkable movements, and it would be even more incredible if these
changes were not re�ected in asset prices. The variation in the age of �rms seem to be evidence not just of
creative destruction, but also the increasing pace thereof.
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the price is the product of these two separate functions, these functions are not completely
divorced from each other, since some (but not all) parameters, such as �q and �q, will in�uence
both of these factors.

Note that for the case of random exit, described in section 4.1, the survival function takes
the form of S = 1� (�=B) (where B is described in equation (27)), and this is independent of
both qt and qt.

It is entirely conceivable that changes or variations in the price of the asset, as well as in
the rates of return on the asset, can primarily re�ect changes in the expected value of the
survival function, rather than merely involving the current payo¤ (eqt) (although these terms
will be correlated). For assets with relatively low values of productivity, this will certainly be
the case. In other words, movements in asset prices that ostensibly cannot be explained by
expected changes in the dividend must then be attributed to changes in factors that in�uence
the survival function.24 This is most easily seen in the case where qt is constant, but where qt
exhibits variation.

One very important feature of this analysis is that like most such models, the optimization
condition (18) that gives rise to the asset pricing equation is �locally linear�, the ultimate
solution for the price (through 26 or 30) is anything but linear. These non-linearities will play
an important role in studying rates of return below.

There are many other unique properties of this pricing function. For example it is straight-
forward to verify that

lim
qt&qt

24@ ln
�
V
�
qt; qt

��
@qt

35 = 1� �:
Therefore, for low levels of relative productivity

�
qt � qt

�
, the response of the asset price to a

change in productivity will depend on the value of �. It is entirely conceivable that di¤erent
assets could have quite di¤erent values of �. For example, a low value of �q could certainly
raise the value of j�j. But if the value of j�j is high, then even assets with slight di¤erences in
productivity could have quite di¤erent prices.25 Similarly, assets with nearly identical produc-
tivity could have quite di¤erent prices if they have quite di¤erent growth prospects (�q), since
this would also imply a di¤erent value of �. This could help explain why assets with di¤erent
growth properties could have di¤erent returns.

Another way to look at this same issue is to note that

lim
qt&qt

24@ ln
�
V
�
qt; qt

��
@�

35 = +1:
This means that assets with low levels of relative productivity

�
qt � qt

�
, a slight variation in

�, perhaps produced by a di¤erence in the underlying parameters in equation (28) such as �q
or �q, could, in turn, produce dramatic di¤erences in the price of the asset. In other words,
it is conceivable that two assets with seemingly similar levels of productivity could have quite
di¤erent values.

Next, consider the unique correlation terms in the asset pricing equation (26). The usual
correlation of consumption with the asset payo¤ (i.e. �1) is present in equation (27). However,
the pricing equation is a¤ected by �1, �2, and �3 through � in equation (28). To understand this

24One additional feature to note is that a survival function of this type is entirely forward-looking.
25 It is not di¢ cult to produce examples with reasonable parameter values which imply that � is in the range

of �50 - �20.

17



relationship, note that in equation (26), for a �xed level of
�
qt � qt

�
, this price is decreasing

in the value of �. Next, consider the impact of �1 on the price through the e¤ect on � for
the case in which b > 0. As is customary, a higher value of �1 means that the asset payo¤ is
positively correlated with consumption growth. However, here a higher value of productivity
(qt) implies that the asset will also have a longer lifespan, and therefore a higher future value.
A higher value of �1 will lower the value of b and therefore raise the value of j�j. The upshot of
this is that an increase in the level of productivity (qt) will extend the asset�s lifetime and will
be coincident with higher consumption growth. In other words, the asset will exhibit a higher
price, again re�ecting the extension of the asset lifespan, when consumption growth is high.
This type of asset does not provide insurance against consumption risk but instead exacerbates
it. Because the asset does not provide insurance against consumption risk, this results in a
lower price for the asset. In other words, a higher value of �1 will make the capital gain portion
of the asset return exhibit a higher correlation with consumption growth. Furthermore, this

e¤ect is magni�ed, the closer is the level of productivity to the threshold level
�
q
t

�
. Of course,

the opposite is the case if �1 < 0.
It is important to contrast this result with the traditional e¤ect that is present in equation

(27). Through equation (27), if �1 > 0 then the dividend payo¤ is positively correlated with
consumption growth and therefore does not provide insurance against consumption risk. But
the e¤ect of �1 in equation (29) acts through an entirely di¤erent mechanism. Here a change
in the dividend of the asset changes the price of the asset (or capital gain) through altering
the expected lifespan of the asset. This e¤ect will in�uence the correlation of the capital gain
portion of the asset with consumption growth.

Similarly, as can be seen in equation (29), the e¤ect of �2 on the asset price is the opposite
sign as that of �1, in the same equation. To facilitate the understanding of this e¤ect, consider,
as a benchmark, a situation where qt represents some outside factor, perhaps operating through
the productivity of an outside competitor, or predatory �rm. The higher is the value qt, the
more precarious is the lifespan of the benchmark asset. In other words, a higher value for qt
poses a threat to the benchmark �rm. Next consider the case in which �2 > 0, so that the
threat that qt poses to the benchmark �rm, is positively correlated with consumption growth.
This will mean that the capital gain portion of the asset is likely to be negatively correlated with
consumption growth. But this will enhance the insurance that the asset will provide against
consumption risk. Because of this added insurance feature, the asset will have a higher value,
and this shows up as a higher price for the asset.

Finally, consider the unique features introduced by the presence of �3. If �3 > 0 this implies
that the dividend payo¤ is positively correlated with the outside threat posed by qt. This will
reduce the correlation between the dividend payo¤ and the capital gain portion of the asset
and perhaps even make this correlation negative. In this case, the asset itself has some built-in
insurance in its return. This feature will tend to raise the value of b in equation (29) which in
turn will lower � and raise the price of the asset. That is, the asset will have a higher value
because it has this extra insurance feature. It is important to note that the parameter � is not
relevant here since this attribute is not material to consumption risk.

This last example is illustrative for another reason. Consider the case in which the dividend
itself has no risk associated with it (�q = 0). Then even though the dividend payo¤ is devoid
of risk and the risk-free rate is constant, the asset itself can certainly be risky since there is risk
introduced through �Z via qt, which shows up in the survival function.

On a closely related point, the asset pricing equation (26) not only highlights the threat
posed by q

t
but it also re�ects the uncertainty associated with this threat. The presence of

terms involving �Z in the formula for � shows that this uncertainty is important. This is true
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even if all the correlations are zero. As an interesting illustration of this feature, consider the
instance where all the correlations are zero and there is an increase in the value of �Z . Through
raising the value of �Z in equation (29) this can lower the value of � and for a �xed level of�
qt � qt

�
this will raise the price of the benchmark asset.

Next, note that there are other subtle issues inherent in this asset pricing equation. The
asset price (26) can explicitly re�ect features that may seem entirely extrinsic to the asset, or at
least to its current payo¤ (qt). To see this, again suppose that the behavior of qt acts as a threat
to the benchmark �rm or asset, and that perhaps this hazard is posed by some competitor �rm.
Now an increase in qt will directly reduce the price of the benchmark asset, as is evident from

equation (26). Through this mechanism, one would naturally expect the price V
�
qt; qt

�
and

q
t
to be negatively related. But now note that this e¤ect may be partially o¤set through the

e¤ect of �2 and �3 on �. If, for example, an increase in qt is positively correlated with the

dividend qt, then this would alter the correlation between V
�
qt; qt

�
and q

t
. In other words,

the price of the benchmark asset will inherit some of the properties of its competitor �rm that
are not directly related to the benchmark �rm�s productivity. In a sense, the benchmark asset
may have some built-in or intrinsic diversi�cation inherent in its structure, in that it re�ects
the behavior of competitor �rms. The asset price will then re�ect features that are extrinsic to
the �rm�s dividend payo¤, but intrinsic to the �rm�s lifespan.

As indicated earlier, there is no reason to restrict this analysis solely to that of assets
that represent payo¤s by �rms, as it could equally be used to study bonds as well, including
government-issued securities. Consider, for example, an in�nitely-lived bond that has a well-
de�ned (i.e. certain) stream of payments. In this case, any movements in the price of this
security would only re�ect changes in the survival function alone. For these particular assets,
pricing functions are indeed survival functions.

This analysis can also yield some insight into the value puzzle, and in particular why high
growth �rms may exhibit lower than average returns. Note that if, in equation (26) that there
were no survival function (or q

t
= �1), then �q would a¤ect all assets in the same manner,

and so returns of di¤erent assets would be in�uenced in the same manner. However, with the
creative destruction feature, and the survival function, the growth rate of the asset (�q) a¤ects
the asset price and return in a complicated, non-linear manner. It is certainly conceivable that
an increase in this growth rate can lower expected returns.

