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Abstract

A model of stochastic, autonomous creative destruction is developed to study the im-
pact of a change in the volatility of inter-�rm productivity shocks. The model gives rise
to a distribution of �rm productivities, as well as a distribution of exit dates for �rms.
It is shown that the observed increase in the variance of �rm-speci�c technology shocks
can account for the slowdown in growth in recent decades, as well as the reductions in
�rm exit and entry. This increased volatility also has a complicated e¤ect on income in-
equality. The equilibrium does not necessarily yield an optimal degree of exit, and so it
may be welfare-improving to tax workers in order to pay �rms to cease operating early.
The value of �rms is then calculated, and this yields a novel asset pricing formula that
involves a survival function that re�ects the expected random, productivity-dependent
lifetime of the �rm. It is shown that asset returns, and the volatility of these returns
have a predictable component, which is related to �rm productivity, that is not present
in typical models of asset pricing, and also possess a hazard function that embodies
the risk associated with �rm mortality. The variance of asset prices (i.e. �rm values)
becomes arbitrarily large as the �rm�s productivity falls, even though the variance of
the underlying productivity shocks is �xed.
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1 Introduction

In this paper a model of stochastic, autonomous creative destruction is studied that is use-
ful for investigating various important questions. The framework is used to study how an
increase in the variability of inter-�rm productivity shocks could a¤ect economic growth,
as well as outcomes such as welfare, inequality, and the rate of business creation and de-
struction. Such a study is of interest because there is some evidence that the variability of
these productivity shocks has indeed increased in recent decades. The use of the model with
autonomous creative destruction is of interest because this framework has di¤erent agents
engaged in the optimal creation (i.e. innovation) and destruction (i.e. exit) decisions. The
model also has interesting implications for asset pricing, and is useful for studying the link-
age between the productivity of a �rm, and the rate of return on its shares. A unique asset
pricing formula is derived, which has a survival function that characterizes the horizon over
which payo¤s will be forthcoming. This formula implies that there is an inverse, monotonic
relationship between the productivity of the �rm and the volatility of the �rm�s share price.
This helps enhance our understanding of the �size puzzle�in �nancial economics.

There has been substantial research into models of growth that exhibit the �creative
destruction�feature. Early e¤orts in this area are those of Aghion and Howitt [3], Grossman
and Helpman [22]. More recently, there have been a few papers that have sought to link
this creative destruction concept with the accompanying implications for �nancial markets
(see Kogan, Papanikolaou, and Sto¤man [31], as well as Kung and Schmid [32]).1 One
seemingly universal problem with this literature is that there is there are no independent
creation and destruction mechanisms in these models. That is, when one �rm successfully
innovates this means that some other �rm must exit. For example, in the baseline model
of Aghion and Howitt, there is a monopolist with a �lifetime patent� that produces until
someone else innovates, at which time the incumbent exits and the new monopolist takes
over. This is expedient as a modeling technique, but this does not seem to capture the true
nature of how actual markets work. Typically �rms exit because the change in a factor or
product prices reduces �rm productivity, not because there is some �xed capacity of �rms
in any market. Furthermore, in such a model if there were to be too little innovation, there
must necessarily be too little destruction as well.

The analysis of Hu¤man [23] recti�es this problem by employing a �span of control�type
of model that has separate agents (or �rms) making the creation and destruction decision.
Although these decisions interact, or in�uence each other in a multitude of ways, they
are made by separate agents. This means that it is possible to in�uence these autonomous
decisions separately, with di¤erent policy tools. In this paper, stochastic productivity shocks
are introduced, which is useful for answering some fundamental questions. The model builds
not just on the work of Hu¤man [23], in that a complete characterization of the decision
rules and the distribution of �rms, measured either in terms of employment or productivity,
is derived.

While the model studied here has some features in common with the work of Luttmer
1There are some papers at the intersection of this growth and �nance literature, that feature �rm exit

as part of the growth process (for example, see Gomes, and Schmid [17]), although many of these papers
have the exit at a constant, exogenously speci�ed rate (Gomes, Kogan and Zhang [16], Corhay, Kung and
Schmid [10].
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[35], [36], there are plenty of points of departure as well. In Luttmer�s model �rm owners
are also workers, and they will operate their �rms operate until their pro�t drops to zero
because they cannot cover their continual �xed costs. In the current paper, an agent is either
a �rm owner or a worker, but never both simultaneously. Workers can also engage in an
innovation activity that, when successful, will produce a newer technology that can be used
when they start up their �rm. Furthermore, here �rms will cease operating when market
prices make the further operation of the �rm less attractive than the outside option which
is being a worker/innovator. Since a �rm owner can always choose to become a worker,
the wage in�uences the opportunity cost of shutting down the �rm. Since the two papers
have di¤erent factors that in�uence the decision to shut down a �rm, the reasons for these
decisions will be distinctive in the two models.2 This heterogeneity in occupations can then
be used to study measures of income inequality, which is not a topic pursued in Luttmer�s
work. In Luttmer�s model, the e¤ort devoted by innovators to discovering a new technology
is �xed, whereas here the workers can in�uence the likelihood of successfully innovating.
Since this e¤ort is related to the potential reward, the growth rate will be tied to the
potential rewards to innovation.3 Additionally, it is possible to use the current framework
to study issues such as how government policies, such as those involving redistribution,
would in�uence the growth rate. Furthermore, the topics of interest or points of emphasis
in the papers are considerably di¤erent. Lastly, Luttmer does not focus on the �nancial or
asset pricing implications of the model, which is an important insight that is pursued in
this model.

The model studied here is used to explore the implications of a change in the volatility of
inter-�rm productivity shocks. This is a question of considerable importance because there is
some evidence that there is an increase in this volatility in recent years. This is documented
in Decker, Haltiwanger, Jarmin, and Miranda [14], Foster, Grim, Haltiwanger, and Wolf [15]
and Herskovic, Kelly, Lustig, and Van Nieuwerburgh [21]. Much of this literature focuses on
how a change in the exogenous volatility of shocks could have implications for movements
of factors of production, including labor. However, it is then also of interest to also see
what the broader repercussions of such a change would be on other outcomes such as the
growth rate as well as the rate of entry and exit of �rms. It is not at all clear what the
e¤ect of, say, a �mean-preserving spread�in this distribution should have on the economy,
as well as the rate of entry and exit of �rms. First, since the average of the distribution is
unchanged, perhaps the e¤ect negligible. Secondly, if, as seems likely, there is exit by �rms
with lower productivity, the average productivity of surviving �rms could be higher, which
could increase growth. But third, if the average productivity of surviving �rms is higher,
then this could raise factor prices, which would reduce the pro�tability of all �rms, which
could lower growth because of the reduced incentive to innovate. Similarly, it is also not
clear how more variability would a¤ect the rate of entry and exit of �rms. It will be shown
below that these rates seem to have fallen in recent decades.

This paper, and the literature just cited, is tangentially related to the work of Arellano,
Bai, and Kehoe [5] as well as Bloom, Floetto, Jaimovich, Saporta-Eksten and Terry [7].
These papers suggest that an increase in the dispersion of �rm-level productivity shocks

2One emphasis here is that the exit decision in the model may not be made in a socially optimal manner,
so it may be proper for the government to further distort this decision.

3Also, Luttmer has a growing population, while there is no need for this in the present model.
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can induce a recession.4 However, the models they use, and the issues that are studied are
quite di¤erent from those analyzed in this paper.5

The model also has implications for how a change in inter-�rm productivity can in�uence
the degree of innovation activity in an economy. This is of interest because, as will be shown
below, concomitant with the diminution of growth in recent decades, there also seems to be
a reduction in the other measures of economic vitality, such as the rates of birth and death
of �rms.

Because the model studied here characterizes the explicit nature of the decisions made
by di¤erent agents, it is also useful for studying many other issues as well. For example,
it is possible to investigate how an increase in the volatility of inter-�rm productivity will
in�uence the average age or lifetime of a �rm. Also, it is possible to investigate how various
measures of inequality are a¤ected.

One innovation of this paper is that it will produce growth, as well as a non-degenerate
distribution of income and �rm sizes and productivities, even though the underlying popu-
lation is ex-ante homogeneous. In many other models, this is not the case. For example, in
Jaimovich and Rebelo [27] the heterogeneity is assumed, in that the agents have di¤erent
entrepreneurial abilities, which then leads to di¤erent productivities of �rms. But by em-
ploying identical agents in the model ensures that any consequent inequality can only be
attributable to the decisions of agents, and the resulting economic outcomes.

Still another novel feature of the approach is a unique characterization of asset prices,
where the asset in question is the discounted value of the �rm. This price can be character-
ized in a tractable manner and can give a unique perspective on the reason for the potential
excess volatility of such prices. This asset-pricing formula from the model can then be used
to suggest that there may be a unique source of asset-price volatility, that seems to be
largely ignored until now. This volatility enters through a productivity-dependent survival
function inherent in the price, that captures the mortality of the �rm. Even though agents
are risk-neutral, and the standard deviation of innovations to productivity is the same for
all �rms, some of these asset prices can display a high elasticity (or volatility) with respect
to a change in dividends. This e¤ect is especially important for �rms that have relatively
low productivity. This will then provide a linkage between the literature on asset pricing,
and that of the creative-destruction, and growth literature. The rates of return on these
assets are also analyzed, and these returns also have a new source of volatility or risk. This
volatility enters through a productivity-dependent hazard function, which would seem to be
a new feature not present in the existing literature.

This is an important issue because it seems natural to think that there should be a
close relationship between the behavior of �rm productivity, and the behavior of its stock
or asset price. Why wouldn�t the asset prices merely mirror the productivity shocks? Some
work has taken place on this issue. For example, ·Imrohoro¼glu and Tüzel [26] document the
di¤erences in �nancial variables across �rms of di¤erent sizes and levels of productivity.6

4Christiano, Motto, and Rostagno [12] also study the implications of changes in the volatility of shocks
to the quality of capital.

5The growth feature of this model also shares some insights with that of Kogan, Papanikolaou, Seru, and
Sto¤man [30]. They develop an innovative method of quantifying some factors that can in�uence the degree
of creative destruction. They �nd that the number of citations that a patent receives can be an important
factor.

6See also a related study in Bloom et al. [7].
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They �nd that rates of return are considerably more volatile for smaller, or low-productivity
�rms. This would seem to be related to the size puzzle in �nancial economics (see, for
example, Banz [6] and Reinganum [38]). But since asset prices re�ect movements in �rm-
level productivity, then this suggests that smaller �rms have a more volatile distribution of
productivity shocks, which is then re�ected in their asset prices and rates of return. But
there does not seem to be any evidence that this latter point is true: there is no reason to
believe that the distribution of productivity shocks depends on the size of the �rm. It is
then an open question as to how these observations can be reconciled.

It is shown that the creative destruction feature of the model studied here serves to
magnify the volatility of asset prices for smaller �rms. There is an inverse, and non-linear
relationship between �rm size, or productivity, and the volatility of asset prices. This then
raises another question: Why aren�t asset prices more volatile? Could it be that some asset
prices are not su¢ ciently volatile?

2 Observations

There has been a slowdown in growth that has taken place in the past few decades across
a wide range of economies. Figure 1 shows the growth rate of per-capita GDP in the US
since 1948. The smoothed line is the trend that results from HP �ltering the data. The
average (un�ltered) growth rate from 1948 until 1989 was 3.57%. The average from 1992
until 2019 was 2.5%.

