Methods for Discovery & Characterization of Cell Subsets

Jonathan Irish, Ph.D. Vanderbilt University, Nashville, TN

Assistant Professor of Cancer Biology & Pathology, Microbiology & Immunology

Australasian Cytometry Society

10 October 2015

Disclosures for Jonathan Irish, Vanderbilt University

Co-founder & board Clinical research Speaking honorarium Invited speaker Cytobank Incyte, Karyopharm Novartis Fluidigm The Big Idea: Automatically Identify All Cell Types in Primary Tissues, Create Reference Models to Study Impact of Disease, Genetic Changes, etc.

Based on Becher et al., Nature Immunology 2014

Tools from Machine Learning + High Content Data: Comprehensive, Automatic Mapping of Cell Types

Irish, *Nature Immunology* 2014 Based on Becher et al., *Nature Immunology* 2014 Effective data analysis is critical to successful cytometry

We Now Make Billions of Multi-D Single Cell Measurements => Need for Machine Learning Tools & Human Readable Views

Unsupervised Analysis: Not Using Prior Knowledge To Guide the Analysis

Prior knowledge examples: Stem cells express CD34, AML cells express CD45

Supervised Approaches

- Expert gating
- Gemstone
- Wanderlust
- Citrus

Unsupervised Approaches

- Heatmap clustering
- SPADE
- viSNE
- Phenograph

See Table 1 of Diggins et al., Methods 2015 for list of unsupervised tools

Traditional Gating Overlooks Many Cells in Primary Samples

CD20⁺ B cells CD20⁻ B cells CD11b⁺ monocytes

viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia

El-ad David Amir¹, Kara L Davis^{2,3}, Michelle D Tadmor^{1,3}, Erin F Simonds^{2,3}, Jacob H Levine^{1,3}, Sean C Bendall^{2,3}, Daniel K Shenfeld^{1,3}, Smita Krishnaswamy¹, Garry P Nolan^{2,4} & Dana Pe'er^{1,4}

In all cases, the viSNE gate included cells that were not classified by the expert manually gated biaxial plots; these cells are labeled in gray in the viSNE map. Examination of the marker expression of these cells reveals that they are typically just beyond the threshold of one marker, but the viSNE classification is strongly supported based on the expression of all other markers. For example, in Figure 1d, wherein cells are colored for CD11b marker expression, the cells in the gated region express the canonical monocyte marker CD33 (Supplementary Fig. 1b). However, only 47% of these cells were classified as monocytes by the manual gating (Fig. 1b).

nature biotechnology 2013

a **Biased annotation** t-SNE dim. 2 t-SNE dim, 1

High-dimensional analysis of the murine myeloid cell system

Burkhard Becher^{1,4,5}, Andreas Schlitzer^{1,5}, Jinmiao Chen^{1,5}, Florian Mair², Hermi R Sumatoh¹, Karen Wei Weng Teng¹, Donovan Low¹, Christiane Ruedl³, Paola Riccardi-Castagnoli¹, Michael Poidinger¹, Melanie Greter², Florent Ginhoux¹ & Evan W Newell¹

for by 14 predominant clusters).

Overlooked cells 'between' traditional gates add up to ~half the sample

nature

immunology

2014

BST2⁻B220⁻ Notably, whereas traditional biased gating strategies allowed 103 for identification of only 54.7 \pm 2.6% (mean \pm s.e.m., n = 3 mice) of 102 lung myeloid cells (different DC subsets, macrophages, monocytes, MHCII (Nd-142) neutrophils), the automatic, computational approach identified nearly 100% of the cells (96.6 \pm 1.0% (mean \pm s.e.m., n = 3 mice) accounted 0100 101 CD11c (Dy-163)

Amir et al., Nature Biotechnology 2013; Becher et al., Nature Immunology 2014

Major Steps in Most Single Cell Biology Workflows

Data collection	 Panel design Data collection 	
Data processing	3) Cell event parsing4) Scale transformation	
Distinguishing initial populations	5) Live single cell gating6) Focal population gating	How much can be automated?
Revealing cell subsets	 7) Feature selection 8) Dimensionality reduction 9) Identify cell clusters 10) Cluster refinement 	Where do computers outperform humans? How do we select tools and use them well?
Characterizing cell subsets	 11) Feature comparison 12) Model populations 13) Learn cell identity 14) Statistical testing 	

Teaching Computers To Spot Useful Patterns : Grouping Cells by Selected Features (e.g. Protein Expression)

HD cytometry!!