There is another important implication of this model that may warrant further exploration.
In a typical model of asset pricing one might ascribe di¤erent valuations of an asset by various
agents to di¤erent opinions or expectations about the future expected payo¤ of the asset (eqt).
But in this environment similar to the one studied here, one could imagine where di¤erent agents
could have complete agreement about the future expected payo¤ of the asset, but nevertheless
have di¤erent valuations. This is not a sign of irrationality. Instead, it could be that the agents
have di¤erent expectations about the future behavior of the outside factor (q

t
).

The conclusion from all this is that the price of an asset should re�ect all features that are
intrinsic to the future asset payo¤s. But furthermore, the asset should also re�ect all qualities
associated with factors that might pose a negative or productive in�uence over the asset in
the future. While these factors may be naturally di¢ cult to quantify, it seems apparent that
understanding this relationship is the obvious avenue necessary to understanding the behavior
of asset prices.

A Digression on Prices and Growth Rates Typically in such in�nite-horizon models,
assets for which the growth rate of its dividend is signi�cantly greater than the risk-free rate
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will not have a well-de�ned price. One can see this in equation (21) above. Here if the rate of

growth of the dividend (�q +
�
�2q
2

�
) is greater than the risk-free rate (r + �c� �

�
�2c
2

�
�2), then

the asset price would not seem to be well de�ned. However, in a model of creative destruction,
of the sort studied here, this need not be a problem. It is conceivable that the asset price can
still be �nite even with such an elevated growth rate, if the growth rate of the exit threat (q

t
)

is su¢ ciently high. To see this in the simplest form, consider the simple case in which all of
the correlations (�i) are zero. Next, consider the pricing equation (26) for the case in which
� > 1, so that the survival function is now negative. Now suppose that the growth rate of the
asset payo¤ is greater than the risk-free rate so that B < 0. However, the price itself is still
well-de�ned, because it is the product of two negative terms. Furthermore, the pricing function

then has the reasonable property that dV
�
qt; qt

�
=dqt > 0. Under the assumption that the

correlations are zero, a su¢ cient condition for this latter condition to hold is that

�q +

 
�2q
2

!
<

�
�Z +

�
�2Z
2

��
� �2Z :

The left side of this equation is the growth rate in qt, while the term in brackets on the right
is the growth rate of q

t
. Assets with these properties can have elevated growth rates of the

payo¤ (eqt), and this is �ne as long as the growth rate of the factor (q
t
) that will ultimately

will destroy them is even higher. These assets are like meteorites that will ultimately crash and
burn.

This is an unusual case. As was stated above, most of the remaining analysis will focus on
the case in which � < 0.

5.2 Characterizing Rates of Return

The (instantaneous) rate of return on any asset then consists of the dividend-price ratio, plus
the capital gain, or

(eqt)

V
�
qt; qt

� + dV
�
qt; qt

�
=dt

V
�
qt; qt

� : (31)

Using the pricing equation above the �rst term can be re-written ash
r + �c� �

�
�2c
2

�
�2 � �q �

�
�2q
2

�
+ (�c�q�1) �

i
h
1� e(��1)(qt�q)

i : (32)

Clearly this expression ! +1, as qt ! q
t
: Then the remaining term in equation (31) is again

given by:

dV
�
qt; q

t

�
V
�
qt; q

t

� =

""
1� �e(q�q)(��1)

1� e(q�q)(��1)

#
�q +

"
1� �2e(q�q)(��1)

1� e(q�q)(��1)

#
�2q
2

#
dt (33)

+

""
(� � 1) e(q�q)(��1)

1� e(q�q)(��1)

#
�Z +

"
(� � 1)2 e(q�q)(��1)

1� e(q�q)(��1)

#
�2Z
2

#
dt

+

""
1� �e(q�q)(��1)

1� e(q�q)(��1)

#
�q

#
dWq +

""
(� � 1) e(q�q)(��1)

1� e(q�q)(��1)

#
�Z

#
dWZ

+

264 �Z�q�3h
1� e(q�q)(��1)

i2
375h1� �e(q�q)(��1)i h(� � 1) e(q�q)(��1)i dt
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The �rst line of this expression derives from the drift in the price of the asset�s dividend payo¤

alone, while the second term is the drift in the termination barrier
�
q
t

�
. The third terms are

the standard deviation of this payo¤ (qt) as well as the standard deviation of
�
q
t

�
. The last

expression is the drift that derives from the joint correlation of the termination barrier and the
dividend payo¤. Obviously, this depends on the correlation �3. Since (� � 1) < 0, this term
will be positive if �3 < 0.

The expected value of equation (33) will be either �1 as qt ! q
t
because the denominators

in the expressions approach zero. The (instantaneous) variance of the change in the asset price
is characterized as follows:

var

�
dV (qt)

V (qt)

�
=

"
1� �e(q�q)(��1)

1� e(q�q)(��1)

#2
�2q +

"
(� � 1) e(q�q)(��1)

1� e(q�q)(��1)

#2
�2Z (34)

+
2
h
(� � 1) e(q�q)(��1)

i h
1� �e(q�q)(��1)

i
(�Z�q) �3h

1� e(q�q)(��1)
i2 :

Note that for large values of relative productivity
�
qt � qt

�
; this last expression converges

to �2q . But as
�
qt � qt

�
& 0 this expression % +1 because the denominator converges to

zero.26

This property should be linked back to the discussion immediately following Proposition 8.

For large values of
�
qt � qt

�
the mortality risk in the price is essentially zero, and so equation

(34) re�ects payo¤ or dividend risk �2q . But as the mortality risk becomes more pronounced
and so the remaining terms in equation (34) become more important. In fact, they can become
so important that they overwhelm the e¤ect of �2q and drive the variance to +1.

The presence in equation (34) of the term involving �3 means that the variance can be
increased or reduced, depending on the size of this term, which again represents whether the
capital gain and dividend payo¤ are negatively or positively correlated.

The value of � is important here. In what follows the value of � is also a function of
the parameters: �c; �q; �Z ; �1; �2; �3; �. That is, the value of � is speci�c to the asset, but is
independent of the particular value of productivity qt.

6 Analysis of the Properties of Asset Prices and Returns

The asset pricing equation developed in the previous section, together with the rates of return,
has many unique characteristics. To develop the properties of these, it is illuminating to proceed
in stages, and study several cases in order, beginning with the simplest case. This will illustrate
the distinctive features that in�uence asset prices and returns, and how these features may be
related to the creative destruction process.

6.1 The Standard Case of q= �1
Since q plays such a vital role in this analysis it will be best to �rst consider the primitive case
where it is constant, and then to focus on the implications that arrive when q varies over time.

26Zhang [28] also studies a model in which the volatility of returns can depend on �rm size. However, his
model is much more complicated than that studied here. Among other things, his technology employs capital
accumulation along with asymmetric adjustment costs.
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In the case in which q= �1, equation (33) then becomes

dV (qt)

V (qt)
=

"
�q +

 
�2q
2

!#
dt+ �qdWq:

The standard deviation of the price change is �q. The rate of return on the asset is then the
sum of the expected price change and the dividend price ratio, or�

r + �c� �
�
�2c
2

�
�2 + (�c�q�1) �

�
:

Since the risk-free rate is given (the analogous version of) equation (17), the excess return on
the over the risk-free rate is then (�c�q�1) �. The Sharpe ratio is then given by (�c�1) �:

It is important to note here in this case that since the asset payo¤ follows a random walk,
the dividend and the capital gain portion of the asset return are perfectly correlated. This is a
feature that is present in many models of asset pricing that seems to go unmentioned. It will be
shown below that the asset returns can be much more interesting when this linkage is broken.

6.2 Analysis of the Case of a Time-Invariant q> �1
Next, consider the case in which q is constant and �nite. Equation (33) is then written as
follows:

dV (qt)

V (qt)
=

""
1� �e(q�q)(��1)

1� e(q�q)(��1)

#
�q +

"
1� �2e(q�q)(��1)

1� e(q�q)(��1)

# 
�2q
2

!#
dt (35)

+

""
1� �e(q�q)(��1)

1� e(q�q)(��1)

#
�q

#
dWq

The standard deviation of the price change is"
1� �e(q�q)(��1)

1� e(q�q)(��1)

#
�q: (36)

Again, this measure of volatility % +1 as
�
q � q

�
& 0 if � < 0.