A similar pattern is seen in growth for Canada, which is shown in �gure 2. The average
per-capita growth rate from 1961-1988 was 2.65%, but this fell to 1.54% after 1991. A
similar pattern can be seen in growth rates for the European Union as well as for Japan.

At the same time as this growth slowdown has been taking place, there has been another
notable phenomenon. It has been documented by Decker, Haltiwanger, Jarmin and Miranda
[14], as well as by Foster, Grim, Haltiwanger and Wolf [15] that there has been an increase
in the variability of inter-�rm productivity over the past two and one half, to three decades.7

This increase in dispersion seems rather sharp, and on the order of 25%.
Over a similar period, there seems to have been a change in the level of innovation

activity, as measured by the entry and exit of establishments. Figure 3 shows the rate of
entry and exit of establishments in the US has evolved from 1978 until 2019. This �gure
clearly shows a trend in that both of these rates have fallen over this period. Alternatively,
the data for the rate of entry of small, young �rms also shows a similar downward trend
over this period.8 If one looks instead at the amount of employment attributed to small,
young �rms, as a fraction of total employment, the graph looks very similar. To the extent
that these young �rms are an indication of the level of innovative activity in an economy,

7See also Herskovic, Bernard, Bryan Kelly, Hanno Lustig, and Sijn Van Nieuwerburgh [21]. Bloom,
Floetotto, Jaimovich, Saporta-Eksten, and Terry [7] also describe how this increase in the dispersion of
productivity shocks was more pronounced during the most recent recession.

8This is the number of �rms that are less than one year old, that have less than 5 employees, divided
by the number of existing �rms in that year. These small �rms account for an overwhelming number of
young �rms in each year. By focusing on �rms with few employees, this eliminates older, larger �rms that
may have broken up into several small entities. The source for this data is the Business Dynamics Statistics
(BDS) Time Series, from the US Census Bureau.
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this suggests that this innovation has waned in recent decades, and would likely result in
reduced growth.

This is not just a phenomenon experienced in the US. Figure 4 shows the quarterly rate
of entry and exit of new private sector �rms in Canada, from 2000 until 2019.9 Once again,
this �gure shows that these rates are distinctively declining. It is interesting to note that
if one looks at the rates of job creation and destruction, the pattern looks very similar to
that in these �gures.

Taken together, �gures 3 and 4 show remarkably similar trends, in what might be termed
a reduction in dynamism of the economy. Once again, one is led to wonder if this behavior
is a re�ection of reduced innovation, which then results in lower economic growth, as is seen
in �gures 1 and 2.

3 Description of the Model

Time is assumed to be continuous, and there is no aggregate uncertainty. In this model,
there will be a dynamic evolution of agents from workers to business (or �rm) owners, and
this movement will accompany, and be related to the growth rate. It will be assumed that all
individuals are risk-neutral, and so merely wish to consume their income. Their preferences
are assumed to be a function of the discounted stream of consumption (ct, t � 0):Z 1

0
e�rt [ct � h (xt; Zt)] dt:

where r is the rate of time preference. The function h (xt; Zt) denotes the �ow of disutility
associated with using some time to engage in research, an activity undertaken by workers
only. At any date, there are two types of individuals. There are workers, who supply
their unit of labor inelastically which means that they earn the market wage, which is the
consumed ct = wt. Additionally, there are �rm owners who use all their time to manage
their �rm. These �rms hire labor at the market wage, in order to maximize pro�t. They own
the technology for the �rm, which is denoted zt, which produces output (yt = zt (n�t )). Their
compensation is merely the pro�t, which is output minus wage payments (�t = yt � wtnt).
The �rm owner has proprietary ownership over his technology (zt), and so owners of inferior
technologies cannot costlessly upgrade or steal superior technologies. They can, however,
when they have the opportunity, develop or invent an upgraded technology. The �rm owner
consumes his pro�ts each period (ct = �t).

There are several useful reasons for employing linear preferences. First, it will be the
case that policies that entail redistributions of consumption or income will not directly
in�uence overall welfare. Additionally, the use of linear preferences ensures that the study
of changes in the volatility of productivity shocks will not operate through risk aversion, or
the intertemporal elasticity of substitution.

Workers are also permitted to use some time (xt) to attempt to discover a new tech-
nology, which may eventually permit them to become a �rm-owner, or manager.10 This

9The entry (exit) rate is obtained by dividing the number of entries (exits) by the average total number
of enterprises in the previous and current quarters. This data has also been annualized. The source for this
is Statistics Canada.
10Perhaps the most intuitive way to think of this arrangement is that workers use some of their leisure time
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activity is successful with some probability, and is characterized by a Poisson process with
rate � (xt). However, this activity also has disutility measured as h (xt; Zt), which is in-
creasing in both arguments. Here Zt is the productivity of new �rms at that date, and so
the cost of innovation is related to the magnitude of the subsequent bene�t. Existing �rm
owners cannot engage in this activity, and so for them x = 0 (and h (0; Zt) = 0):

It will be assumed that �rm owners spend all their e¤orts to run their �rm, and do not
have any work/leisure decision of their own. The technology of their �rm can change at
some stochastic rate. Firm owners always have the option of disposing of their technology
(i.e. shutting down their �rm) and becoming a worker at the market wage. However, only
workers are assumed to have the opportunity to develop or invent a new technology. This
requires e¤ort or disutility. When new technologies or �rms are developed, this raises the
cost or compensation of labor, which therefore increases the costs and reduces the pro�ts
of existing �rms. At some point, an owner of an older �rm will �nd his pro�t to be less
than the market wage. At this time, he will elect to shut down the �rm, and to become
a laborer. At this point he can seek to obtain a new technology, which will give rise to a
new �rm in the future. There will then be a churning of workers and �rms as this economy
grows.

4 A Stochastic Characterization of Technology

At any date t � 0, all new �rms begin with a productivity of Zt, and this evolves in the
following deterministic manner

Zt = Z0e
�t > 0:

The growth rate (�) will be taken as a parameter, beyond the control of all agents. However,
later a description of the determinants of this growth rate will be given. Firms in each cohort
are identical initially, but not for long! Following entry, the productivity of a �rm that was
a date-t entrant, but which is now age a, evolves according to the following:

zt;a = Zte
(�1a+�Wa);

where Wa is a standard Brownian motion that is independent across �rms. This approach
is useful because at any date t, all operational technologies at that date will be measured
against the singular value of that of new entrants (Zt), and this will serve as a unique refer-
ence point. Note that this assumption implies that an older �rm bene�ts from technological
change that has happened since it began operations., because zt�a;a is linked to Zt. Once
a �rm ceases operations, zt;a becomes zero forever. So here � represents the growth rate of
the technology for new entrants, while �1 will represent the growth rate of technology for
incumbents.11 This also implies that

zt;a
Zt+a

=
�
e��a

�
e(�1a+�Wa): (1)

to engage in experimentation or innovation. This could be thought of as non-market or informal employment
which eventually may have a payo¤. This feature is similar to the assumption, and intuitive idea, in Kogan,
Papanikolaou and Sto¤man [31] that market for ideas, and especially new ideas, is incomplete. Also, see
footnote (12) below.
11 In this way, there will be innovation, or productivity growth, by both incumbents and entrants, as is

documented by Decker, Haltiwanger, Jarmin and Miranda [13]. However, only the productivity growth by
entrants is determined by the decisions of agents.
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For a �rm with existing technology zt;a, we will let

d

�
zt;a
Zt+a

�
=

�
zt;a
Zt+a

�
= (�1 � �) da+ �dWa;

where zt;a
Zt+a

denotes the relative technology for that �rm at date t+a. That is, this expression
will be the relative technology of a �rm in the sense that it is measured relative to the level
of technology of new entrants (Zt+a) at that date.

Note that in characterizing the distribution of �rm productivities, the age of each �rm
is essentially irrelevant, and instead what is important is the state of the �rm�s technology
relative to the value of that of new entrants. That is, for two �rms that are of di¤erent ages
a 6= a0, if it turns out that zt�a;a = zt�a0;a0 , then these �rms will be treated identically at
that moment. Therefore the history of any �rm is immaterial and it will only be necessary
to know the distribution of �rm�s technologies at that particular moment.

4.1 The (static) problem of the �rm

The owner of a �rm of age a at date t has a technology denoted by zt�a;a. For brevity, let
us temporarily just write this as z. This technology is �xed for that particular �rm, and
does not change over time. The �rm owner can hire labor in a competitive market at a
price of wt, and this price will change over time. The owners of a �rm maximize pro�ts,
which are written as follows:

�t = max
nt
fz (n�t )� wtntg : (2)

Here wtnt represents the wage bill. The pro�t-maximizing demand for labor is

nt =

�
z�

wt

� 1
1��

: (3)

Of course, since zt;a is �xed, but wt rises if there is growth in the wage, this means that
employment in the �rm will diminish over time. Therefore, the pro�t of the �rm is then

�t = (z)
1

1�� (�)
�

1�� (wt)
�

��1 (1� �) : (4)

It will be shown below that the market wage will be proportional to the technology
index Zt, so let us use the following expression: wt = AwZt. This then yields the following
representation for pro�t

�t = A� (e
s)Zt (5)

where A� is a constant to be determined below, and for a �rm with productivity zt�a;a at
date t, when the technology of new entrants is Zt, then

es �
�
zt�a;a
Zt

�( 1
1��)

: (6)

Here s is interpreted as the �scaled-up�measure of the productivity of a �rm with tech-
nology parameter zt�a;a, relative to the productivity of a new �rm at date t, which is Zt.
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An alternative interpretation is that it is the percentage di¤erence in output of a pro�t-
maximizing �rm with technology parameter zt�a;a, relative to the productivity of a new
�rm, at that same date. If the old �rm has s = 0, then it will have productivity identical
to that of a new �rm at that date, and it is isomorphic to a new �rm. Henceforth, it will
be convenient to suppose that es will be an index of the relative technology for a �rm with
technology parameter zt�a;a.

Let s denote the time-invariant value of the relative technology such that �rms will
voluntarily choose to exit the market, or cease operations if their productivity reaches that
level. The distribution of s will be determined below, but the value of s will act as an
endogenously-determined absorbing barrier in this distribution. Hence, operational �rms
will have technology indexes s 2 (s;1).

The value of (s) will be determined by the equilibrium conditions. If s= �1, this implies
that �rms will never cease operating, which would seem incompatible with an equilibrium
of a growing economy. Conversely, if s � 0, then �rms will cease operating the moment
they are created. In other words, there will be no creation of new �rms or technologies, and
hence no growth. Given the assumptions above, where (�1 � �) < 0, and � > 0, �rms will
eventually exit when they reach s < 0. In the absence of any entry of new �rms, this would
imply a falling stock of �rms.