Woah, that's a lot of data...

Computational tools

Biological knowledge

Many Great Tools Exist, But Key Gaps Remain

Analy	sis step	Traditional	Additional methods§	Method here		
Data collection	1) Panel design	Human expert	-	-		
	2) Data collection	Human expert	-	-		
Data processing	3) Cell event parsing	Instrument software	Bead normalization and event parsing [31]	-		
Data processing	4) Scale transformation	Human expert	Logicle [36]	-		
Distinguishing	5) Live single cell gating	Biaxial gating +	No event restriction,	viSNE + human expert		
initial populations	6) Focal population gating	human expert	AutoGate [48]	(Figure 1) [†]		
	7) Select features	Human expert	Statistical threshold [40]	Human expert ⁺		
Revealing cell subsets	8) Reduce dimensions or transform data	N/A	Heat plots [49], SPADE [12], t-SNE [50], viSNE [9], ISOMAP [23], LLE [25], PCA in R/flowCore [51]	SPADE [†] , viSNE		
	9) Identify clusters of cells	Human expert	SPADE, k-medians, R/flowCore, flowSOM [52], Misty Mountain [13], JCM [26], Citrus [14], ACCSENSE [53], DensVM [24], AutoGate	SPADE (Figure 2) [†] , viSNE + human expert (Figure 1)		
	10) Cluster refinement	Human expert	Citrus, DensVM, R/flowCore	-		
	11) Feature comparison	Select biaxial single cell views	viSNE, SPADE, Heatmaps [34, 40], Histogram overlays [34, 40], Violin or box and whiskers plots [51]	Heatmaps (Figure 3A) [†] , viSNE (Figure 1C), SPADE (Figure 2C)		
Characterizing cell subsets	12) Model populations	12) Model N/A populations		-		
	13) Learn cell identity	Human expert	-	Human expert [†] (Figure 1B, Figure 2B, and Figure 3B)		
	14) Statistical testing	Prism, Excel	R/flowCore	-		

[†]Denotes the primary approach used at each step in the sequential analysis workflow shown here.

strengths or published applications

A major gap in the field is in true <u>learning</u> of cell identity

Diggins et al., Methods 2015

Key Analysis Concepts: Dimensionality Reduction, Transformation, Clustering, Modeling, Visualization, & Integration

viSNE Amir et al. *Nature biotech* 2013

SPADE Qiu et al. Nature biotech 2011

Diggins et al., Methods 2015

We Will Use Cytobank Software for viSNE & SPADE

Cytobank (www.cytobank.org) is a commercial tool for web-based data storage, annotation, analysis, and visualization

30-day free trial with viSNE & SPADE: https://premier.cytobank.org/signup

Move rapidly from data to insight. Cytobank is a cloud-based platform that accelerates research productivity by enabling you to analyze and visualize multiple single-cell data sets simultaneously.

Discussion Questions Covered in Today's Course

1) What are key differences between tools (viSNE, SPADE, PCA)? What is the difference between transforming, clustering, and modeling data? What type of modeling are we doing (if any)?

2) What does non-linear vs. linear analysis mean? Does the data's scale matter for analysis (arcsinh5, arcsinh15, linear)?

3) What do viSNE and SPADE settings do (viSNE iterations,SPADE downsampling & node #)? When should they be changed?

5) How does one compare new samples with a prior analysis? How do we test tools with expert gating?

6) What are some "red flags" indicating problems? What does a good viSNE or SPADE analysis run look like?

Onward, to the analysis!

Discovery and Characterization of Cell Subsets: Towards Machine Learning Cell Identity

Single Cell Biology Workflow

Data collection	 Panel design Data collection
Data processing	3) Cell event parsing4) Scale transformation
Distinguishing initial populations	5) Live single cell gating6) Focal population gating
Revealing cell subsets	7) Feature selection8) Dimensionality reduction9) Identify cell clusters10) Cluster refinement
Characterizing cell subsets	 11) Feature comparison 12) Model populations 13) Learn cell identity 14) Statistical testing

Mass Cytometry: 35+ Dimensional Analytical Cytometry

Mass Cytometry Data Pre-Processing

Fink et al, Cytometry Part A 2013

Resources:

- Concatenation: downloadable tool from Cytobank (http://support.cytobank.org/help/kb/cytobank-utilities/concatenating-fcs-files)
- Normalization: Cytometry Part A <u>Volume 83A</u>, Issue 5, pages 483-494, 19 MAR 2013 DOI: 10.1002/cyto.a.22271 <u>http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.22271/full#fig6</u>
- Barcoding: Bodenmiller et al, Nature Biotechnology 2012 (http://www.nature.com/nbt/journal/v30/n9/full/nbt.2317.html)

Workflow summary:

- 1) <u>Clone</u> experiment "Diggins et al., Methods 2015 Step 1"
- 2) Set the <u>Scales</u> so that the scale argument is 15 for all channels.
- 3) Gate for "Intact cells"
- Navigate to Diggins et al., Methods 2015 Step 1
- Click the experiment name to load it

Cyt	oban	Experiments	Projects							🔧 Admin	Help 🧝	jonathan.irish@gmail.com
? 🗚	All Exp	periments 🕑 Ne	w Experiment	Filter by:	Category	-	Project	0	Label	* Тор S	ample Tags	Top Channels
c	۹	65	i experiments	Archive	Delete 🧭	Label	s					
		Experi	ment Name		÷ 🖌 ÷	($\blacklozenge \doteqdot$	4 ≑	PR	Project	Created	🕴 Updated 🔻
		Diggins et al., Methods	<u>s 2015 - Step 1</u> (1	2	2	0	0	Kirsten Diggins	Irish Lab @ Vanderbilt	12:54 PM	01:15 PM
		Diggins et al., Diggins et discovery and character high dimensional mass	al, Methods 2015 - Ste mzation or cen s s cytometry data	p 1 absets in	6	2	0	0	Kirsten Diggins	Irish Lab @ Vanderbilt	10:22 AM	12:35 PM
	• 📀	Fluidigm Basic Human	PBMC Panel		1	7	2	0	Angela Landrigan		Feb 2013	Oct 07
		Comparison of 2 CAR I	Runs		6	6	1	2	TJ Chen		Sep 29	Oct 01
	• 📀	2012-12 Healthy Hum Markers from Fluidigm	an PBMC w/ 26 S Good Exam	ourface	1	7	6	1	Jonathan Irish	Irish Lab @ Vanderbilt	Dec 2012	Aug 18
		041213_PBMCs Kit_17	Abs (GoodHiera	rchy)	2	6	10	0	Erin Simonds	Kits - internal DVS	Jun 2013	Aug 18

Workflow summary:

- 1) <u>Clone</u> experiment "Diggins et al., Methods 2015 Step 1"
- 2) Set the <u>Scales</u> so that the scale argument is 15 for all channels.
- 3) Gate for "Intact cells"
- Make a clone using Actions => Cloning => Selective Clone
- Edit the name, uncheck all except "clone attachments and protocols", press Clone button.

2	Cytobank Experime	ents Projects	Ð	Selecti	ve Experiment Clone		onathan.irish@gmail.con
0-	Dingins et al., Methods 2015	- Step 1 ons 🏾 🌱 Sample Tags		Name Principal	Diggins et al., Methods 2015 - Step 1 (Clone)	ă.	Sharing
<	Experiment Actions View Summary	🖺 Save 🚔 🖄	Inv	estigator Purpose	The 2 datafiles needed to start analysis from Diggins et al., Methods 2015.	▲ ▼	ttings Templates
	Cloning Import Export	Full Clone Selective Clone Split Files by Population	× Se	Mark as Clone	Start out by cloning your own copy of this experiment (Action Yes	<u>s - // // // // // // // // // // // // /</u>	
			(□ Clone □ Clone ☑ Clone □ Clone	Step1a_AML_PB0.fcs - Step1a_AML_PB0.fcs Step1b_normal_marrow.fcs - Step1b_normal_marrow.fcs comps and gates sample tags attachments and protocols ne reagencs		
b.t	the large state and and	nutch and (our arim anto (4.4.4.4.0)			Cancel	Clone	

Have you ever noticed two peaks <u>within</u> the cells that are biologically 100% <u>negative</u> for a marker?

http://www.flowjo.com/v76/en/displaytransformwhy.html

Results from <u>bad scaling</u> (poor transformation) and it can be an issue for computational analysis.

Scaling is important in both mass and fluorescence cytometry.

Scaling Matters for Measuring Distance

For fluorescent flow cytometry data a biexponential or arcsinh transformation corrects the scale near zero.