The rate of return on the asset is then the sum of the expected price change and the dividend
price ratio, orh

r + �c� �
�
�2c
2

�
�2 + (�c�q�1) �

i
h
1� e(��1)(qt�q)

i +

24" �e(q�q)(��1)

1� e(q�q)(��1)

#
�q +

h
�2e(q�q)(��1)

i
h
1� e(q�q)(��1)

i  �2q
2

!35 :
The excess return over the risk-free rate is then"

1� �e(q�q)(��1)

1� e(q�q)(��1)

#
(�c�q�1) �: (37)

As q! �1, this risk premium ! [(�c�q�1) �] : But as
�
q � q

�
& 0 this expression ap-

proaches +1 if �1 > 0; and �1 if �1 < 0:
It is easily seen that the Sharpe ratio for this asset is still (�c�1) �: The explanation for this

is that as productivity (qt) changes, the expected rate of return and the standard deviation of
this return are a¤ected in exactly the same proportion.
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Also, note that the term in square brackets in equations (35) and (37) is the hazard function
that is derived from taking the derivative of the logarithm of the survival function in equation
(30). The hazard function acts as a scaling factor in determining the magnitude of the in�uence
the correlation (�1) has on the excess rate of return. This hazard function has some important
properties that will be described in more detail below. Of course, this mortality risk is dependent
on the value of qt for the �rm. Another way to measure this excess risk is by the size of �.
Notice that in equation (37) the closer is � to unity, the less sensitive is the risk premium to the
level of productivity qt. However, if � < 0, and then the size of (� � 1) measures the sensitivity
of the risk premium to a change in productivity qt.

As discussed above, when q = �1, the dividend and the capital gain portion of the asset
return are perfectly correlated. This resulted in a constant risk premium and a time-invariant
variance for the change in the asset price. However, here when q is �nite, this is not the case. In
this instance, the dividend portion of the return is proportional to the asset payo¤ (eq), but the
capital gains portion is not. In fact, equation (37) shows that this is a complicated non-linear
function of the payo¤.

6.2.1 Quantitative Analysis

It will be useful to proceed beyond an analytical exploration of the model, to gain an under-
standing of the quantitative impact that various parameters can assert over asset prices and
returns in this economy. Furthermore, it is also of interest to know what fraction of the �rms
in the model may exhibit any unusual behavior. It is possible to use this economy as a vehicle
to study the behavior of other asset prices or returns, even if the underlying asset does not play
an important role in the economy.

Further characterization of the magnitude of these e¤ects is in order and is best conducted by
viewing a few parameterized examples. To do this, let us adopt the following parameterization
for the benchmark economy:

� = 5; �i = 0; �c = :02; �c = :01; �q = :01; �q = :05; h = 2:0:

The value of r is chosen to ensure that, given the other parameters, the risk-free rate is 5%.27

The value of � is modest when compared with much of the literature on the risk premium, but
it will evident in the subsequent analysis how alterative values would a¤ect the outcomes.28

The parameters characterizing consumption mimic the behavior in the US. The parameters for
the asset generate the necessary larger volatility for returns than for the consumption, while
simultaneously still generating a �nite asset price. For these experiments, the focus will be on
the expected change in the asset price, which is given by the �rst part of equation (33), as well
as the instantaneous standard deviation of the price change, which is given by the second part
of this equation.

It is important to note that, the impact of a change in consumption on asset prices is the
same for all assets. Because of the random-walk nature of consumption, a shock to consumption
would have no impact on the asset prices, irrespective of the level of productivity. However,
because each asset may have di¤erent values for some parameters (i.e. �q and �q), and these
parameters interact with the parameters for the consumption process (�c and �c) through
equation (28), the consumption process will then in�uence the asset-speci�c value for �.

27This value is a little higher than would be typically chosen. However, this ensures that the price is well-de�ned
when considering various other values for the parameters of the model, such as kappa or theta.
28This speci�c value for � is not as high as that employed in some of the �nance literature. A higher value

will then raise the magnitude of the e¤ect of �1 and �2 in the expressions for the rates of return calculated
below. However, the message of the analysis is that even with this high value for � can be overwhelmed by other
important features of the asset price.
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Figure 1 shows the e¤ect on the expected instantaneous change in the asset price (equation
(35)), for di¤erent values of �q. In this illustration, the horizontal axis is the point in the
distribution of �rms.29 In this case, increasing the volatility of the �rm-speci�c shocks lowers
the expected change in the asset price, for low levels of �rm productivity. This e¤ect operates
directly through the change in the value of �q, and also indirectly through the change in the
value of �. Since the chosen values of �q do not seem unreasonable, this �gure shows that there
are a substantial fraction of assets for which the expected change in price is clearly a non-trivial
function of the level of productivity.

Figure 2 shows the e¤ect on the standard deviation of the change in the asset price, for
di¤erent values of �q. It is not surprising that this e¤ect can be more pronounced for larger
values of �q. More volatility in the innovations to payo¤s yields more volatility in prices. Once
again, this e¤ect operates directly through the change in the value of �q, and also indirectly
through the change in the value of �. It is important to recognize the magnitudes of these
e¤ects, as characterized by the scale of the vertical axis. While the standard deviation at the
extreme right tail would approach �q, the standard deviation at the opposite end eventually
approaches +1. Even �rms at the median of the distribution have a standard deviation of price
change that is several orders of magnitude greater than that of the high productivity �rms. For
higher levels of productivity (qt) the asset will primarily re�ect risk directly associated with the
dividend payo¤. However, for low levels of productivity (qt), this risk will be overwhelmed by
the risk associated with asset mortality or exit, inherent in the survival function. Viewed from
this perspective, one might wonder why measures of volatility of actual securities are not much
greater.

Figure 3 shows the e¤ect on the expected instantaneous change in the asset price, for
di¤erent values of risk aversion (�), holding the other parameters constant. For this economy,
raising this parameter actually lowers the expected price change. This e¤ect operates primarily
through changing the risk-free rate in the economy, which in turn in�uences the parameter �.

It should be emphasized that the extraordinary volatility shown in the last few �gures is
not the result of any unusual behavior in the risk-free rate. In this instance, as was shown in
equation (16), the risk-free rate is time-invariant in this model. This suggests that the pursuit
of explanations for how consumption risk could a¤ect the discount rate for assets may have
been a futile quest. Similarly, this analysis suggests that focusing on risk aversion (�), or other
features of preferences to explain the observed volatility in asset prices and returns, may also
be fruitless. This illustration shows that increasing the level of risk aversion may actually
reduce the volatility of prices. But more importantly, this �gure shows that a change in the
productivity of the �rm can have a signi�cantly greater e¤ect on volatility than increasing the
level of risk aversion.

Figure 4 illustrates the e¤ect on the standard deviation of the change in the asset price, for
di¤erent values of risk aversion (�). Higher values of this parameter seem to lower the standard
deviation of the change in the price of the asset. Once again, the reason is that a change in �
will in�uence the resulting value of �.

It is appropriate to pause and re�ect on the high volatility of prices and returns in this
environment. An outside observer, who was not aware of the necessity of considering the
importance of �rm mortality or exit (or where q= �1.), might observe the high volatility of
the asset prices, and the high sensitivity of some of these asset prices to changes in the dividend.
This observer might then be tempted to attribute this behavior up to some sort of irrationality
on the part of shareholders. This is obviously wrong.

It should be noted that for this economy if �1 = 0, if one were to change the value of � but

29 In other words, the point 0.20 denotes a �rm with productivity that is greater than 20% of all other existing
�rms.
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to also change the value of r so that the risk-free rate was unchanged, then this would have no
impact on the value of �, and hence not alter the e¤ects in equation (33). However, if �1 6= 0,
this would not be the case, and so the value of � would be a¤ected.

The goal of this analysis is not to match up the distribution of �rms to that of any actual
economy, but instead to see how the mechanisms or features described here can in�uence asset
prices generally. That is, the goal is to study asset prices generally, and not just those speci�c
to the model economy described above. For this reason, in the illustrations presented below,
the horizontal axis will not feature the percentage in the distribution of �rms, but instead the
relative productivity

�
qt � q

�
of the �rm. This will permit an assessment of how the �rm-

level productivity can in�uence asset returns, even for �rms that may not yet exist within this
economy.

6.2.2 A New View of the E¤ect of the Correlation With Consumption

Since the correlation of the asset payo¤ with consumption occupies so much importance in the
existing literature, it is important to see how signi�cant a role this correlation plays in this
model.

It is essential to note where the correlation of the payo¤ with consumption (�1) appears in
equation (26). As was indicated earlier, this correlation appears in equation (21) in determining
the value of B. A change in �1, operating only through B a¤ects all assets in the same manner,
irrespective of their level of productivity qt. However, here the parameter �1 also in�uences
the asset price through the value of �. This e¤ect will be di¤erent, depending on the �rm�s
relative productivity.30 A high value of �1 means the payo¤ of the asset is highly correlated
with consumption growth and therefore does not provide much insurance against consumption
risk. In particular, the �rm is unlikely to shut down when consumption is high but has a higher
likelihood of this happening when consumption is low. Hence the capital gains portion of the
return actually does not provide insurance against �uctuations in consumption. This is why
the price (V

�
qt; q

�
) will be low.

On the other hand, if �1 � �1, then the payo¤ of the security is negatively correlated with
consumption growth. This results in a larger value of j�j. This will tend to raise the price of
the asset, holding the value of qt�q constant. The reason for this is that the �rm is less likely
to cease operating when consumption falls. This means that it provides some insurance against
consumption risk. This makes the asset more valuable and raises its price or value (V

�
qt; q

�
).