The above equation also implies that for a speci�c �rm,

ds = [�sdt+ �sdW ]

where

�s =

�
�1 � �
1� �

�
; �s =

�
�

1� �

�
: (7)

Note that for a particular �rm, the de-trended pro�t function is given by equation (4).
This pro�t has a stochastic growth rate, that has a trend composed that of technology
(zt+a;a) and that of wages (wt). The expected growth of pro�t for such a �rm can be
written as which can be written as:

�s +
�2s
2
+ �

The expected growth rate of pro�t for a �rm less the growth rate of wages will then be

�s +
�2s
2
: (8)

In what follows it will generally be assumed that this quantity is negative, since will
insure that the distribution of �s�shifts to the left, and is therefore the distribution will be
well-de�ned. But more importantly, this assumption ensures that over time the technology
of older �rms will, eventually erode or get worse relative to newer �rms, even if the absolute
productivity of �rms improves over time. If this were not the case, then the distribution
of �rms would be dominated by very old �rms that were very productive, and then a few
young, relatively unproductive �rms.

Hence, lower values of �s or higher values of �s will raise the expected growth rate of
pro�t relative to that of wages. This will be important in in�uencing the expected lifetime
of a �rm, and the decision of when to shut down a �rm.
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4.2 Equilibrium Condition for Labor

It must be that the quantity of labor available equals the quantity demanded. Let N
denote the amount of labor available. Then let f (z) temporarily denote the distribution of
operational technologies in period t. Using equation (3), the equilibrium condition must be

N =

Z �
z�

wt

� 1
1��

f (z) dz (9)

or

w
1

1��
t =

1

N

Z
(z�)

1
1�� f (z) dz: (10)

From equation (6) we can re-write this equation in the following manner

wt = AwZt

where the productivity-adjusted wage is written as follows:

Aw = � (N)
��1

�Z
esfs (s) ds

�1��
: (11)

Here we are abusing notation by positing some distribution fs (s), but this will be deter-
mined endogenously below. It is important to note that this distribution is determined
endogenously by the decisions of agents.

As can be seen this expression is decreasing in the number of workers N . The last term
in square brackets is the ratio of the number of operational �rms to the number of workers,
which is analogous to a capital-labor ratio.

From equation (5) this implies that the productivity-adjusted pro�t function can be
written as follows:

A� = (1� �)
�R
esfs (s) ds

N

���
: (12)

Once, again term in square brackets is the ratio of the number of operational �rms, to the
number of workers, and so it makes sense that pro�t should be decreasing in this term.

4.3 The Dynamic Programming Problem for the Owner of a Firm

Let Vt the date-t value function for a �rm-holder who has access to a technology zt�a;a,
when the market wage is wt. At each instant the owner of a �rm, with technology �t,
receives a �ow of pro�t of �t. Additionally, if he wishes to stay as a non-laborer and run
the �rm, he gets the increased value of the �rm ( _V (�)), but otherwise he can shut down
the �rm, and become a worker, with value function Wt. The Hamilton-Jacobi-Bellman for
a �rm-owner is then written as follows:

rVt = max
n
�t + _Vt; rWt

o
: (13)

This means that an agent owning an operational �rm will have a value equal to the
pro�t received at that instant, plus the discounted value of the �rm next period if it is
operational, or the value switching to being a worker, whichever is greater. Note that if Wt
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is homogenous of degree 1 in Zt, then Vt can inherit this property as well. Also, it may
result that typically _V < 0, which is to say that the value of a particular �rm will fall over
time as wages rise. It should be clear that the �rm owner will shut down the �rm, and
become a worker when the following condition holds:

Vt =Wt (14)

Using the following notation with productivity-adjusted value functions (i.e. Vt =
ZtV (st)), the solution to equation (13) can be written as follows

V (st) = max
T
Et

�Z T

t
e�r(v�t)A� (e

sv) dv + e�r(T�t)WT

�
: (15)

Here T is the optimally chosen shutdown date for the �rm. This is a random variable, since
it depends on the value of s. The Hamilton-Jacobi-Bellman equation for this problem is
written as follows:

rV (s) = A� (e
s) + �V (s) +AV (s) (16)

where
AV (s) = �sV 0 (s) + �2sV 00 (s) =2: (17)

These equations have the following interpretation. At any instant, the �rm owner re-
ceives the dividend of A� (es), plus the capital gain. The latter consists of two parts.
First, the term is the capital gain portion of the return (�V (s)) that is present because
Vt = ZtV (s), and the aggregate technology variable (Zt) is growing over time at the rate
if �. The other portion of the capital gain (equation (17)) is the change in the value of the
�rm because the relative technology (s) is changing.

Then there is the value-matching, or boundary condition implied by equation (15)

VT = V (s) =WT : (18)

There is also be the important smooth-pasting condition that ensures that the �rm-owner
ceases at the optimal date

@V (s)

@s

����
s=s

= 0: (19)

It is then straightforward to verify that the value function takes the following form:

V (s) = B1 (e
s) +B2e

s� ; (20)

where

B1 =
A�

(r � �)� �s �
�
�2s
2

� (21)

B2 = e
�s� [W �B1 (es)]

� =
��s
�2s

�

s�
�s
�2s

�2
+
2 (r � �)
�2s

< 0: (22)
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The meaning of these equations is instructive. The term B1 (e
s) is the expected utility

that the �rm-owner would get if he owned the �rm, which has an index value of relative
technology equal to s, and operating this �rm forever. Obviously this term is increasing
in s, and so a better technology leads to a higher value. This can be seen because B1
is the discounted pro�t for such a �rm where s = 0. But it will not be optimal for the
�rm-owner to operate it forever, and so the second term in equation (20) is the extra utility
the �rm-owner will receive when s =s. At that time he will receive the extra utility from
being a worker, in excess of that of being a �rm owner. (W �B1 (es)). By writing this
value function in this manner, it naturally satis�es equation (18).

Equation (22) is the characteristic root of equation (16). Note that since � < 0, this
means that as the relative technology of a �rm (s) falls, the �rm will get closer to the point
at which it shuts down.12

Equation (19) can be seen to imply that the following condition is satis�ed 13

s = ln

�
��W

(1� �)B1

�
:

This expression determines the appropriate level of relative productivity for a �rm that
is ceasing operations. This expression has the intuitive property that the threshold (s) is
increasing in the relative payo¤ (W=B1), or that the expected lifetime of a �rm will be
inversely related to this ratio.

4.4 The Dynamic Programming Problem for a Worker

The worker receives a wage wt at time t. All workers are identical, no matter how pro�table
their �rms used to be, nor how long they have been unemployed. However, the worker
can also expend time trying to obtain an idea or technology (zt) which might become
productive immediately. The e¤ort (x) that they expend in discovering a new technology
is not observable by others, and therefore not contractible, so that agents can not engage
in contracts based on the outcome of research e¤orts.

Workers have discoveries that arrive according to a Poisson distribution. Let � be the
probability of locating such a technology. At each instant, the �ow of utility for a worker
is the wage (wt) net of the disutility of research e¤ort expended (h (x;Zt)).14 Additionally,
he receives the increased value of the job ( _W ), plus with some probability (�) he acquires a
new technology so that he switches to running a �rm, instead of being a worker. The typical
worker takes the wage wt, or the technology (Zt) as given while expecting to receive a new
technology (Zt) for himself. Therefore, the dynamic programming problem of a worker is
then written as follows:

rWt = max
x

n
wt � h (x; Zt) + _Wt + � (x) [Vt �Wt]

o
(23)

12Here � has the interpretation of acting like a discount rate. But rather than being a discount rate with
respect to time, in the usual sense, it is a discount rate with respect to �rm productivity.
13This can be derived by taking the derivative of equation (20) with respect to s, evaluating the result at

s =s, and setting this to zero.
14This function should be increasing in both arguments. The reason for the inclusion of Zt is that as the

technological frontier �moves out� or progresses, it requires more e¤ort by any potential innovator to be
successful.
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The optimization condition is written as follows:

h1 (x;Zt) = �
0 (x) [Vt �Wt] > 0 (24)

This last equation is noteworthy because it says that as the value functions of the workers
and �rm-owners get close to each other, innovation, and therefore growth, will be reduced.
To insure that the economy will have a balanced growth path, with positive growth, it will
be assumed below that h (xt; Zt) will be homogeneous of degree one in Zt. Since the wage
(wt) also has this property, the value functions (Vt and Wt) will also have this property.15

In general, it is also a possibility that equation (24) will hold with a strict inequality
(>). In this case, no workers will devote e¤ort to innovate, and hence there will not be any
new �rms created. For there to be balanced growth path it would then seem necessary that
s < 0. Otherwise if s � 0 the number of �rms would be falling over time.

Assuming that this homogeneity holds, then the productivity-adjusted value function,
equation (23), can then be written as follows:

rWZt = fAwZt � h (x�)Zt + �WZt + � (x�) [V (0)Zt �WZt]g

where x� is the solution to equation (24).
It then follows that this equation can be written in the �normalized manner�as follows:

rW = Aw � h (x�) + �W + � (x�) [V (0)�W ] ;

which can be written as follows:

W =
Aw � h (x�) + � (x�)V (0)

[r � �+ � (x�)] :

Here, as a more general interpretation, the function (W ()) actually represents an amal-
gam of all the factors, external to the �rm, that can a¤ect the opportunity cost of operating
the �rm, and therefore in�uence the �rm�s existence. Here the market forces that in�uence
both the entry and exit decision are embedded in the wage (wt), which in turn in�uences
the value function (W ()). In a more detailed or complicated model, there could be many
other market factors that could in�uence the opportunity cost of operating a �rm, or pro-
ducing a product (W ()), and also for innovation (V (s)). The point here is that factors
that in�uence the incentives for innovation and the opportunity cost of operating a �rm are
intertwined (as can be seen by equations (15) and (23)), and policies or at parameters do
not just in�uence one of these in isolation from the other. 16

15An alternative, but roughly equivalent formulation, is to assume that the individual gets to consume his
wage, less some fraction (x) of this wage income that is spent on research. Consumption of the individual is
then wt (1� x).
16An alternative formulation that captures these features is contained in Hu¤man [25]. In this case, there

is a pool of agents who will always be workers, and another separate group of agents who are either �rm
owners or potential innovators, who will ultimately innovate and then operate a �rm. The cost of labor
a¤ects the pro�tability of operating a �rm and also of innovating. The cost of shutting down an existing
�rm is the lost pro�t, while the bene�t is the expected future pro�t after developing an innovation.
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4.4.1 Determination of the Growth Rate

It must be recognized that this version of the model is not well suited for studying the
situation in which �1 � � > 0. The reason is that in this case growth is determined strictly
by the incumbents, and these incumbents rarely exit. In this instance, there is no negative
growth for the productivity of �rms, relative to that of new entrants. But such a process
does not have a stationary distribution unless there is negative growth. Hence, it is not
possible to characterize a steady-state balanced growth path.

At any date t there will be a �ow of new �rms created equal to the amount �(x)N: It is
assumed that the growth rate will then be related to the amount of research activity, which
is the number of people engaged in this activity (N) multiplied by the successful per-person
outcome from this activity �(x). These �rms will all enter with technology parameter Zt,
or with relative technology s = 0. Hence it is assumed that 17

�� �1 = �(x)N:

This simple relationship relates the amount of successful research activity to the growth
rate. Of course, there is then an intertemporal spillover in that new �rms are able to
make use of, or bene�t from, the most recent innovation.18 This is the form of the growth
equation used in �idea-based growth models�, such as that of Bloom, Jones, Van Reenen,
and Webb[8].