Since computational analysis techniques compare distance similar to what a person does when looking at a plot, these techniques can identify artificial populations near zero (see C and D) if data are not appropriately transformed prior to analysis.

More information: https://my.vanderbilt.edu/irishlab/protocols/scales-and-transformation/ http://www.flowjo.com/v76/en/displaytransformwhy.html

Inappropriate Scaling Can Lead to False Population Discovery

Workflow summary:

- 1) <u>Clone</u> experiment "Diggins et al., Methods 2015 Step 1"
- 2) Set the <u>Scales</u> so that the scale argument is 15 for all channels.
- 3) Gate for "Intact cells"
- Open the Scales and set the scale argument to 15 for all channels, then press Apply.
- Choose "OK" when the popup asks if you really want to do it.

$\hat{\mathbf{o}}$	Cytobank Premium	Experiment	s Projects							🔧 Admin	Help	🧝 jonathan	.irish@gmail.com
	Diggins et al., Me	ethods 2015 - S	Step 1 (Clone) s 🌱 Sa	imple T	ags	🔶 SPAD	Ε	🗳 visne	🏠 Gating			cales 🕅 Co	Sharing mps 🔒 Private
<	? Working Il	llustration	💾 Save		A							Scales Indis	Templates
						ייייייד פונ	Expe	riment Scale	25				
						Edit Sca Ard Click	All Scale de csinh ▼ to Edit	Scale Argumen Scale Argumen Scale Settings	Scale Type	Ma Ial Channel	ax Q Filter o	Apply lisplayed	Clear
								Channel		Scale	Scale Argument	Minimum	Maximum
						Bari	um [(Ba	137)Dd]		Arcsinh	5	-5.0	12000.0
						Bari	um [(Ba	138)Dd]		Arcsinh	5	-5.0	12000.0
		book org/outs	honk/ovnoriu	mente	/4 4 4 4 4 /	CD1	5-164 [(Dy164)Dd]		Arcsinh	5	-5.0	12000.0

https://premium.cytobank.org/cytobank/experiments/44411/

Workflow summary:

- 1) <u>Clone</u> experiment "Diggins et al., Methods 2015 Step 1"
- 2) Set the <u>Scales</u> so that the scale argument is 15 for all channels.
- 3) Gate for "Intact cells"
- Go into <u>Gating</u>, change the y-axis to "Cell Length" (Event Length) and the x-axis to NA191 (Intercalator).
- Draw a polygon gate like the one below and call it "Intact cells".
- <u>Apply</u> the gate.

Workflow summary:

- 1) <u>Clone</u> experiment "Diggins et al., Methods 2015 Step 1"
- 2) Set the <u>Scales</u> so that the scale argument is 15 for all channels.

3) Gate for "Intact cells"

- Click on the "Intact cells" gate in the list of gates to the right.
- Make the gate a tailored gate by clicking the "Tailored" radio circle.
- Select the other file (Step1b_normal_marrow)
- Move the gate's vertices to include 100% of normal marrow events.
- Make sure to to <u>Apply</u> the gate. Optional: "Check gate".

Note: we're doing this because intercalator levels tend to vary from run to run (in contrast with antibody staining).

Discovery and Characterization of Cell Subsets: Towards Machine Learning Cell Identity

Diggins et al., Methods 2015

Single Cell Biology Workflow

Data collection	 Panel design Data collection 					
Data processing	3) Cell event parsing4) Scale transformation					
Distinguishing initial populations	5) Live single cell gating6) Focal population gating					
Revealing cell subsets	 7) Feature selection 8) Dimensionality reduction 9) Identify cell clusters 10) Cluster refinement 					
Characterizing cell subsets	 11) Feature comparison 12) Model populations 13) Learn cell identity 14) Statistical testing 					

Current Goal: Get to Figure 1 from Diggins et al. with viSNE

Diggins, et al Methods 2015

Stochastic Neighbor Embedding (SNE)

- SNE used for image recognition
- 60,000 handwritten greyscale images
- 28x28 pixels each

Example: 6x6 Pixel Image

Vectorize (1x36)

Hinton et al., "Advances in neural information processing systems." 2002.