Figure 5 shows the expected instantaneous change in the asset price, for di¤erent values
of �1, as a function of relative productivity

�
qt � q

�
. This is interesting as the e¤ect here acts

solely through the change in the value of �. Reducing the value of �1 lowers the value of � (but
raises j�j), and thereby makes the price more sensitive to changes in productivity (qt). In most
models of asset pricing this correlation coe¢ cient would not a¤ect the expected percentage
change in the asset price.

In summary, it appears that there are several types of �risk� in this model. First, there is
the usual risk of the asset having its payo¤ correlated with consumption. The higher is this
correlation, the less insurance the asset provides against consumption risk.

Additionally, a unique feature of this model is that there is an additional risk, which might
be termed termination or mortality risk, (or, alternatively, the creative destruction component)
and this can be either positively or negatively correlated with consumption. This is the risk that
the �rm will cease operations, and therefore cease paying future dividends altogether. Since
this event may occur when consumption growth is relatively high or low, there is the possibility

30This is relevant because it may help explain the �ndings of Fama and French [8] that �rms of similar size,
but in di¤erent industries, may exhibit related movements in asset returns.
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that this contributes to, or reduces consumption risk. Of course, if this correlation is negative,
then there is a lower likelihood that the �rm will cease operation when consumption is low, and
therefore this particular �rm will provide some insurance against consumption risk.

Another way to state this is to note the following:

@2 lnV
�
qt; qt

�
@B@qt

= 0: (38)

This implies that through the traditional channel the percentage change of the price of a change
in productivity is the same, irrespective of the value of qt.

Next, note that

@2 lnV
�
qt; qt

�
@�@qt

=
�
h
1� e(��1)(qt�qt)

i
�
�
qt � qt

�
(� � 1) e(��1)(qt�qt)h

1� e(��1)(qt�qt)
i2 : (39)

It is easily seen that this expression ! �1 as
�
qt � qt

�
& 0. Through this new channel, the

e¤ect of a change in productivity is in�nitely large (but negative) as qt & q
t
.

Yet another way to state this is as follows. The e¤ect of the value of �1 operating through
B in�uences the level of the price. In contrast, the e¤ect of the value of �1, operating through
�, in�uences the magnitude of the change in price in reaction to a change in dividend ( q). The
former e¤ect should not a¤ect the volatility of the asset, but the latter e¤ect will. The former
e¤ect will a¤ect all assets in the same manner. The latter will have a more pronounced e¤ect

on low-productivity assets, with this e¤ect being in�nitely large as
�
qt � qt

�
! 0.

6.2.3 The Risk or Equity Premium for the Case of Constant q

As was indicated above, in the environment in which q is constant but �nite, the risk premium
takes the following form:

RP (q) =

"
1� �e(q�q)(��1)

1� e(q�q)(��1)

#
[�q�c�1�] (40)

Once again, this premium is illustrated in �gure 6, for two di¤erent values of �1. This expres-
sion makes it clear that the risk premium for each asset is a non-linear function of the �rm�s
underlying level of productivity if �1 6= 0. If �1 > 0, the risk premium ranges from +1 to
[�q�c�1�], as q ranges from q to +1. If one were to observe di¤erent risk premia for di¤erent
assets, it would be natural to conclude that this was attributable to di¤erent correlations (�1)
of variability (�q) in the returns for these assets. This analysis shows that this need not be the
case, and that the risk premium on an asset can become arbitrarily high, even though these
parameters have not changed. In fact, as the �gure illustrates, it is possible to have two assets
that are identical in their underlying parameters, but whose relative productivity (qt � q) is
slightly di¤erent, and consequently these assets can have quite di¤erent risk premia.

Additionally, because of the convex nature of �gures such as 1-4, it can certainly be the
case that the risk premium of a collection or portfolio of assets can be substantially larger than
that of an �average��rm within the collection.

6.2.4 Consumption Risk and the Risk-Premium: The E¤ect Through �

The e¤ect that consumption risk can have on the risk premium in this environment can be
rather complex. There is the obvious impact shown on the right side of equation (40). But
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then there is the impact that consumption risk, as well as other factors have through the value
of �. For high levels of relative productivity

�
q � q

�
the e¤ect of a change in � in this expression

is trivial. On the other hand, consider what happens for low levels of productivity. To see this
note that equation (40) can be used to show that31

lim
(q&q)

�
@RP (q)

@�

�
= lim
(q&q)

" 
�e(q�q)(��1)

1� e(q�q)(��1)

!
�q�c�1�

#
=

�
+1 if �1� < 0
�1 if �1� > 0

: (41)

This illustrates that a change in any parameter that results in variation in the value of �
will then have a large impact on the value of the risk premium, for assets at the low end
of the productivity spectrum. Furthermore, while a change in the value of �1 or �c has the
usual impact on the risk premium on the right side of equation (40), these parameters are also
embedded in the determination of �. As this last expression shows, a change in the behavior
of consumption risk can have a substantial impact on the behavior of low productivity assets.

6.3 The Case of an Time-Varying qt

Next, it is important to study the behavior of hypothetical assets that may have a time-varying
exit barrier qt. Once again, one should consider qt to be the date-t payo¤ of the benchmark
asset, while qt is the threshold value of the payo¤ which will trigger the shutdown of the
benchmark �rm. Within the context of related models or actual economies, one could imagine
a multitude of factors that could in�uence this barrier, and which could make it uncertain.
Many of these factors would be outside the control of the shareholders, or even the employees
of the benchmark �rm with payo¤ qt. One could consider that R&D e¤orts of competing
�rms, or external individuals who are not yet engaged in production could in�uence qt because
these e¤orts will in�uence the likelihood that there could be an innovation that poses a threat
to asset qt.32 Similarly, there could be foreign �rms that could be engaged in discovering or
developing products that could pose a threat to the benchmark �rm. On the other hand, it
is possible that the benchmark �rm under study (i.e. whose shares are being priced) could be
engaged in R&D e¤orts that would make it more productive relative to its competitors, and
these e¤orts would then lower the value of qt. In an economy in which there was a �rm that
used intermediate goods in production, innovation could occur in some critical supply chain or
some related complementary good which could reduce the value of qt. On the other hand, the
innovation could be in a commodity that is a close substitute, and this would raise the value of
qt. In short, there could be many reasons why qt could be varying over time, and depend on a
multitude of factors. It is certainly conceivable that the value of qt could change over time in
a somewhat unpredictable manner, and this risk will certainly in�uence the properties of the
price of the asset under study (qt).

Then there is the issue, explored below, of how qt and qt might be correlated. If external
factors in�uenced the productivity of the benchmark �rm (qt) as well as competitors in the
same manner, then one might expect these variables to be positively correlated. On the other
hand, perhaps a natural reason why qt and qt would be negatively correlated is that a low
level of productivity (qt) would signal to predatory, competing �rms that the incumbent �rm
was vulnerable, and this would invite further innovation that raises the level of q

t
.33 From a

positive perspective, some forms of R&D spending might enhance one at the expense of the

31This derivative is not as trivial as it appears.
32This is where the �ndings of papers such as Kogan, Papanikolaou, Seru, and Sto¤man [20] can come into play.

It can be that an important patent by one �rm can then show up as having a negative impact on a competing
�rm.
33There are other situations in which it is possible that these correlations could be di¤erent. Consider a situa-
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other, and so the correlation between these could be negative. It could be that in industries
where there was intense innovation during periods of accelerated growth, which then caused so

much competition that many existing �rms would exit. This could cause qt and
�
qt � qt

�
to be

negatively correlated.
The goal here is not to directly study or model all of the conceivable factors that could

in�uence qt, but instead to investigate how this feature will in�uence asset prices.34 Therefore,
in what follows it will be assumed that this process follows the following geometric Brownian
motion described in equation (25), and then proceed to study how this would in�uence the

price V
�
qt; qt

�
. It will then be possible to study how the parameters determining the behavior

of q
t
will then in�uence asset prices and returns.
It is straightforward to show that the price change for some benchmark asset is determined

by equation (33). Therefore, the expected change in price for this asset is given by the following
expression"

1� �e(q�q)(��1)

1� e(q�q)(��1)

#
�q +

"
1� �2e(q�q)(��1)

1� e(q�q)(��1)

#�
�2q
2

�
+

"
(� � 1) e(q�q)(��1)

1� e(q�q)(��1)

#
�Z +

"
(� � 1)2 e(q�q)(��1)

1� e(q�q)(��1)

#�
�2Z
2

�

+

264 �Z�q�3h
1� e(q�q)(��1)

i2
375h1� �e(q�q)(��1)i h(� � 1) e(q�q)(��1)i (42)

Also, the variance of the price change is given by the following:

var

 
dV
�
q; q
�

V
�
q; q
� ! =

h
1� �e(q�q)(��1)

i2
�2qh

1� e(q�q)(��1)
i2 +

h
(� � 1) e(q�q)(��1)

i2
�2Zh

1� e(q�q)(��1)
i2 +

2
h
(� � 1) e(q�q)(��1)

i h
1� �e(q�q)(��1)

i
(�Z�q) �3h

1� e(q�q)(��1)
i2 :

(43)

This last expression is not necessarily monotonic in the level of productivity (qt). This variance
then has the seemingly unique property that, if �3 > 0, it could be lower at intermediate levels
of productivity than for higher or lower levels.