5 The Steady-State Distribution of Technologies or Firms

In a steady-state, the distribution of technologies zt;a, a � 0, is distributed over some
interval of (0;1). However, the lower limit will be strictly greater than 0 because some
�rms will wish to shut down operations when their technology becomes su¢ ciently poor.
Of course, this distribution (as well as its support) will be shifting to the right because of
the trend in Zt. However, it will be convenient to characterize the technology as relative to

Zt. Since, for a speci�c �rm let s =
�

1
1��

�
ln
�
zt�a;a
Zt

�
, is such a measure or index of relative

technology, it will be convenient to suppose that there is some stationary distribution of
f () that is time-invariant. This distribution will be over some interval (s;1). Let f (s)
denote this stationary distribution.

To do this we must study the Kolmogorov forward equation, which is written as follows:

@f (s)

@t
= ��s

@f (s)

@s
+

�
�2s
2

�
@2f (s)

@s2
, for x 2 (s; 0) [ (0;1) : (25)

Since the distribution is assumed to be stationary, the left side of this expression will be

17Another way to think about this is to recognize that at date t new entrants will have productivity
slightly in excess of (i.e. to the right of) Zt. And over some time interval � the number of these entrants
is ��(x)N . Therefore we have the following: (Zt+� � Zt) = ��(x)N + ��1: A more detailed presentation of
the decision-making process and assumptions underlying this determination of the growth rate is presented
in the technical appendix.
18This constrasts with the setup of Luttmer [36] wherein the new entrants are able to copy and improve

on the technology of a �rm that is just exiting the market.
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zero, It will also be the case that the �ow of �rms exiting at the boundary will be

�2s
2

@f (s)

@s

����
s=s

: (26)

Using the fact that, since the distribution is stationary, the left side of equation (25) is zero,
and integrating this expression yields

0 =
�2s
2

"
@f (s)

@s

����
s%0

� @f (s)

@s

����
s=s

� @f (s)

@s

����
s&0

#
: (27)

Using equation (26) this implies that the number of �rms entering at s = 0 satis�es

�2s
2

"
@f (s)

@s

����
s%0

� @f (s)

@s

����
s&0

#
: (28)

Hence, equalizing the in�ow and out�ow of �rms must mean that equation (26) must equal
equation (28).19

With the determination of the constants of the distribution, such as the fact that the
distribution must sum to (1�N), it can now be re-written or characterized as follows:

f (s) =

8<:
�
1�N
�s

� �
1� e�(s�s)

�
for s 2 (s; 0)�

1�N
�s

� �
1� e��s

�
e�s for s 2 (0;1)

: (29)

Equation (27) can be used to show that the root of this equation is the following

� =
2�s
�2s

< 0:

Figure 5 shows two di¤erent distributions, which have di¤erent values for the variance.20

Luttmer [35] also shows that another attractive property of this formulation is that this
distribution can closely match the actual size distribution of �rms in the US.

6 Summary of Equations of the Model

With the use of the formulae for the distribution (f (�)), the equations above can then be
summarized as follows. Equation (12), which determines the productivity-adjusted pro�t
can be written as

A� = (1� �) (N)�
��
1�N
�s

�
[1� es]

�
2�s

�2s + 2�s

����
:

19Luttmer [36],[35] studies and characterizes distributions with many of these properties, and this analysis
builds from his work.
20Both distributions have �s = �:01; and N = 0:80, so that they have the same mass. One distribution

has �s = :05, s= �:40, while the other has �s = :10, s= �:60.
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Similarly, the equation (11) which de�nes the productivity-adjusted wage can be written as
follows:

Aw = �
�
N��1� ��1�N

�s

�
[1� es]

�
2�s

�2s + 2�s

��1��
: (30)

This expression looks a little unusual for a wage equation. Usually such an equation for
have something like a capital-labor ratio, but this equation has terms re�ecting growth rates
and dispersion measures. In fact, the term in square brackets is really proportional to the
productivity levels of all �rms. The reason for the terms involving �s and �s is because
these characterize the steady-state distribution of �rms, as shown in equation (29).

The equation determining the value function of the �rm-owner, with access to relative
technology index s:21

V (s) = B1 (e
s) +B2e

s� ;

where

B1 =
A�

(r � �)� �s �
�
�2s
2

�
� =

��s
�2s

�

s�
�s
�2s

�2
+
2 (r � �)
�2s

:

and
B2 = e

��(s)
h
W �B1e(s)

i
(31)

The equation determining the value function of a worker:

W =
Aw � h (x�) + � (x�)V (0)

[r � �+ � (x�)]

The optimal research decision is determined by the following:

h0 (x) = �0 (x) [V (0)�W ] > 0

The equation determining the optimal exit decision:

s = ln

�
��W

(1� �)B1

�
(32)

The growth rate is assumed to be determined from the following expression:

�� �1 = � (x)N:

The �ow of agents in and out of the two sectors must be equal in a steady-state. This
means that the �ow of agents who obtain new technologies, and become �rm owners, must

21An alternative way to write this expression is as follows: V (z=Z)Z = B1 (z)+B2
�
z�
� �
Z1��

�
: Despite

the fact that � < 0, it can be shown that this expression is increasing in z, but it will cease to be strictly
increasing when z = Zes.
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equal the number of agents exiting production and shutting down their �rms:22

� (x)N =
�2s
2

��
�2�s
�2s

�
1�N
�s

�
= (��s)

�
1�N
s

�
(33)

Alternatively, using equation (7) this can be re-written as s = �
�
1�N
1��

�
:

These equations will determine the following unknowns: �;N; x; s;W; ~V (0) ; Aw; A�. We
then have to �x a bunch of parameters,such as �,r; �; �1.

6.1 Measures of Inequality in this Economy

In this model, the agents are ex-ante identical in terms of preferences and abilities. Nev-
ertheless, income and consumption levels can be quite di¤erent. Therefore, it is of interest
to characterize inequality, and how this is in�uenced by various parameters.23 First, since
the distribution of �rm productivities has no upper bound, workers will not be the richest
agents in the economy. The question is whether they will be the poorest. Therefore it is of
interest to study the following:

A�
Aw

=
N (�s)

�
�2s + 2�s

�
(1�N) (1� es) 2�s

:

This is the ratio of the income of an owner of a new �rm, to that of a worker. If one were
to think that workers would be paid much less than the pro�t from a new �rm, then this
ratio should substantially exceed unity.

There are a few things to note about this expression. First, the term
�
�2s+2�s
2�s

�
> 1

is positive, because the growth rate �s is also assumed to be su¢ ciently negative. Next,
any change in a policy or a parameter that leads to an increase in aggregate growth �, will
further reduce �s and therefore reduce inequality as measured by this ratio. However, this
will also likely mean a change in N and s as well. Third, the ratio is increasing in �s. In

general, The larger is
�
�2s+2�s
2�s

�
the more concentrated is the distribution, and the steeper

is the density of the distribution. This concentration is o¤set by the larger size of the drift.
Fourth, this ratio is increasing in the number of workers (N). This is because as N

increases, the ratio of workers to �rms rises, and this lowers wages and raises the pro�t
of �rms. Lastly, this ratio is increasing in s. For the same reasons, as s rises the ratio of
workers to �rms rises, and this lowers wages and raises the pro�t of �rms.

An alternative measure of inequality is the ratio of the pro�t from a marginal �rm, to
the wage of a worker. That is, compare the pro�t from a �rm that is just about to shut
down because the owner is indi¤erent to receiving that pro�t, or alternatively becoming a

22This means using equation (29) in either equation (26) or (28).
23 It is possible to compute the Gini coe¢ cient for such an economy, but it is much more cumbersome

to assess how various factors would in�uence this measure of inequality since so many di¤erent agents are
involved in such a measure. The focus here will be on a couple of speci�c measures of inequality.
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worker. This ratio is given by the following:

A�e
s

Aw
=
(es)N (�s)

�
�2s + 2�s

�
(1�N) (1� es) 2�s

:

Since the agent is indi¤erent between these two statuses, one might naturally think that
this ratio should be close to unity. It will be shown that this is not always the case. This
measure is increasing in s because a lower value means a lower level of productivity of the
�rm, and hence lower pro�t.

Of course, in this model, over time �rm-owners wander around within the distribution
of income or consumption, since their income is subject to constant shocks. However, all
workers earn the same income and therefore occupy the same position within the distribu-
tion.

7 Calculating the Rate of Destruction

It would seem important to calculate the rate of creation or destruction in such a model.
It is possible to show that the expected lifetime of a �rm (or the expected time to transit
from s = 0 to s =s) can be measured as

E (T ) =
s

�s
: (34)

The standard deviation of this �rst passage time can then be shown to be

�s�sp
2 j�sj

: (35)

Therefore, an increase in �s by itself, which is studied below, will not a¤ect the average
lifespan of a �rm, but will increase the dispersion of these durations.

However, equation (34) is instrumental for another reason. Although �s does not appear
explicitly in this expression, a change in �s can in�uence the equilibrium level of s, and �s.
If this results in fewer entrants of new �rms, and slower growth, then this would show up as
a longer expected lifetime for each �rm. This would then shed some light on the phenomena
illustrated in �gures 5 and 6.

One might then think of the rate of business destruction as being characterized as

1�N
E (T )

=
(1�N)�s

s
=
�2s
2
: (36)

Equations (34) and (36) show rather clearly that there will then be a negative relation-
ship between the rate of entry of new �rms, and the average age of �rms. 24

24Decker et al. [13] study the relationship between the changing age distribution of �rms, and the declining
startup rates, and how this is related to the changing startu rates.
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7.1 The Distribution of Exit Times

Since there are a continuum of �rms with di¤erent productivities, there must be a distrib-
ution of exit times for these �rms. It can be shown that, contingent on having state s, the
distribution of exit times (t) (at which s =s):can be written as follows25

g(t j (s� s)) = (s� s)
�s
p
2�t3

exp

(
�((s� s) + �st)

2

2�2st

)
: (37)

Several examples of such a distribution are shown in �gure 6, for various values of (s� s),
which are measured in percent. This �gure certainly illustrates the higher likelihood of a
�rm exiting soon if it has a relatively low productivity.

8 On the Possibility of an Equilibrium with Zero Growth

One might inquire if it is possible for there to be zero growth. For this to be possible it
would mean that there is zero innovation (x = 0). This would imply that there is no entry
of new �rms, and hence no exit, which would mean that s= �1. This would imply that
V (s)& 0, as s! �1. But since �rm-owners can always become workers this implies that
W � 0. For this to happen it would mean that

Aw � h (0) � 0.

Additionally for x = 0 to hold it must be that

h0 (0) > �0 (0) ~V (0) = �0 (0)B1:

Hence certain boundary conditions must apply for there to be strictly zero growth. The
wages must be so low that the owner of even the worst �rm would decline to become a
worker, and the costs of innovation, relative to the bene�ts are too low to produce any
innovation.

9 A Note on the Intertemporal Spillover

Many models of endogenous growth have an intertemporal externality or spillover which
is justi�ed by the plausible observation that current innovation bene�ts from discoveries
of the past. Such a feature is present here, but the magnitude of it is far from clear. In
this framework, the technology of new entrants (Zt) is rising at a rate that is determined
by the number of innovators. That is, more aggregate innovation means higher growth.
However, there are also reasons why more innovation would also reduce the incentive to
innovate. First, note that there is no direct research externality here. A single individual�s
probability of innovating is determined by � (x), and so it is the agent�s e¤ort (x) alone
that determines success. If other workers were to change their e¤ort, this would not directly
a¤ect other agents.