→ tSNE on all pixels

viSNE / t-SNE Arranges Cells in 2D by Multi-D Similarity

Animation created by Cytobank team from iterations of viSNE / t-SNE using PBMC (26 features)

viSNE / t-SNE Arranges Cells in 2D by Multi-D Similarity

Healthy human blood, mass cytometry, 26D viSNE analysis

Animation created by Cytobank team from iterations of viSNE / t-SNE using PBMC (26 features)

Viewing Expert Gates with viSNE Reveals Cyto Incognito

Healthy human blood, mass cytometry, 26D viSNE analysis

Ungated
CD45RA+ Naive CD4+
CD45RA- CD4+ T cells
CD45RA- Memory CD8+ T cells
CD45RA+ Naive CD8+ T cells
CD16+ NK cells
CD16+ NK cells
IgM+ B cells
IgM- B cells
CD123+ pDCs

Created with Chris Ciccolella, Cytobank

Viewing Expert Gates with viSNE Reveals Cyto Incognito

Healthy human blood, mass cytometry, 26D viSNE analysis

Ungated CD45RA+ Naive CD4+ CD45RA- CD4+ T cells CD45RA- Memory CD8+ T cells CD45RA+ Naive CD8+ T cells CD16+ NK cells CD14+ CD33+ Monocytes IgM+ B cells IgM- B cells

CD123+ pDCs

Created with Chris Ciccolella, Cytobank

Viewing Expert Gates with viSNE Reveals Cyto Incognito

Healthy human blood, mass cytometry, 26D viSNE analysis

Ungated

CD45RA+ Naive CD4+ CD45RA- CD4+ T cells CD45RA- Memory CD8+ T cells CD45RA+ Naive CD8+ T cells CD16+ NK cells CD16+ NK cells IgM+ B cells IgM- B cells CD123+ pDCs

i = 45

Created with Chris Ciccolella, Cytobank
Healthy human blood, mass cytometry, 26D viSNE analysis

Ungated

- CD45RA+ Naive CD4+
 CD45RA- CD4+ T cells
 CD45RA- Memory CD8+ T cells
 CD45RA+ Naive CD8+ T cells
 CD16+ NK cells
 CD14+ CD33+ Monocytes
 IgM+ B cells
 IgM- B cells
- CD123+ pDCs

i = 88

Created with Chris Ciccolella, Cytobank

Healthy human blood, mass cytometry, 26D viSNE analysis

Ungated

CD45RA+ Naive CD4+
 CD45RA- CD4+ T cells
 CD45RA- Memory CD8+ T cells
 CD45RA+ Naive CD8+ T cells
 CD16+ NK cells
 CD16+ CD33+ Monocytes
 IgM+ B cells
 IgM- B cells
 CD123+ pDCs

i = 198

Healthy human blood, mass cytometry, 26D viSNE analysis

Ungated

CD45RA+ Naive CD4+ CD45RA- CD4+ T cells CD45RA- Memory CD8+ T cells CD45RA+ Naive CD8+ T cells CD16+ NK cells CD16+ NK cells IgM+ B cells IgM- B cells CD123+ pDCs

i = 262

Healthy human blood, mass cytometry, 26D viSNE analysis

Ungated CD45RA+ Naive CD4+ CD45RA- CD4+ T cells CD45RA- Memory CD8+ T cells CD45RA+ Naive CD8+ T cells CD16+ NK cells CD16+ NK cells CD14+ CD33+ Monocytes IgM+ B cells IgM- B cells CD123+ pDCs

Healthy human blood, mass cytometry, 26D viSNE analysis

Ungated CD45RA+ Naive CD4+ CD45RA- CD4+ T cells CD45RA- Memory CD8+ T cells CD45RA+ Naive CD8+ T cells CD16+ NK cells CD16+ NK cells CD14+ CD33+ Monocytes IgM+ B cells IgM- B cells CD123+ pDCs

Healthy human blood, mass cytometry, 26D viSNE analysis

Ungated
CD45RA+ Naive CD4+
CD45RA- CD4+ T cells
CD45RA- Memory CD8+ T cells
CD45RA+ Naive CD8+ T cells
CD16+ NK cells
CD16+ NK cells
CD14+ CD33+ Monocytes
IgM+ B cells
IgM- B cells
CD123+ pDCs

Healthy human blood, mass cytometry, 26D viSNE analysis

Ungated CD45RA+ Naive CD4+ CD45RA- CD4+ T cells CD45RA- Memory CD8+ T cells CD45RA+ Naive CD8+ T cells CD16+ NK cells CD16+ NK cells CD14+ CD33+ Monocytes IgM+ B cells IgM- B cells CD123+ pDCs

Cyto incognito (Cells overlooked or hidden in expert gating)

Phenograph Adds Fast Clustering & Meta-Analysis to viSNE

Levine et al., Cell 2015

Workflow summary:

4) Run <u>viSNE</u>.