The important features of the behavior of price and the rates of return can be encapsulated
in the following:

Proposition 10 The expected excess rate of return, over the risk-free rate, is given by the
following:

�
h
e(q�q)(��1)

i
(1� �)h

1� e(q�q)(��1)
i (�c�Z�2) � +

241� �
h
e(q�q)(��1)

i
1� e(q�q)(��1)

35 (�c�q�1) � (44)

Furthermore, the Sharpe ratio for such an asset is given as follows:

�
h
e(q�q)(��1)

i
(1� �) (�c�Z�2) � +

h
1� �

h
e(q�q)(��1)

ii
(�c�q�1) ��h

1� �e(q�q)(��1)
i2
�2q +

h
(� � 1) e(q�q)(��1)

i2
�2Z + 2

h
(� � 1) e(q�q)(��1)

i h
1� �e(q�q)(��1)

i
(�Z�q) �3

�1=2 :
(45)

Proof. See Appendix.
It is essential to pause and re�ect on a few important features in these last two expressions,

as well as in the asset pricing formula presented in Proposition 8. For all the assets under
consideration by these formulae, the parameters �c, and �c are common to all of them. On the

tion in which there is a small economy that relies on foreign actors to in�uence its domestic technological frontier.
Then domestic decisions in�uence domestic consumption and therefore �1, but foreign decision determines the
behavior of Zt, and therefore �2.
34 It is possible to modify the analysis of Section (2.2) to have separate stochastic factors in�uencing q

t
.
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other hand, aside from the relative productivity level
�
qt � qt

�
, the parameters (�q, �Z ; �q, �Z ;

�1, �2, �3) are all asset-speci�c. That is, it is possible to have two seemingly very similar assets,
but which di¤er only in one (or a few) of these parameters. These assets could then display quite
di¤erent pricing and return features. This shows how the productivity-dependent mortality risk
can magnify the impact that a slight change in productivity, or in some parameter, can have
on asset prices or returns.

These formulations of the rates of return suggest a reason why the assets of �rms with simi-
lar productivities (or size), but in rather di¤erent industries, may exhibit similar co-movement.
Suppose there are two �rms that have payo¤s (q) that are uncorrelated, but which have thresh-
old levels (q) that are correlated. They would then have correlated returns, and the lower was

the relative payo¤
�
qt � qt

�
, the more correlated would be the returns.35

The formula for the Sharpe ratio is also noteworthy for its unique characteristics. In par-

ticular, it is a function of the level of relative productivity
�
qt � qt

�
. By contrast, in many

models the Sharpe ratio is a constant, and this is usually because factors or parameters will
have an identical impact on the excess return as well as its standard deviation. This is cer-
tainly not the case here, at least in general. The one extreme case where this does hold is

when
�
qt � qt

�
% +1, and so the Sharpe ratio converges to the standard formula: (�c�1) �.

Otherwise, a change in the relative productivity of the asset (or �rm) does not have a propor-
tional e¤ect on both the numerator and denominator of this expression. In fact, it is possible
to construct examples in which a change in productivity would raise the numerator but lower
the denominator in equation (45). This will be explored more below using numerical methods.

The apprehensive reader may wonder why the risk premium in equation (44) seems so
di¤erent from the typical expression derived from the discrete-time euler equation (for the
consumption-based CAPM). While the typical expression (�c�q�1�) is a special case of (44),
one might be skeptical that this could be derived from the usual optimization condition. In
the appendix it is shown that if the asset-pricing equation (26) is used in the discrete-time
euler equation, then equation (44) is exactly the result. What is missing from the typical euler
equation is the presence of the survival function, which is instrumental in determining the excess
returns.

6.3.1 An Analysis of the Risk Premium, Sharpe Ratio, and the Hazard Function

It is appropriate to consider the di¤erent factors that contribute to the risk premium, as shown
in equation (44). This formulation illustrates the asset-speci�c factors that can help determine
the unique risk premium for each asset. There are three correlations or components to this
expression, and only two of them are directly in�uenced by the risk aversion parameter �.
These three components re�ect the three di¤erent types of portfolio insurance (or lack thereof)
that can be inherent in an asset�s price and return.

The last term in equation (44) is the standard correlation of consumption growth with the
asset payo¤ (�1). Once again, in this instance, this term is adjusted or multiplied by a factor

involving relative productivity
�
qt � qt

�
because the risk or volatility of this asset increases as�

qt � qt
�
approaches zero.

35At �rst this might seem like an odd circumstance: where the payo¤s of two assets may be uncorrelated, but
where the values of q

t
are correlated. Consider two di¤erent �rms that are engaged in two di¤erent industries,

and so their payo¤s are uncorrelated. Now suppose that both these �rms are vulnerable to a common factor such
as a change in a government policy, the status of patent protection, legal regulation, or a change in trade policy.
These �rms might have values for q

t
that then move in tandem. This suggests a reason why the cross-industry

behavior of asset prices and returns can be quite di¤erent from the cross-industry behavior of production.
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Next, consider the remaining terms. The term involving �2 is present because consumption

growth can be correlated with the exit threshold
�
q
t

�
. This term represents the growth in

the mortality risk of the �rm derived from the change in q
t
, and the rate of return must be

adjusted for this risk.36 The greater the growth in q
t
, the larger is the expected fall in the price

of the asset. This means that consumption risk can be correlated with the capital gains risk of
the asset (as opposed to the dividend-price risk). This risk premium is also directly related to
�c and �Z . If �2 > 0 then this asset bears some insurance against consumption risk and this
insurance feature adds value to the asset so that the individual would be willing to pay more
for it. But this raises the price for the asset and lowers the rate of return. Alternatively, if
�2 < 0, the asset exacerbates consumption risk.

It is also important to note here that if �2 > 0, then an increase in risk aversion (�) can
reduce the risk premium. One typically thinks of increases in � as raising the risk premium of
an asset (as long as �1 > 0), but here this is not necessarily the case here. This issue will be
explored below.

Next, consider the impact of the value of �3. This term does not explicitly enter the
expression for the risk premium, but instead enters indirectly through in�uencing the size of
the parameter �. In other words, this correlation will in�uence how sensitive the risk premium

is to changes in relative productivity
�
qt � qt

�
.

The magnitude of the impact of �3 will be studied below, but it is useful at this point to
pause and re�ect on the importance of this term. First, this is an important feature because it
demonstrates that there may be factors that in�uence the risk premium that are not related to
consumption risk. One can think of reasons why this correlation, should not be zero. It does
not require much imagination to think that there can be instances of movements in asset prices
that do not seem to be fully explained by changes in payo¤s, or interest rates. Secondly, one
could think of the current payo¤ of the benchmark asset (qt) as being determined by the current
productivity of the asset or �rm. On the other hand, the capital gain portion of the return
would re�ect the expected future productivity or viability, and there could be many other factors
that could in�uence this productivity. In this simple framework q

t
will be one such factor (or

encapsulate a variety of factors) that can in�uence this capital gain, which is not directly linked
to the current payo¤ of the asset. Nevertheless, it is conceivable that the current values of (qt)
and (q

t
) could be correlated and hence �3 6= 0. The next question is how the factors that might

in�uence the value of (q
t
); such as innovation by competing �rms, might be correlated with the

current payo¤. At this point, it is not entirely clear what the default or natural answer to this
should be.

It may be enlightening to re-write the risk premium (44) in the following manner:h
e(q�q)(��1)

i
(1� �)h

1� e(q�q)(��1)
i [(�c�q�1) � � (�c�Z�2) �] + (�c�q�1) �: (46)

This expression is distinctive because the last term is the usual expression involving the corre-
lation of the dividend with consumption. This is independent of the �rm�s productivity level
qt, whereas the other terms are related to the level of productivity. For reasonable parameter
values, the last term in equation (46) can be overwhelmed by the remaining terms as well. In
summary, the traditional term that characterizes the risk premium can be the least important
part of the above expression.