25See Cox and Miller [11].
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Secondly, higher growth raises the growth rate of wages, which in turn raises the cost of
labor to incumbent �rms and lowers the value of these �rms (V (s)). This lowers the value
in equations (20) and (21). This in turn lowers the incentive to innovate.

Next, consider a worker who is attempting to innovate, and has a decision described by
equation (24). Now consider what would happen if a positive measure of other workers were
to increase their innovation level (x). This e¤ect of this would be a marginal increase in
the growth rate (�) of wages, which would raise the value of being a worker. Although the
value of obtaining a new �rm (V (0)) would change, for reasons just described, this e¤ect
could be rather small. The point is that this increase in the level of innovation of others
can lower the value of (Vt �Wt) in equation (24). Again, this would lower the incentive to
innovate.

Lastly, with these factors in mind, it would seem that the collective e¤ect of innovation
can have complicated repercussions for present and future decisions in this economy. While
there appears to be an intertemporal spillover in the model, it would seem to be much
smaller than in other models.

10 Analysis of the Model

10.1 Parameterization

In the following analysis, the model will be used to study how the model behaves as various
parameters are changed. Therefore, a particular parameterization has to be chosen for the
benchmark of the economy. Therefore, using the following functional form will be useful:

h (x) =
(x)1+!

1 + !
; ! � 0:

Also it will be assumed that � (x) = � � x. Parameters, such as !, will be chosen so that in
the benchmark economy the growth rate will be 3%.

Again as a benchmark, it will be assumed that �1 = 0, and aggregate growth will
driven by innovation of new entrants. Additionally, in the benchmark model the following
parameter values will be used:

r = :05; � = :05; � = :65:

10.2 The E¤ect of a Change in �

The following analysis will proceed by comparing the steady-state growth paths for this
economy under alternative parameter values. First, we will consider an increase in �, with
is the log of the relative technology shock. The results from raising this parameter are
shown in �gures 7 and 8. As can be seen in �gure 7A, an increase in � tends to reduce the
growth rate. Figure 7B shows that this result is due to the fact that there is less innovation
activity (x), which is partly o¤set by the increase in the number of researchers (or workers
N). Note also that since N rises, s also rises and so the threshold technology for exit is
now higher.
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It then seems possible that the increase in the variance of �rm-level productivity shocks
can be at least partially responsible for the slowdown in growth observed in �gures 1 and
2.

Figures 8A shows that the welfare of both workers and �rm-owners is increasing in �.
The reason is that the rise in � actually raises the growth in the technology shocks z, and
thereby raises the prospects for future pro�t. This is o¤set to some extent by the reduction
in growth. However, the reduced growth, resulting from the lower value of x is a consequence
of the fact that (V �W ) falls as � rises.

Figure 8B shows that as � rises, the average lifetime of a �rm initially rises. This is in
spite of the fact that the threshold relative productivity of an exiting �rm has risen. As
indicated above, the inverse of this time could be interpreted as a measure of the rate of
business destruction. This panel then indicates that an increase in � results in a lower rate
of destruction of businesses or �rms. The reason for this is that although the threshold level
of s rises, this is overwhelmed by the fall in the growth rate.

Figure 8C shows that as the � rises, the productivity-adjusted wage (Aw) rises. This
happens even though the number of workers is also rising. Normally an increase in the
number of workers would reduce wages. The key to understanding this result is found in
equation (30). Here it is apparent that the rise in N and s; in conjunction with the increase
in � should all cause Aw to fall. But it does not fall, and the reason for this is the growth
rate (�) also falls. This e¤ect helps to make the distribution �spread out�and therefore raise
the average productivity of these �rms. An example of this is shown in �gure 3. The e¤ect
of the rise in � is to censor the distribution by causing some of the low-productivity �rms
to drop out through the absorbing barrier, which is also somewhat higher. This change
in �s increases the productivity-adjusted wages (equation (30)). If the ratio (A�=Aw) is
viewed as a measure of income inequality, then this suggests that a greater variance of the
economic shocks � results in a lower level of inequality.

Figure 8C shows that the productivity-adjusted pro�t is falling in � for the same reason
that wages are rising. However, as � rises su¢ ciently, Aw eventually exceeds A�. If the
wage is rising in � because of the higher productivity of �rms, the higher resulting wage will
then lower the pro�t of remaining �rms. This may be a little surprising. This means that
workers may eventually give up their wage and job for a payo¤ (i.e. pro�t) that is lower
than their current wage. The reason that the worker will give up this wage for a lower pro�t
is because there is a higher prospect of pro�t growth due to the higher value of �.

Figure 8D shows the productivity-adjusted wage (Aw) as well as the productivity-
adjusted pro�t if a marginal �rm (A�es), which is a �rm whose owner is just indi¤erent
between operating the �rm, and shutting it down to become a worker. It is evident that as
� increases the disparity between Aw and A�es increases, but in the diagram, it is possible
that Aw>A�es. In this case, for these �rms, the workers are getting paid more than some
�rm-owners! The reason for this would seem to be that the �rm owner with a very low
pro�t can still potentially bene�t from elevated future pro�t due to the possibility that this
pro�t will rise in the future because the productivity of the �rm will rise. This feature can
also be seen equation (8). Increasing the value of �s raises expected pro�t relative to the
contemporaneous wage, and so makes the �rm owner delay shutting down his �rm. In this
case, the agent earning the lowest income in the economy would not be a worker, but would
be an owner of a �rm that is just about to cease operating.
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It is then useful to summarize how an increase in � a¤ects income inequality. For low
values of �, the income of a worker is roughly equivalent to that of the marginal (lowest
productivity) �rm (A�es), and signi�cantly lower than the income of a new �rm owner (A�).
As � rises, the relative distribution of income �spreads out�, as there are wealthier �rm-
owners who earn higher pro�ts. Although s rises, the relative income of the marginal �rm
falls because A� falls. Also, the income of a worker (Aw) moves well inside the distribution
of income, until it can be greater than A�. As � rises, income inequality rises in the sense
that there is a wider distribution of overall incomes. However, there are complicated e¤ects,
in that the relative income of workers certainly rises.

Incidentally, one can see a linkage between �gures 8B and 8D. Figure 8B shows that as
� rises, the average lifetime of a �rm rises. Figure 8D shows that the �rm-owner seems to
wait even longer before shutting down the �rm.26

10.3 An Increase in � and a Corresponding Reduction in �1

Now consider an increase in the standard deviation of � which is compensated for my

decrease in �1 so that the growth component, measured as
�
�1 +

�2

2

�
is held constant. The

results of this experiment are shown in �gures 9 and 10. Other than the increase in � and
reduction in �1, the same parameter values are employed for both this and the previous
analysis. The results are very similar to those of the previous experiment, shown in �gures
7 and 8. In this new experiment, the fall in the growth rate (�gure 9A) is much more
pronounced, since the upward trend in technology shocks is removed. As is shown in �gure
9B, this fall in growth is entirely due to the reduction in innovation (x), since the labor
force (N) rises, as is shown in �gure 9C. It should be emphasized that this reduction in
growth is not attributed to some assumed change in costs or bene�ts of innovation. To
the extent that these costs are bene�ts have changed, say due to the rising wages, these
are endogenous responses to the change of �.27 The increased dispersion of �rms results in
many more �high-productivity��rms. This drives up wages, which reduces the pro�tability
of �rms, and reduces the incentive to innovate. That is, the increase in � does not by itself
insure that the cost of innovation must increase.

Figure 9D shows that the threshold level of s rises in this experiment so that an increase
in � results in �rms exiting at a relatively higher level of productivity.

Figure 10B shows that the increase in the age of a �rm is much more evident in this
case than in �gure 8B where there is a simple change in �. This may be a little surprising
because �gure 9D shows that the shutdown threshold value s rises, and this should lower
the average age of a �rm. However, this e¤ect is more than o¤set by the fact that the
growth rate has fallen, and consequently �rms will have a much longer lifetime because of
this. Once again, the inverse of this measure can be interpreted as the rate of business
destruction. This experiment again indicates that an increase in the volatility of technology
shocks translates into a reduced rate of business destruction.

26Here the notion of �waiting longer�means that the �rm owner will wait until their pro�t is even further
below the market wage before shutting down the �rm.
27This is in contrast with some papers, such as Aghion, Bergeaud et al. [2] They employ a much more

complex model in which it is assumed that rising overhead costs of �rms alters the incentives for innovation,
and leads to higher growth in the short run, but lower growth in the longer run.
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Figures 9B and 10B are also jointly important for understanding some phenomena de-
scribed above. The slowdown in research e¤ort illustrated in �gure 9B would mean a
reduction in the rate of entry of new �rms. This is exactly what seems to appear in �gures
3 and 4 for the US and Canada. So it could be that the recent reduction in the growth rate
and the rate of entry of young �rms could be an outcome of reduced innovative activity, but
the ultimate cause of this could be the increase in the variance of �rm-level productivity.28

This illustrates an important phenomenon that can appear in these models of growth
through creative destruction. One might witness a change rate of the introduction of new
goods or �rms, or a change in the average age of �rms, and then make the leap of logic
to conclude how this should in�uence the growth rate, not to mention to attach value
judgements to all of this. But all of these observations are the outcome of a complex series
of factors that interact together.

Figures 10C and 10D look a lot like their counterparts in �gures 8C and 8D. Again, it
seems that Aw is increasing in � while A� is decreasing. Figure 10C, once again, shows that
if � is su¢ ciently large A� will fall below Aw. This happens for the same reason as in the
previous experiment. Once again, if the ratio (A�=Aw) is viewed as a measure of income
inequality, then this suggests that a greater variance of the economic shocks �s results in a
lower level of inequality.

And once again the disparity between Aw and A�es increases as � rises. This is shown
in �gure 10D. This contributes to the elevated average age of �rms in this economy, as is
illustrated in �gure 10B.

One notable di¤erence in the two experiments is the behavior of welfare of both agents
as � changes. Figures 10A and 8A are quite di¤erent. Whereas in the previous experiment
welfare of both agents rose as � increased, here the welfare of workers rises modestly, but
the value function of a new �rm owner does not. From one perspective this is a little
surprising. Since agents have linear preferences, they do not care about risk or uncertainty,
so the reduction in welfare cannot come from this feature. The fall in welfare is coming
instead from the reduction in the growth rate. The growth rate is falling because of the
reduction in innovation (x), which can only be because there is a fall in the relative payo¤s
(V �W ): The �rst reason is the change in payo¤s shown in �gure 10C.