36To be clear, this term is not �the mortality risk�, but instead it is the growth in the mortality risk. This is
part of the rate of return to holding the asset. Of course, if all �rms perished at a constant, exogenous rate, then
this term would not be present.
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Now notice that this asset-speci�c productivity factor in this last equation also has the
following property: h

e(q�q)(��1)
i
(1� �)h

1� e(q�q)(��1)
i =

d ln
h
1� e(q�q)(��1)

i
dq

> 0: (47)

This is the derivative of the logarithm of the survival function, equation (30), and the term
in equation (47) could be termed a productivity-dependent hazard function. Therefore, the
returns in equations (44) and (45) must re�ect the changes in the survival function, or survival
probabilities in the future. The survival function is present in the pricing function (26), and
captures the degree of future �rm survival (i.e. the opposite of mortality) that is embedded
in the current asset price. Therefore, equation (47) measures the sensitivity of the survival
function in response to a percentage change in the productivity of the �rm. The higher is this
elasticity (or sensitivity), the greater will be the importance of the �rst set of terms in equation
(46) relative to that of the last term. If the �rm�s mortality was not sensitive to productivity,
then this term would be zero.

Another way to view equation (46) is as follows. The rate of return (or the excess rate of
return) of an asset can be broken down into two parts: the rate of return on the asset if it were
expected to continue to pay o¤ forever, and secondly, the change in the survival function. Any
change in the return that is not obviously linked to a change in the payo¤ or dividend, could
then also be ascribed to a change in the survival function.

At this point it is important to re-emphasize the importance of the survival function in
the asset pricing equation (26), and its interaction with the remainder of that expression. The
presence of the expression in equation (47) in the risk premium (46) is attributable to the
presence of the survival function in the asset price (equation (26)). The correlation terms that
are multiplied by the hazard function in equation (46) are present only because of the interaction
(or correlation) between the survival function and the permanent component of the asset price
(B (eqt)) in equation (26).

Similarly, consider the variance expression in equation (43), which contains terms involving

the mortality risk (47). When the mortality risk is close to zero (
�
qt � qt

�
% +1) the variance

is merely �2q . But as the mortality risk grows the variance approaches +1.
Note that the term involving �2 is new relative to the existing literature. One could also

consider a slightly more complicated environment where there were multiple factors (qi;t) that
could each pose threats to the existence of the benchmark �rm. For example, there could be
multiple �rms attempting to innovate and consequently threaten the existence of the benchmark
�rm. In this case, the pricing function (equation (26)) would become more complicated since
it would have to re�ect each of these di¤erent factors (and there would be multiple absorbing
barriers). However, the formulae for the risk premium and the Sharpe ratio would then have
additional expressions for the correlations of each of these additional factors. In other words,
there would be many more correlations involving terms like �1 and �2. From this perspective,
one can see that there could be a multitude of factors that could contribute to these rates of
return.

This analysis illustrates how the productivity-dependent mortality risk can have a dramatic
e¤ect on asset prices and returns for certain assets. Furthermore, this mortality risk can magnify
the impact that a slight change in productivity, or in some parameter, can have on these asset
values.
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6.3.2 The Risk Premium and Risk Aversion

In this environment, risk aversion has some unique e¤ects on asset prices and rates of return
that are not present in more standard economies. The examples presented earlier illustrate how
the productivity (qt) of the asset could a¤ect the returns and prices. This example will illustrate
why even the sign of the risk premium may change as productivity changes, even though the
underlying asset will not have changed its fundamental features. Consider the case in which
�1 > 0; and �2 > 0. As is evident for equation (44), as

�
qt � qt

�
% +1, then changes in qt

have very little impact on the price or rate of return on the asset, and the excess return will
approach ��c�q�1. Since the correlation of the payo¤ (qt) with consumption is positive, there
will be a positive risk premium. However, as

�
qt � qt

�
becomes smaller, changes in qt will have

a more pronounced impact on the price or rate of return on the asset. In particular, positive
movements in the dividend-price ratio are o¤set by the capital gain portion of the return, and so
this asset now provides some �nancial self-insurance. Because of this extra insurance inherent
in the asset at this stage, the risk premium can switch from being positive to being negative.

Risk aversion can also have an unusual in�uence on the risk premium in this environment.

It is possible to see that for high values of relative productivity
�
qt � qt

�
, an increase in risk

aversion (�) can raise the risk premium, while for low values of productivity, an increase in risk
aversion can lower the risk premium.

6.3.3 Further Analysis of the Sharpe Ratio

It is instructive to study further how the various factors contribute to the Sharpe ratio in

equation (45). This formula delivers the usual formula (�c�1�) as
�
qt � qt

�
%1, when �Z = 0.

Of course, this latter formula is independent of the many other parameters that are present
in �. This means that in this typical formula, factors that in�uence the risk premium itself,
perhaps through a channel such as �, would also a¤ect the standard deviation of the return
in a proportional manner. However, more generally when �Z > 0, then this is not the case.
Consider, for example, the simple case where �Z > 0, but where �2 = �3 = 0. Equation (45)
then simpli�es to the following h

1� �
h
e(q�q)(��1)

ii
(�c�q�1) ��h

1� �e(q�q)(��1)
i2
�2q +

h
(� � 1) e(q�q)(��1)

i2
�2Z

�1=2 : (48)

In this case, there are factors that directly in�uence the variance of the excess return that do
not in�uence the expected excess return in the same manner. In particular, the most notable

feature of this formula is that it is explicitly dependent on �q; �Z , and
�
qt � qt

�
. For example,

changes in relative productivity
�
qt � qt

�
will alter the expected excess return, and the standard

deviation of this return to di¤erent degrees, or in di¤erent magnitudes. Note that if �Z > 0,
then a change in �q will not have a proportionate e¤ect on the numerator and denominator of
this equation. Similarly, a change in �Z will not have a direct in�uence on the expected excess
return, but will certainly a¤ect the variance of this return. To see this, consider the case in

which
�
qt � qt

�
approaches zero. Then equation (48) approaches

(�c�q�1) ��
�2q + �

2
Z

�1=2 : (49)
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This ratio is less than the traditional formulation (�c�1�). This means that for relatively
low values of

�
q � q

�
, a change in �Z can have an impact on the variance of the return that

does not appear in the expected value of the return. Also, an increase in �q will have a larger
proportionate e¤ect on the numerator than on the denominator. The channel through which

this e¤ect operates is through the capital gain portion of the asset return. As
�
qt � qt

�
falls

the capital gain portion of the return becomes more volatile, but also more sensitive to change

in parameters, or movements in
�
qt � qt

�
.

In addition to these direct e¤ects that these factors have on the standard deviation and the
expected value of the excess return, there are indirect e¤ects. These e¤ects operate through
changing the value of �.

Lastly, by studying equation (45) it is possible to imagine parameter changes that could
move the numerator and denominator in opposite directions.

The e¤ect of parameter changes on the Sharpe ratio will be studied further below.

6.3.4 Analysis of Di¤erent Cases

It is important to gain a greater understanding of the role that each of these separate factors play
in determining the risk premium (44) and the Sharpe ratio (45). Since the e¤ect that various
parameters can play in these equations can be somewhat Byzantine, it is best to proceed in a
sequence of simple cases that will explore the role that these parameters play.

Analysis: �1 = �2 = �3 = 0. The introduction of a variable process for (q
t
) in�uences the

asset price even if this is not correlated with anything else. A change in either �Z or �Z a¤ects
the change in price in equation (42) directly, but also indirectly through the change in �.

Figure 7 shows the expected change in the asset price (equation (42)), for di¤erent parameter
values, as a function of the level of productivity. As can be seen, increasing the value of the
growth in q

t
, which is �Z , or reducing the standard deviation �Z , lowers the expected value of

the change in the price when the process for q
t
is uncorrelated with other variables. Raising �Z

lowers the expected value of the change in the price because there is then a greater likelihood
(or at least an earlier prospect) that the asset will soon hit the exit barrier, where its value
will be zero. Hence this will lower the price, and lower future price changes. Lowering �Z has
very much the same e¤ect. This reduces the likelihood of the asset extending its lifetime before
reaching the exit barrier and lowers the value of the asset.

As can be seen from equation (43), raising the standard deviation (�Z) raises the standard
deviation of the change in price when �3 = 0. In this case, there are two obvious sources of risk
in this formula: changes in qt, and qt: Raising the variability of either of these is likely to raise
the variability of the price.

To the extent that the process for q
t
is not observable, if one were to witness an unexplained

increase in the variability of the price, one might be tempted to attribute this to any number
of external factors.

Analysis: �2 = �3 = 0; �1 6= 0. Here we will focus on the role played by the standard correla-
tion of the asset payo¤ with consumption (�1). Changing this parameter directly impinges on
the features of equation (42), but also does so indirectly through the change in �. Raising the
correlation lowers the value of � (or raises its absolute value). This has the e¤ect of modestly
raising the expected price change in equation (42).