This fall in welfare that results from an increase in exogenous volatility is surprising for
another reason. In many models, such as models involving sequential search, agents derive
utility from a selectively truncated portion of the distribution.29 Frequently in these models,
an increase in volatility, or a mean-preserving spread of the distribution, results in increased
utility or value because it raises the value in the truncated portion of the distribution. This
is not necessarily the case here, since welfare can fall as a result of this increase in �s. The
reason is that the increase in �s results in more �high-productivity��rms, which raises the

28 It may seem paradoxical that with an increase in the variance of �rm-level of productivity, would lead
to an increase in the average lifetime of a �rm, as is shown in �gure 10B. After all, increased variance of
these shocks should lead to more movement of �rms within the distribution, and therefore should result
in greater exit. However, the key to understanding lies in equation (34). Here, it can be seen that the
increased variance lowers the value of s, but this is outweighed by the reduction in the growth rate, in the
denominator.
29For example, in models in which a potential worker is searching for a job, it may be optimal to employ

a reservation wage strategy. In this case, the agent�s welfare will be determined only by the portion of the
distribution that lies above the reservation wage - a truncated portion of the distribution.
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equilibrium wage. This in turn raises the costs to all �rms, which lowers pro�t to all �rms.
The increase in �s might seem bene�cial to a single �rm, but it has adverse consequences
when it happens to all �rms.

10.4 Optimal Degree of Destruction

It is natural in models with an intertemporal externality for innovation, that the equilibrium
will display too little innovation. If, as is frequently the case in the existing growth literature,
innovation is inexorably linked to business exit (or destruction), then it will also be the case
that there will be too little business destruction. However, this linkage is not present in this
model, as there are autonomous innovation and exit decisions. It is then possible to inquire
as to whether there is too much, or too little business exit, or destruction alone. In other
words, it is possible to in�uence the business destruction margin (or decision) without also
in�uencing the innovation margin.

It is of interest to understand how various policies might in�uence the economic outcomes
in such a model. It is natural to inquire as to the e¤ect of having the government introduce a
cost of terminating the business. Suppose that the government introduces such a shutdown
cost, and uses the revenue to fund a lump-sum tax on all individuals. Since, at this point,
there is no reason to believe that such a policy would be welfare-improving, we will also
consider the possibility that this shutdown cost, and transfers, should be negative as well.

Figures 11A and 12A show the impact of such a policy. Introducing such a termination
cost lowers growth. Essentially, this reduces the incentive to engage in innovation. Intro-
ducing a cost of closing a business is essentially a delayed tax or cost of starting a business.
As shown in �gure 11C, this cost results in more �rms and fewer workers. Furthermore,
this will result in the marginal �rm having lower productivity (i.e. lower s).

Figure 12A shows that the welfare of both workers and �rm owners is marginally de-
creasing in this cost. Not only is it wrong to tax the closure of a business, but this �gure
shows that instead this closure should be subsidized ! Essentially what is happening is that
in the benchmark model there is too little destruction, or at least �rms are shutting down
too late in the benchmark model. Subsidizing this closure would help resolve this problem.
Another way of viewing this issue is to recognize that subsidizing the shutdown of the busi-
ness has several e¤ects. First, this results in fewer �rms, which lowers wages and thereby
lowers the cost of business to all �rms. But secondly, subsidizing the shutdown of a �rm is
actually a delayed subsidy to starting a �rm, since you cannot do the former without the
latter. But this subsidy raises the incentive to innovation as well.

Figure 12B shows that introducing this cost will result in the average age of a �rm
will rise. Again, to raise welfare it would be desirable to reduce this average age. Figure
10A and 10B together suggest that welfare is inversely related to average �rm age, which
suggests that welfare is positively related to the rates of �rm entry and exit.

Figure 12C shows that introducing a shutdown cost raises wages very, marginally and
so, on net, the welfare of workers is reduced because the growth rate falls so much.

In summary, this analysis suggests that it may be welfare-improving to tax workers and
to use the proceeds to pay marginal �rms to cease operating. It would be exciting to witness
what fate awaits any politician who suggests such a policy.
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11 Implications for Asset Pricing

11.1 Observations

It has been recognized for some time that the behavior of rates of return can be di¤erent
for large and small �rms, and this has become known as the size puzzle. For example, Banz
[6] and Reinganum [38] document that average rates of return seem to di¤er based �rm
size. While a full, detailed study of this observation is beyond the scope of this paper, the
model employed here can yield some insights into this issue. Furthermore, there is a related
puzzle that is also of interest.30 ·Imrohoro¼glu and Tüzel [26] describe how the variability of
rates of return di¤ers for �rms of di¤erent sizes. Rates of return are much more variable for
smaller �rms than for larger ones. Bloom et al. [7] also document that TFP shocks seem to
be re�ected in stock returns, but they do not explore the more subtle issues studied below.

This raises other important economic questions. Since rates of return would naturally
seem to be linked to the productivity (or technology) of the �rm, this observation suggests
that the volatility or productivity of smaller �rms should be much greater than for larger
�rms. However, there does not seem to be any evidence that this is the case, or that it
should be the case. So what is the mechanism that makes these returns depend on �rm
size?

As will be seen the model of this paper will produce asset price or return volatility that
is inversely related to �rm size or productivity, even when �rms are subject to the exact
same distribution of shocks.

11.2 Asset Pricing Implications of the Model

This model has some important implications for asset pricing. The owner of a �rm in such
an economy can easily have the value of the �rm priced, since such a value should just
re�ect the expected discounted value of dividends.

In similar models with linear preferences, for a �rm with relative technology index �st�
and when the technology of new entrants is Zt, the formula for calculating the discounted
value of dividends is then

Q (st)Zt = Et

�Z 1

t
Zte

�r(v�t)A� (e
sv) dv

�
: (38)

In the event that the �rm is expected to operate forever, this can be re-written as

Q (st) =
A� (e

st)

(r � �)� �s �
�
�2s
2

� : (39)

Such an expression has the following property for the semi-elasticity:

@ log (Q (s))

@s
= 1. (40)

30 In particular, since the barrier (s) is time-invariant, and the preferences of asset holders are assumed to
be linear, it is not possible to produce di¤erences in expected returns for �rms with di¤erent productivity.
However, additional research has shown that if either of these two assumptions is jettisoned, then it is
possible to produce rates of return that depend on the productivity of the �rm.
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This is an unfortunate property because since productivity (or pro�t) is relatively smooth,
the volatility of prices will not be anywhere close to as large as it is in the data. Even if
�rms were to expire randomly (with some constant, time-invariant probability), equation
(40) would still hold. In other words, having �rms exit does not, in and of itself, does not
change this last property.

However, in this model economy studied here �rms do not die randomly. They cease
operating because of low productivity. Hence in the model, the proper asset pricing equation
is not (38), but instead is

P (st)Zt = Et

�Z T

t
Zte

�r(v�t)A� (e
sv) dv

�
: (41)

Furthermore, not only is T a random variable, but it is also positively correlated with st.
That is, �rms that are highly productive today (high st) are likely to operate longer (T )
than �rms with lower productivity. As will be seen, this positive relationship between T
and st will add a signi�cant amount of volatility to this price.

It is possible to re-write this last equation in the following manner31

P (s) = B1e
s
h
1� e(s�s)(1��)

i
; (42)

where

B1 =
A�

(r � �)� �s �
�
�2s
2

� (43)

and

� =
��s
�2s

�

s�
�s
�2s

�2
+
2 (r � �)
�2s

< 0: (44)

Note that this pricing formula has the property that

P 0 (s) > 0 = P (s)

Whether P
00
(s) 7 0 depends upon the size of �, as well as relative productivity s.

An alternative way to write equation (42) is as follows:

P (st) = Q (st)�
�
e(st�s)�

�
Q (s) (45)

The interpretation of this is as follows. The whole expression is the value of a �rm with
current technology indexed by s, contingent on the �rm operating optimally (i.e. shutting
down when s =s) The �rst term on the right side of equation (45) is the expected discounted
value of the in�nite stream of dividends (i.e. from operating the �rm forever). However,
the �rm will not operate forever, and instead, it will shut-down when its technology index
reaches s. Hence, the second term on the right side of equation (45) re�ects the �loss of
dividends�when the �rm is shut down. The value of these lost dividends, at the shutdown
date, will be Q (s). This date is uncertain, as it is the (random) time it will take s to reach

31This equation can be derived using equation (37) to integrate over the values of T .
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s, which will occur with probability one.32 Lastly, the term
�
e(st�s)�

�
is the expected value

of the (random) discount factor between the current date, and the reaching the absorbing
barrier.33

Another way of viewing this pricing function is to note that in equation (42) the expres-
sion B1es is the value of the current asset if it were to continue to pay o¤, or exist forever.
However the term h

1� e(s�s)(��1)
i

(46)

has the form of, and indeed is, a survival function. This function expresses the discounted
value, multiplied by the probability of future mortality of the asset, given its current payo¤
of qt. If this survival function is close to unity, then it must be that the asset is expected
to have a long horizon.

One very important feature of this analysis is that like most such models, the optimiza-
tion conditions (16 and 17) that give rise to the asset pricing equation are �locally linear�,
the ultimate solution for the price (42 or 45) have important non-linearities.

It is then of interest to compare equations (39) and (42). The former satis�es the fol-
lowing

dQ (s)

Q (s)
=

�
�s +

�2s
2

�
dt+ �sdW: (47)

However, the counterpart expression for equation (42) is the following

dP (s)

P (s)
=

h�
1� �

�
e(s�s)(��1)

��
�s +

�
1� �2

�
e(s�s)(��1)

�� ��2s
2

�i
�
1� e(s�s)(��1)

� dt (48)

+

"
1� �

�
e(s�s)(��1)

�
1� e(s�s)(��1)

#
�sdW:

Clearly, the expression in equation (48) is a non-standard Brownian motion since both the
instantaneous mean and variance depend on the value of s. In contrast, the instantaneous
mean and variance in equation (47) are constant. We frequently think that the forecastable
or predictable change in asset prices should be zero, or at least a constant. But this
expression shows that the expected price change is a function of the �rm�s level of technology.
In fact, this change in price, as well as its standard deviation, can be arbitrarily large. This
is true even though the standard deviation of the underlying shocks is, in fact, constant.
In other words, a �nite variance of the fundamental technology shocks can translate into
arbitrarily large shocks of the price of the asset.

Furthermore, equation (48) has the property that the trend or growth term satis�es the
following:

lim
s!1

E

�
dP (s)

P (s)

�
= �s +

�2s
2
;

32An observer who witnessed a �rm whose value was priced according to equation (39), but who did not
take into consideration that the �rm would shut down at a future date when s =s, might conclude that the
value of the �rm was selling at a discount, relative to B1 (es). Alternatively, the observer might think that
the price of the �rm contained a bubble component which was negative.
33This expression can also be derived using equation (37).
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which is independent of productivity. Similarly, as s ! 1, the instantaneous standard
deviation in equation (48) is �s. Hence, only for �rms with very high productivity does
equation (48) approximate equation (47).

On the other hand, for �rms with low levels of productivity

lim
s!s

E

�
dP (s)

P (s)

�
= �1:

Similarly, as (s� s)!1, the instantaneous standard deviation in equation (48) approaches
+1, so the �rm�s size or productivity certainly a¤ects the volatility of returns in a non-
linear manner.

One way to view this issue is by referring back to equation (45). In this equation, if the
second term were absent (because s= �1) then a 1% change in productivity would translate
into a change in the price of the same magnitude. But the second term in equation (45)
introduces an additional complication. Obviously the elasticity of this term with respect to
�s�is �. If � is signi�cantly di¤erent from zero, prices can exhibit a response to a change in
productivity that is much greater than a unitary elasticity. The reason is that an increase
in productivity does not just signal higher future productivity (which is re�ected in the �rst
term of equation (39)), but it also indicates that the �rm is going to be operational longer!
The larger is �, the bigger this response is likely to be. This emphasizes the importance of
the value of �.