In the standard equilibrium model without exit of �rms, the risk premium is given by
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(�c�q�1) �. However, in this model the risk premium is now given by"
1� �e(q�q)(��1)

1� e(q�q)(��1)

#
(�c�q�1) �;

where both q and q are time-varying. This expression is identical to that given in section 6.3.1.
However, here � is a function of such parameters as �Z or �Z , which are usually absent in the
analysis of risk premia. Figure 8 shows how the risk premium is in�uenced by these parameters
for the case of �1 = :90. Once again, for reasons similar to those given in the previous section,

the risk premium is increasing in both �Z and �Z . The presence of
�
q
t

�
is an important feature

as it poses a mortality threat to the asset under consideration. And to the extent that
�
qt � qt

�
is small, this risk can be substantial.

Lastly, the Sharpe ratio for this particular asset is now given by equation (48), Here the
factor q

t
poses a risk to the mortality of the asset under consideration. The standard deviation

in the denominator of this formula is not necessarily monotonic in qt. Frequently this formula
for the standard deviation is convex in qt. More will be said about this below.

Figure 9 shows how the Sharpe ratio behaves as a function of relative productivity
�
qt � qt

�
,

for di¤erent values of �1. Here, as
�
qt � qt

�
% +1, then this ratio approaches (�c�1) �. But as�

qt � qt
�
& 0, this ratio approaches the expression in equation (49). In the �gure, for the case

where �1 = 0:90, the Sharpe ratio is increasing only because �Z < �q, and if this inequality

were reversed then the Sharpe ratio would be a decreasing function of
�
qt � qt

�
.

Analysis: �1 = �3 = 0; �2 6= 0. Here we will focus on the role played by (�2), which is the
correlation of consumption with the exit threshold (q

t
). To the extent that external features such

R&D might in�uence q
t
, this correlation might re�ect how consumption might be correlated

with external R&D spending.
In the standard equilibrium model without exit of �rms, the risk premium is given by

(�c�q�1) �, and so in this case it would be zero. However, in this speci�c case, the risk premium
is now given by h

e(q�q)(��1)
i
(1� �)h

1� e(q�q)(��1)
i [��c�Z�2�] :

Figure 10 shows how the risk premium is in�uenced by these parameters, for the case in
which �2 = �:90. Raising the value of �Z can raise the risk premium for low values of relative

productivity
�
qt � qt

�
, but not necessarily for higher values. Once again, the presence of

�
q
t

�
is important in illustrating the mortality threat to the asset under consideration, and to the

extent that
�
qt � qt

�
is small, this risk can be substantial.

Analysis: �2 = 0; �1 6= 0; �3 6= 0. Here we will focus on the unique role played by the
correlation of the asset payo¤with the threshold (q

t
), which is measured by �3. The correlation

�3 does not explicitly a¤ect either the risk premium or the Sharpe ratio. However, it does
in�uence the value of �, which does appear in these formulae. The reason for this is because
the asset return consists of two parts: the capital gain and the dividend-price ratio. If these
two parts are positively correlated (i.e. �3 < 0) then they reinforce each other and magnify the
risk of the asset. This increased risk means that individuals will have to be o¤ered a higher
return in order to hold the asset. Therefore, the risk premium will be positive.
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But if they are negatively correlated (i.e. �3 > 0) then these two parts of the return
partially o¤set each other. In this case the asset o¤ers a type of �built-in�portfolio insurance.
This relationship is illustrated in �gure 11 for the case where �1 = :90:

37 A higher value of �3
will lower the risk premium of the asset.

Lastly, the Sharpe ratio for this particular asset is now given by the following:h
1� �

h
e(q�q)(��1)

ii
(�c�q�1) ��h

1� �e(q�q)(��1)
i2
�2q +

h
(� � 1) e(q�q)(��1)

i2
�2Z + 2

h
(� � 1) e(q�q)(��1)

i h
1� �e(q�q)(��1)

i
(�Z�q) �3

�1=2
Note again that the denominator in this formula is related to the standard deviation of the

asset return. It is noteworthy that if �3 > 0 then it is possible that the standard deviation of the
return may not be monotonic in qt. As

�
q � q

�
% +1 the term involving �q will dominate this

expression, while as
�
q � q

�
& 0 the term involving �Z can also become important. However,

since � < 0, for intermediate values of productivity, the two sources of uncertainty can o¤set
each other so much that the variance may attain a minimum in qt.

The behavior of the Sharpe ratio, as a function of relative productivity
�
q � q

�
, is shown

in �gure 12, for �1 = :90, for two di¤erent values of �3. As can be seen, this ratio is far
from constant, and in fact can exhibit quite unusual behavior. Clearly the level of relative
productivity

�
q � q

�
in�uences the numerator and denominator of the Sharpe ratio in a manner

that is not proportional to each other.
In the previous analysis and examples, it was shown that a reduction in relative productivity�

q � q
�
can raise the excess return, as well as the volatility of the return, in a non-linear manner.

But �gure 12 illustrates something much more. It shows that a change in productivity does
not a¤ect the excess return, as well as the volatility of the return, in tandem. Furthermore,
the value of �3 can have an important in�uence over how productivity can in�uence the excess
return, as well as the volatility of the return.

This section, together with the previous section where �2 6= 0, truly illustrates the important
nature of the creative destruction mechanism in the characterization of rates of return in this
environment. Here there are factors external to the asset payo¤ and the discount factor (i.e.
the risk-free rate) that can in�uence the longevity and the price of assets. The case in which
�2 6= 0 shows that this factor that is in�uencing the price of the benchmark asset need not even
be correlated with the payo¤ or dividend of that asset.

37A curious circumstance can arise when �3 becomes su¢ ciently negative. In this case, the risk premium can
suddenly ��ip� from being positive to being negative. The reason for this is that the value of � ��ips� from
being negative to being positive. This is a feasible circumstance. To understand this situation keep in mind that
in these models the variance terms contribute to the drift process. But then the correlations across variables
also in�uence the drift processes. So the variance in one variable can in�uence the growth rate in another. For
example, if �3 < 0 then the variance in q

t
can in�uence the drift in q. Next, if �3 < 0, and �Z and �q are

su¢ ciently large, then it is possible that a further reduction in �3 can cause the risk premium to �ip from being
positive to negative. In this case, the rise in the correlation has the e¤ect of magnifying the correlation between
the capital gain, and the dividend-price portion of the return. It does this to such an extent that it kicks the
growth rate slightly above the discount rate. This does not make the price explode to in�nity since it is still
�nite for � between zero and one (see equation (26)). However, what this does is, for some values, make the
price a decreasing function of the contemporaneous dividend. This happens because an increase in the dividend
(q) lowers the price (instead of raising it), and because of this it raises the expected value of the lost dividends
when the asset life is terminated. That is, an increase in q reduces the value of the asset by shrinking expected
payo¤ horizon. In this case, the capital gain and the dividend portion of the return are now negatively correlated.
Hence the asset is now providing some �nancial self-insurance. This is an attractive property of an asset, and
individuals are willing to sacri�ce some expected return to get this insurance. Hence, the expected excess return
will then be negative.
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Analysis: �3 = 0; �2 6= 0; �1 6= 0. It is of interest to study another example because of the
unique features that it presents. The earlier examples illustrated how productivity (qt) of the
asset could a¤ect returns and prices. This example will illustrate why even the sign of the
risk premium may change as productivity changes, even though the underlying asset will hot
have changed its fundamental features or parameters. Consider the case in which �1 > 0, and

�2 > 0. As is evident from equation (44), as
�
qt � qt

�
% +1, changes in q

t
have little impact

on the price or rate of return of the asset, and there will be a positive risk premium. However,

as
�
qt � qt

�
becomes smaller, changes in q

t
movements in the dividend-price ratio can be o¤set

by the capital gain portion of the return. The result is then that the risk premium can now
become negative.

This is illustrated with a speci�c example in �gure 13. Here �1 = :90, for alternative values
of �2. Of course, for this �switching�of sign to take place, it must be that �Z is large relative
to �q.

This example illustrates an important phenomenon that is related to that mentioned in Sec-
tion (6.2.1). There it was shown that depending on the level of relative productivity, the asset
price variability might re�ect di¤erent types of risk. Exit or mortality risk may be overwhelm-
ingly important for assets with lower levels of productivity (qt). But here, in this example and
as illustrated in �gure 13, we have another related feature that comes into view. For relatively
high levels of productivity the correlation of the dividend with productivity (�1) can be impor-
tant, but for lower levels of productivity this correlation can be overwhelmed by the correlation
(�2) of the consumption with qt.

6.3.5 Summary

Many researchers have become inured to the idea that explanations of the risk premium must
entail studying the relationship between the payo¤ of the asset, and consumption risk (or,
changes in the intertemporal marginal rate of substitution). Considerable ink, computational
and intellectual resources have been spent investigating what preferences could be capable of
explaining this premium. The analysis presented here shows why this view o¤ers only a partial
explanation of this phenomenon, but it points to other important factors that can in�uence this
return. While consumption risk is not necessarily unimportant, this analysis suggests that other
types of risk that can potentially be much more important and deserve greater consideration.