There is yet another avenue through which this feature is important, and has to do with
the e¤ect of a change in the drift of the asset (�1 or �s). In a typical model with long-lived
assets, a change in the drift parameter can have a pronounced impact on the price, because
it operates through changing B1 in equation (43). However, in this model, this growth rate
also in�uences the resulting value of �. This can further magnify the e¤ect of a change in
the drift parameter on the price of the asset, for lower levels of productivity (s� s). The
reason for this is that a change in the growth rate can have a substantial impact on the
expected lifetime of the �rm, and thereby alter its value immensely. This e¤ect becomes
arbitrarily large as (s� s)& 0.

This feature is further illustrated in �gure 13 which shows the expected value equation
(48) in the vertical axis, and the relative value of the productivity index (s� s) on the
horizontal axis). To be clear, the vertical axis ranges from -800% up to zero. This �gure
shows in rather stark terms that as the productivity of the �rm falls, the expected change in
the price of that asset is expected to fall in rather dramatic terms. The level of productivity
of the �rm should have strong predictive power at the low end of the productivity distribution,
but not as much at the high end of the distribution. As the �gure shows, raising the standard
deviation of productivity shocks (�) raises the expected value of the price change, since there
is now a greater likelihood of a positive shock.34

It should be noted that in this environment in which agents are risk-neutral, all assets
will have the same expected rate of return. The other portion of the rate of return is the
dividend price ratio, which is given by

A�e
s

P (s)
: (49)

34The �gure is suggestive that this process is analogous to that of a vortex from which it is very di¢ cult
to escape.
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The fact that �rms with relatively low productivity have large negative capital gains is
o¤set by the fact that the dividend-price ratio is extremely high for these �rms, and this
ratio approaches +1 as s& s:

Next, consider the standard deviation term in equation (48). It is straightforward to
see the following:

lim
s!s

"
1� �

�
e(s�s)(��1)

�
1� e(s�s)(��1)

#
=
1� �
0

= +1; (50)

and hence the variance of the price change ! +1; as productivity falls. This implies that
the volatility of asset returns should be signi�cantly greater for �rms or assets with low
levels of productivity.35 On the other hand,

lim
s!1

"
1� �

�
e(s�s)(��1)

�
1� e(s�s)(��1)

#
= 1: (51)

Once again, none of this has to do with risk-aversion. These results do not rely on a changing
variance of the underlying shocks, since the variance (�) is assumed to be constant. This
shows that even if the productivity shocks have the same properties across all �rms, this
translates into a highly non-linear statistical properties for the asset prices of the �rms.

The term in square brackets in the last two expressions is the derivative of the logarithm
of the survival function in equation (46), and as such is termed a hazard function. This
hazard function appears in the standard deviation of the price change, present in equation
(48), and re-written here: "

1� �
�
e(s�s)(��1)

�
1� e(s�s)(��1)

#
�s:

This expression highlights the fact that two separate features that contribute to the variabil-
ity of asset returns in this environment. First, there is the standard uncertainty regarding
future payo¤s, which is captured by �s. But also, there is the mortality risk that is captured
by the productivity-dependent hazard function, in the expression in square brackets.

This is further illustrated in �gure 14 where the standard deviation term in equation
(48) is plotted as a function of the level of relative productivity. The vertical axis ranges
from zero to 2500%. As is shown, �rms with low productivity levels should have extremely
volatile asset prices. An increase in the value of � raises this volatility, although it should
be noted that this parameter also operates through a change in � as well.

One might question this analysis by wondering if this high volatility is present only in a
small sliver of the distribution of �rms, and therefore of not much consequence. After all,
it is important to be sure how volatile the asset price of the typical or median �rm will be.

The answer to this is illustrated in Table 1, which shows the expected growth term,
given in equation (48), for di¤erent values of (s�s), which is how far productivity is above
the shutdown threshold, or absorbing barrier. The �rst column indicates where the �rm�s
productivity is in the distribution of �rms, measured from the least to the most productive.
The second column indicates how much above the shutdown (or absorbing) barrier, this

35Zhang [40] also studies a model in which the volatility of returns can depend on �rm size. However,
his model is much more complicated than that studied here. Among other things, his technology employs
capital accumulation along with asymmetric adjustment costs.
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�rm�s productivity is. For example, the �rst row is the productivity of a �rm that is greater
than only 1% of other existing �rms, and less than 99% of such �rms. At the same time,
this same �rm�s productivity is only 3.2% above the shutdown threshold at that moment.
The third column indicates the expected instantaneous change in the price change for that
�rm. The last column measures the instantaneous standard deviation for the price change
for this �rm.

There are several things to note from this comparison. For both tables, the expected
price change is substantially less than zero, but the standard deviation of the price changes
is remarkably large. As can be seen, the expected change is negatively and exponentially
in�uenced by how close the productivity is to the exit threshold. This negative growth can
be quite substantial, even for �rms that have higher productivity than the median �rm.

Table 1
� = :05

Percentage (s� s) 100 � E
�
dP
P

�
Standard Deviation of Price Change

1% 3.2% -249% 303%
2% 5.1% -192% 210%
5% 9.1% -73% 127%
10% 14.3% -48% 85%
15% 18.8% -38% 67%
20% 23% -39% 56%
50% 45.8% -17% 31%
100% - -6.7% 12.5%

Table 2 shows the same statistics for an identical economy in which the � is twice as
large as for the previous table. In visual terms, this results in a wider variation in the
distribution of �rm productivity. For a �xed point in the productivity distribution of �rms,
the productivity level, relative to the shutdown barrier, is higher in Table 2. However, at
these same points, the expected instantaneous percentage change in the price is lower in
Table 2. The reason for this is that when the standard deviation of productivity shocks
(�) is relatively high, there is a greater likelihood that the �rm�s productivity will recover
and the �rm will become highly productive in the future (see equation (35)). Therefore,
there is a higher probability that the price will rise as well. However, as the tables show,
for a higher value of (�), there is then a higher standard deviation of the price change. It
makes sense that as volatility of the productivity shocks increase, the volatility of the price
changes should also increase.
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Table 2
� = :10

Percentage (s� s) 100 � E
�
dP
P

�
Standard Deviation of Price Change

1% 7.0% -70% 321%
2% 10.4% -49% 227%
5% 17.5% -30% 142%
10% 26% -21% 100%
15% 32.9% -17% 82%
20% 39% -14% 71%
50% 68.2% -9% 46%
100% - -4.1% 25%

Both of these tables show that for even the median �rm in the distribution(s) the mean
and standard deviation of the price change is very di¤erent from that of high-productivity
�rms. Therefore the e¤ect of ultimate exit on asset prices, both the mean and volatility, is
not something that can be dismissed as something that would only show up as in�uencing
a small slice of the distribution of �rms.

Tables 3 and 4 allow for a di¤erent comparison across economies, relative to new entrants,
with di¤erent values of the standard deviation of the productivity shock (�). The �rst
column in both tables indicates where the �rm lies in the distribution of productivities. In
these cases we consider 3 �rms: i) one that has productivity identical to that of a new �rm
(s = 0), ii) one that has a productivity 50% below that of a new �rm, iii) one that has a
productivity of 50% above that of a new �rm.

Table 3
� = :05

100 � (s) 100 � E
�
dP
P

�
Standard Deviation of Price Change

-50% -32% 58%
0 -12.1% 22%
50% -8.7% 16%

As can be seen, �xing productivity relative to that of new entrants, a higher value of
(�), results in a higher expected fall in the price of the asset. Once again, with a higher
value of (�) there is a greater likelihood that the �rm�s productivity will recover and the
�rm will become highly productive in the future. However, a higher value of (�) results in
a higher variation of this price change as well.

Table 4
� = :10

100 � (s) 100 � E
�
dP
P

�
Standard Deviation of Price Change

-50% -29% 137%
0 -8.7% 46%
50% -5.8% 33%

It should be re-emphasized that in this environment with risk-neutral agents, all assets
will have the same expected return. The fact that the expected price change in these tables
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is negative only means that this portion of the return is o¤set by a higher dividend-price
ratio (equation (49)). Nevertheless, there will certainly be higher volatility of the returns
to assets associated with low-productivity �rms, even though the stochastic process of the
productivity shocks is the same for all �rms.

Finally, the following should be noted. Consider an outside observer who interprets the
movements in asset prices through the lens of a traditional asset pricing formula, such as
equation (41) with T = 1; or equation (42) with s= �1. This observer would look at
the (excess) volatility of the assets of the low-productivity �rms and conclude that they
were much too volatile to be consistent with the underlying fundamentals. The observer
might even conclude that the asset-holders in this economy were being irrational, or at
least reacting in much too sensitive a manner to changes in the productivity of the �rm.
Of course, consumers in this environment are being perfectly rational, and the volatility of
prices is wholly justi�ed, once one understands the nature of the underlying risks.

11.2.1 The E¤ect on Asset Prices of a Change in �s

The analysis of section (10) focuses on how a change in �s would in�uence economic out-
comes. It is then of interest to see how this would in�uence the prices of assets in this
environment. There would seem to be four e¤ects of this change. The �rst thing to note is
that, within this environment, this increased variance contributes to the upward trend in
productivity growth, and thereby raises asset prices. This can be seen in raising the value
in equation (43). This e¤ect will raise the asset price.

Secondly, note that from equation (44) an increase in �s raises the value of � (or
makes it closer to zero, since it is negative). Equation (45) then can be used to show
that @P (s) =@� < 0, and so the increase in �s will lower the asset price.

But there is then a third e¤ect as well. This comes from the fact that, as was shown
in section (10), an increase in �s will raise the value of the threshold value s. This will
then raise the value of Q (s) and lower the value of the price P (s) in equation (45). Once
again, this is truly where the creative destruction feature has some traction. This change
makes �rms cease operations with a higher level of relative productivity (s), which lowers
the discounted value of the �rm�s payo¤s.

Lastly, this increase in �s would lower the value of the survival function in equation
(46) because this would shorten the horizon over which future payo¤s (or dividends) are
calculated for all assets. This would lower the value of the asset price.

It would then seem that an increase in �s may raise the price or value of high productivity
assets, but lower the value of low productivity assets.

Note that in a similar model without the creative destruction feature, only the �rst
e¤ect would be present and so an increase in �s would raise the asset price. The last three
features are present only because it is expected that assets are mortal.

11.2.2 Correlations with Consumption

In models where agents have linear, or risk-neutral preferences, it is universally the case
that a change in aggregate consumption by itself should not a¤ect asset prices, since prices
are determined by the discounted expected future payo¤s, discounted at a constant rate.
However, in the model presented above this is not the case. To see this, use equations (42),
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together with the substitution of es = (zt=Zt) to re-write the asset pricing equation (41) in
the following manner.

P (st)Zt = B1zt �B1 (zt)� (Zt)1�� es(1��): (52)

This is the price at date t denominated in units of consumption at that date. Once again,
the �rst term on the right side is the value of the payo¤s of the �rm, if it were to operate
forever. The second term is the expected loss of value due to the exit of the �rm, conditional
on it terminating operations optimally (i.e. when st =s). Note that in this model aggregate
consumption is proportional to Zt. Next, consider a thought experiment in which, over a
short period the value of zt is roughly constant, but the value of Zt increases. That is the
payo¤ of the asset is unchanged, but consumption rises. Since � < 0, the price of the asset
in equation (52) would fall. The reason is that the growth in consumption (or technology)
has moved the technology of this �rm a little closer to the exit barrier, and so lowered
the value of the �rm. Hence, this could translate into a negative correlation between asset
prices and aggregate consumption, even though the discount factor was constant.

Additionally, the increase in aggregate consumption (through the increase in Zt) would
also result in a lower return on existing assets in the economy. Through this channel, there
would then be a negative relationship between changes in consumption and asset returns,
in an environment where agent�s preferences were linear.

To the outside observer, who was not aware of the preferences of individuals, they might
observe the contemporaneous rise in consumption and fall in asset price, and conclude that
the rise in consumption has caused the (endogenous) interest rate to have risen. Of course,
the discount rate is constant. The creative destruction feature of the economy can make it
seem like interest rates may be changing when they are not.

A more detailed analysis of how the features of this model, and how the correlations
of asset payo¤s with other variables like consumption can in turn a¤ect asset returns is
conducted in Hu¤man [24]. This paper employs risk-averse agents, so the formulae for asset
prices and returns are much more sophisticated than those derived here.

11.2.3 Diversi�cation

A natural question to ask here is if it is possible to diversify this risk. If one pooled together
the assets with similar levels of productivity (s), then one could diversify away the risk
associated with changing levels of s, which is to say that this would reduce �s. However,
this would not reduce the risk associated with reaching s, because this would be common
for all of those assets. Therefore, there really are two separate types of risk here. One is
easier to diversify away than is the other.

One might consider how a hypothetical risk-averse might seek to hold an optimally-
diversi�ed portfolio of assets in this environment. If, as in the benchmark model, the �rms
all have the same, independent productivity parameters, then a well-diversi�ed portfolio is
likely to involve reducing the holdings of assets that have low or falling productivity, since
these returns are likely to have higher risk.
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11.2.4 Extensions

One might quibble with the fact that in this primitive model, equation (45) implies that
all �rms with the same relative productivity (s) will have the same level of employment
and output, the same threshold productivity (s), and hence the same distribution of exit
times. This does not seem consistent with the fact that occasionally large �rms can be in a
�nancially precarious position. Fortunately, there is a simple modi�cation of the model that
can accommodate this observation. To rectify this, consider instead of using the production
function in equation (2), that we use the following production function

z (n�t )� z�:

Here � is some continuous �xed cost (but it could be negative as well). Think of this as
some operating cost. Since this is additively separable from the production function, this
parameter will not a¤ect the level of employment. However, this will certainly a¤ect the
pro�t and will a¤ect and appear in the value matching condition which determines the exit
decision. Therefore, it will be the case that the threshold level of productivity (s) will be
in�uenced by the size of �. Now suppose that the value of this parameter varies by �rm.
Then it can be the case that there are some high productivity �rms with much higher values
of s than other low productivity �rms. In other words, with this feature, it is possible to
have large �rms (i.e. high employment) that are much closer to exit than would be some
smaller �rms. This would complicate the market clearing condition for labor (equation (9))
because we would then have to integrate not just over the values of s or (zt), but also over
�.

In general, here � re�ects the opportunity cost of keeping a �rm operational. From a
positive perspective, any feature that raises the marginal cost of operating the �rm could
be re�ected in �. For example, if a richer model one might imagine �rms having various
levels of debt, and that a high level of debt can increase the probability of the �rm exiting.
Hence one might identify debt as one of the features that can in�uence the value of �.

Lastly, it was shown in section (10.4) that the equilibrium of such an economy may
not display the optimal degree of business destruction. This feature would then naturally
show up in asset prices as well. That is, asset prices would not be the same as in a world
with optimal allocations. Any policies (such as those illustrated in section (10.4)) that were
implemented to change the degree of business destruction to something closer to a socially
optimal level would then also in�uence the asset prices. Actually, it might be possible to
implement policies to change the asset prices, and thereby in�uence the rate of business
destruction.

12 Final Remarks

The model studied here is uniquely capable of yielding insights into how changes in the
variability of �rm-level productivity shocks could in�uence economic growth, as well as
other important economic outcomes. One might initially expect that higher variability in
such shocks could raise growth because it would then lead to a greater likelihood of high-
productivity shocks. Since low productivity �rms are free to exit, this would naturally lead
the remaining �rms to have higher productivity and perhaps higher growth. However, the
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�creative destruction� feature of the economy is instrumental in showing how the growth
rate could actually fall. Higher productivity shocks raise factor prices which in turn lowers
the pro�tability of all �rms, and thereby reduces the incentives for innovation.

In recent decades there has been an apparent increase in the variance of inter-�rm
productivity. Concomitant with this has been a slowdown in growth and a reduction in the
entry of new, small �rms. Until now, it was not apparent how all of these phenomena were
related. However, the model studied here shows that they can be explained. Perhaps the
next step is then to understand why there has been an increase in this variance.

It was shown that the creative-destruction feature also has unique implications for the
pricing of assets in this environment. The resulting formula for asset prices embodies a
survival function that characterizes the likelihood of the �rm ceasing operations in the
future. This exit or mortality risk adds another element of uncertainty to asset prices, and
this uncertainty can be arbitrarily large for low-productivity �rms. As a result, changes in
parameters, such as the drift parameter for assets, can have some unique e¤ects on asset
prices.

Further research is being conducted into how the properties of assets, such as those
studied in this model, are in�uenced by the introduction of risk aversion. Preliminary work
reveals that these features, acting in conjunction with each other produce some unique
properties for prices and returns.
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1 Introduction

In this appendix, a few extra details of the model will be explored. In particular, it is ex-
plained how the new innovators, who were previously workers, can obtain a new technology
that is an improvement on the technology discovered by previous innovators. This in turn
will in�uence or determine the steady-state growth rate.

2 Discrete and Continuous Time

It is well known that this type of continuous-time model can be characterized as the limiting
case of a discrete-time model where the length of the time period goes to zero. But the limits
have to characterized in just the right manner. To proceed with such an analysis, consider
the model of the paper where the length of the period is denoted by � . Assume that the
functions below have all the necessary di¤ferentiability properties so that the appropriate
limits can be taken. Then the HJB equation of the �rm-owner can be written as follows:

�rVt = max f��t + (Vt+� � Vt) ; �rWtg : (1)

The left side is the return to the �rm owner over a period of length � at time t. This
corresponds to equation (13) in the text. Next, consider the companion problem faced by
a worker, characterized as follows:

�rWt = max
x
f� (wt � h (x; Zt)) + (Wt+� �Wt) + �� (x) [Vt+� �Wt+� ]g (2)

This corresponds to equation (23) in the text. Assuming su¢ cient smoothness or di¤eren-
tiability, then letting � & 0 in this last expression then yields

rWt = max
x

n
wt � h (x;Zt) + _Wt + � (x) [Vt �Wt]

o
:

It is well known that the Brownian motion process, which is assumed for the productivity
shocks, can be approximated as the limit of a discrete time Markov process, where period
length approaches zero and probabilities converge in just the proper manner (see Cox and
Miller [2]). This result will be employed below.

It is also known that with certain smoothness assumptions, equations (1) and (2) con-
verge to equations (13) and (23) in the text. Next there is one other detail to nail down,
which is the behavior of workers who are innovators.
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3 Innovators

It is assumed that over any period of length � that any worker has a probability of innovating
which is equal to �� (x). For now let us abbreviate ~� = � (x) to keep the notation simple.
Next, consider such a worker who innovates at date t. Now the previous generation of
innovators had innovated at date t � � , and they then began to produce with technology
level Zt. However, the next generation of innovators are assumed to be able to copy or
improve upon the previous generation�s innovation. This will mean that there is essentially
an intertemporal spillover or externality whereby new innovators bene�t from that work of
previous cohorts. These improvements take place at random time intervals.1

This means that the successful innovators at date t, will each inherit or receive a new
technology which is denoted by Zt+� > Zt. For convenience it is assumed that

Zt+� = Zt (1 + �) :

Clearly, the size of� will then in�uence the growth rate. To make this discrete-time analysis
consistent with the distributional assumptions of the continuous-time model of the paper,
it is also assumed that there is a grid of points fkigi=1i=�1 where ki represents the logarithm
of a potential technology of a �rm. That is, the technology of each �rm moves (or jumps)
discretely along this grid of points. It is assumed that

ki+1 � ki = ln (1 + �)

so that the values of Zt each fall on these grid points as well. That is, each new entrant also
has a productivity that falls upon these grid points. At each date there is a distribution
of productivities of �rms that falls on the points fkigi=1i=�1. This is a discrete distribution
that sums to the mass of 1 � N . This discrete distribution will be the counterpart of the
continuous distribution of the model in the paper.

In the continuous time version of the model the shocks of existing �rms will follow a
Brownian motion process. Therefore, in the discrete-time process it will be assumed that in
each period, if a �rm has a log productivity of ki, then at the next date the �rm will have
a log productivity of ki+1 with probability of p, and will have log productivity of ki�1 with
probability of 1� p. It will be assumed that

p =
1

2

�
1 +

�1
p
�

�

�
: (3)

Next, let the relationship between � and � be determined as follows:

� = �
p
� (4)

It is shown in Cox and Miller [2] that this process for these shocks then converges to
the process described in the paper as � & 0.

Next, we have to describe or characterize the behavior of new entrants. Once again, it
is assumed that each innovator has no control or in�uence over the size of an innovation

1An alternative approach would be to have the improvements take place be of a random size.
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(�). Assume that successful new entrants don�t get a certain technology of Zt, but instead
a random (or barely random) payo¤. That is, suppose that they receive the following:

Zt+� =

�
Zt (1 + �) with probability p̂
Zt (1��) with probability 1� p̂ :

Note that here p̂ , which determines the success rate of potential innovators, is distinct from
p in equation (3), which determines the rate of movement of existing �rms.

Once again, the value of � is determined by equation (4). Next, assume that

p̂ =
1

2

�
1 +

~�
p
�

�

�
:

Here ~� is assumed to be a parameter, but this will be determined below.
This means that new entrants, or innovators, get a random improvement on the tech-

nology of recent innovators. If p̂ > 1=2, on average it will be an improvement, but it might
also fall just below that of recent innovators. Then it is easy to see that

E

�
Zt+� � Zt

Zt

�
= p̂�+ (1� p̂) (��) (5)

=
1

2

�
1 +

~�
p
�

�

�
�+

1

2

�
�1 + ~�

p
�

�

�
�

=

�
~�
p
�

�

�
�

= ~��

This follows because of equation (4). This ensures that the growth rate of new entrants is
indeed ~�.

Lastly, it is assumed that the value of ~� depends on the aggregate level of innovation
(�N) in the following manner:

~� = �N + �1.

As mentioned in the paper, this expression is the same equation used to characterize the
determinants of growth in Bloom, Jones, Reenen, and Webb [1].

References

[1] Bloom, Nicholas, Charles I. Jones, John Van Reenen, and Michael Webb, �Are Ideas
Getting Harder to Find?�, American Economic Review, 110(4), (2020), pages 1104�1144.

[2] Cox, D. R., and H. D. Miller, The Theory of Stochastic Processes, Science Paperbacks,
(1970).

3