Figures 12 and 13 suggest that a focus on these two-dimensional relationships can be mis-
leading. Here there are several sources of risk: asset payo¤, consumption, and at least one
source of exit risk. So diversi�cation of these types of risk is a multi-dimensional concept.

One might consider how a hypothetical risk-averse might seek to hold an optimally-diversi�ed
portfolio of assets in this environment. If, as in the benchmark model, the �rms all have the
same, independent productivity parameters, then a well-diversi�ed portfolio is likely to involve
reducing the holdings of assets that have low or falling productivity, since these returns are
likely to have higher risk.

7 The Role of Aggregate Volatility

It is of interest to inquire into the role that aggregate volatility plays in this framework, relative
to more standard models of asset pricing and returns. First, consider what happens if the
standard deviation of consumption (�c) were to rise. Consider the standard model in which
q = �1, in equation (26). In this case, if �1 = 0, then an increase in �c would raise the asset
price if agents are risk-averse (� > 0) because it lowers the discount rate by raising the growth
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rate. The magnitude of this e¤ect is independent of the level of productivity qt. That is, the
value of �c will a¤ect the level of the price, but not how sensitive the price is to changes in the
payo¤ q.

However, if q > �1 then a change in �c will also in�uence the parameter �. In this case,
an increase in �c could raise or lower the value of �. This will change the sensitivity of the
asset price to changes in the payo¤ q. It can be shown that

d ln
�
V (q; q)

�
d�

= 1 +

�
q � q

�
e(��1)(q�q)

1� e(��1)(q�q)
:

And as
�
q � q

�
& 0, this derivative converges to 1 � (� � 1)�1 which is greater than unity

since � < 0. In other words, if � were to increase (i.e. get closer to zero), then the asset price
becomes more sensitive to changes in the payo¤.

So what is the reasoning behind why a change in �c could in�uence the price (V (q; q))
through the value of �? A change in �c in�uences the growth rate of consumption (and marginal
utility) in such a way as to change the discounted value of dividends forgone or lost because
the asset will cease being productive when q = q. 38 If �i = 0; i = 1; 2; 3, and a > 0 in equation
(28), then it is possible to establish that an increase in �c will raise the value of �; and change
the volatility of the asset price.

If �1 > 0, then an increase in �c will lower the price of the asset through the traditional
channel of lowering B. However, when �1 > 0, then an increase in �c can also change the size
of �, and thereby in�uence the sensitivity of the price to a change in the payo¤ q. This does
not necessarily work in tandem, or the same direction, as the previously described e¤ect of an
increase in �c.

Next, consider what happens to the risk premium if �c were to rise. To do this, focus on
equation (44). If �1 > 0, while the other correlations are zero, then there is a positive risk
premium. For high productivity assets, (set qt = �1 in equation (44)) the risk premium is
proportional to �c, and so this is the traditional case. However, when qt is �nite then a change
in aggregate volatility does not a¤ect the risk premium proportionately, because it changes �.
As
�
q � q

�
& 0, the asset is becoming riskier, and the volatility of its returns will be rising.

This will alter the covariance of the returns with consumption, and thereby change the risk
premium. A similar e¤ect would prevail if �2 < 0.

In this model, it is not clear that �c is the sole or obvious measure of aggregate volatility.
One might consider �Z to be an alternative feature that re�ects volatility, and in the benchmark
model of section (4), it is the case that �Z = �c. So what is the impact of an increase in �Z?
Through equation (26) one can see that an increase in �Z can have a complicated e¤ect on the
asset price. It has a direct impact by changing the value of B, but also changes the parameter
�. Whether an increase in �Z raises or lowers prices depends on a variety of parameters. A
change in the value of �Z has the obvious e¤ect of raising the volatility of qt, which raises the
riskiness of the asset. This also changes the growth rate of relative productivity

�
qt � qt

�
, which

in�uences the discounted value of dividends foregone when the asset ceases payo¤s. Next, it
can in�uence how the capital gain portion of the return will be correlated with consumption (if
�2 6= 0) or with the dividend-price ratio (if �3 6= 0).

It may seem counter-intuitive that an increase in some measure of aggregate risk would not
raise the risk premium of assets. However, the analysis presented here shows that this simple,

38 In equation (26) you want to think of e�(q�q)
�
e�q
�
as the discounted value of the foregone dividends when

the asset ceases being productive, and e�(q�q) can be thought of as the expected value of the random discount
factor, over possible dates at which the asset may become terminal. Therefore, a change in � alters this discount
factor.
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straightforward view may not be correct because the relationship between aggregate volatility
and excess returns can be complicated. Furthermore, the e¤ect of a change in aggregate risk
may have a di¤erent impact on two otherwise identical assets (in terms of parameters), whose
sole di¤erence is the current level of productivity.

8 Comparison to the Existing Literature

There has been a number of recent studies that have sought to investigate the impact that
growth through creative destruction can have on �nancial market outcomes. Some of these
papers have incorporated an exit decision for �rms into the analysis. However, the contribution
here is to show that having this exit decision be endogenous and related to �rm productivity,
can give rise to important �nancial market behavior. Furthermore, this analysis explores how
factors that are external to the �rm might in�uence the exit decision, and therefore be re�ected
in asset prices and returns. These �ndings add additional support to the �ndings of Fama and
French [8] who state that �. . . our results suggest that the stock risks are multidimensional.�

It has been documented that the US equity or risk premia is countercyclical, or higher at
business cycle troughs than at peaks (see Harvey [15], Schwert [27], Chou, Engle and Kane
[5], or Li [23]). Some research has attempted to explain this using countercyclical risk aversion
(Campbell and Cochrane [4]) or changing volatility to the consumption process (Bansal and
Yaron [2]). Guvenen [13] employs a model of limited stock market participation and hetero-
geneity in the elasticity of intertemporal substitution in consumption to try to explain this
observation, as well as many others.

The analysis of this paper, speci�cally in equation (44), is also useful for aiding in our
understanding of other features of the risk premium. This formula highlights how di¤erent
factors could contribute to excess returns, and not all of these factors are necessarily related to
the behavior of consumption.

To understand why the risk premium might be countercyclical, consider that during periods
of slow or negative growth, the value of qt�qt were to fall for most �rms, which would imply
the survival probabilities for these �rms would fall. Equation (44) then suggests that the risk
premium for these �rms would increase at that time. The behavior of the risk premium is then
dependent on the behavior of both qt and qt, and there can be many potential factors that
contribute to the behavior of these variables.

9 Final Remarks

In a vibrant economy, there are new �rms and products born while older ones may exit. This
birth and mortality of �rms and products, while usually taken for granted, does not seem to
have manifested itself in the study of its implications for the pricing of assets issued by these
�rms. It was shown that introducing these issues into an otherwise conventional model of asset
pricing can produce novel implications for asset prices and returns that are not present in the
existing literature. Viewed from this perspective, it may be that this mortality or survivorship
of �rms may be a fundamental explanation for movements in asset prices and rates of return.

It is natural to think that changes in �rms-speci�c productivity can a¤ect the mortality of
these �rms, and this in turn should be closely re�ected directly in the asset prices of those �rms.
The analysis presented here shows that there is an inverse, and non-linear relationship between
the volatility of asset prices, and the level of a �rm�s relative productivity. It is also conceivable
that there are factors external to the �rm that can in�uence the rates of return in a manner
that does not seem to be present in the existing literature. What is not as easily understood
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and appreciated is that these asset prices should also be in�uenced by the expected mortality
or lifetime of the �rm and that this feature may be in�uenced by arcane external phenomena,
such as the R&D e¤orts of people who may not yet have even started a �rm. This makes it
di¢ cult to even assess the magnitude of the risks inherent in some asset prices.

The existing literature frequently characterizes the trade-o¤ between expected excess re-
turns, and the standard deviation of these returns as a rather simple frontier. That is the
implication of the consumption-based CAPM. But the model studied in this paper suggests
that this relationship is anything but simple, and it is a frontier that needs considerable ex-
ploration. There is a multitude of factors that could a¤ect both the expected returns and
the riskiness of these returns, in a non-trivial or non-linear manner. The analysis presented
here focused on only one �outside� or external factor (q) that could in�uence returns. How-
ever one can also introduce many such factors. The risk-return trade-o¤ then would become a
multi-dimensional relationship. The standard deviation of returns to the asset may contain a
multitude of risk factors not directly related to the current or future payo¤ of the asset.

In conclusion, it is appropriate to return to where this exploration began, which is to think
about the implications that this analysis can have for the interaction between growth, or creative
destruction, and related �nancial phenomena. From the perspective of the model studied here,
it is apparent why an increase in general asset prices may not necessarily be a rational prelude
to a period of increased innovation or growth. To the extent that such an increase in prices
results from an increase in the survival functions of existing assets (produced by a fall in qt), this
may imply a reduction in future growth and innovation that would bene�t incumbent �rms at
the expense of potential entrants. Asset prices do indeed contain information, but deciphering
it can be challenging.
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