- Pick <u>viSNE</u> => New viSNE Analysis
- Name it "viSNE of AML and healthy marrow"

%	Cytobank Premium	Experiments	Projects			🔧 Admin	Help	🧝 jo	onathan.irish(@gmail.com
	Diggins et al.	, Methods 2015 - Ste	ep 1 (Clone)			▲ Cating	mil c	Scaloc	M Compo	Sharing
<	? Gating		7 Sample Tags	SPADE	New viSN	E Analysis		ocales j		Private
	Apply 8	& Return Apply		C The pa	ge at https:/	//premium	n.cytok	oank.o	rg says:	×
				New viSI	NE analysis nar	ne:				
				viSNE o	f AML and hea	lthy bone m	arrow			
							ОК		Cancel]

https://premium.cytobank.org/cytobank/experiments/44411/

Workflow summary:

4) Run <u>viSNE</u>.

- Pick Intact Cells from the Population selection area.
- Select both files to include in the viSNE analysis.

Су	ytobank Premium	Experiments	Projects				
Di	iggins et al. , ∎ Actions	Methods 2015 - Ste	ep 1 (Clone) Y Sample Tags	🔶 SPADE	visne	Choose Your FCS Files	Cancel
<	visn	IE Setup	Copy Analysis Set	tings		Done Select FCS Files for Intact cells.	Type filter words
	🕜 Ana	lysis Name: viSN	E of AML and health	y bone marrow	ľ	Press Done when finished. Showing all 2 FCS Files Select: All None	
	vi	SNE Inputs: Populations: - dick the P * At least one Population	Population name to select FC on must be chosen to run th	S File subsets e analysis.		Selected 2: Step1a_AML_PB0.fcs - Step1a_AML_PB0.fcs, Step1b_ mal_marrow.fcs Step1a_AML_PB0.fcs - Step1a_AML_PB0.fcs	_normal_marrow.fcs - Step1b_nor
		Populations	?			Step1b_normal_marrow.fcs - Step1b_normal_marrow	v.fcs
		Nothing selected Population - FCS F	ile	E	vent Count	Done	
		Intact cells Ungated					
			No	o selected p	opulations.		
			÷	Click on a F	Population		

https://premium.cytobank.org/cytobank/experiments/44411/

Workflow summary:

4) Run <u>viSNE</u>.

• Choose Equal subsampling and leave the "events per population" at the default of 50,000 (so 100,000 total events).

Populations ?				
2 selected				
Population - FCS File		Event Count	Equal Sampling	
Intact cells				
Step1a_AML_PB0.fcs - Step1a_AML_PB0.fcs		228457	50000	
Step1b_normal_marrow.fcs Step1b_normal_marrow.fcs	5 - 5	74367	50000	
Ungated				
Tota	l Events Selected:	302824	100000	to sample
Event Sampling:				
Literit Sumpingi 😈	Proportional	Equal		
De	esired Total Events:	100000 800000)	(must be between 9	0 and
Eve	nts Per Population:	ර් 50000		

https://premium.cytobank.org/cytobank/experiments/44411/

Workflow summary:

4) Run <u>viSNE</u>.

- Scroll down, and in the channel selector, pick the channels you want to be used in the comparison analysis (to "make the map").
- Pick "all 27 markers". Search on "CD" and "select all" (selects 26), then clear the selection and add HLA-DR to the list. Click "Done" and "Run viSNE Analysis"

	Choose Your Channels	Cancel
* At least one Channel must be chosen to run the analysis.	Done Select your Channels and press Done when finished.	CD
Channels ?	Sh wing 25 or 35 Channels Select: All None	
Unselected Channels:	Selected 26: CD235a-141, CD19-142, CD117-143, CD11b-144, CD4 CD34-148, CD61-150, CD123-151, CD13-152, CD62L-153, CD45-15- CD11c-159, CD14-160, CD15-164, CD16-165, CD24-166, CD38-167, 171, CD184-175, CD56-176	I-145, CD64-146, CD7-147, 4, CD183-156, CD33-158, CD25-169, CD3-170, CD185-
Cell_length Barium CD235a-141	CD235a-141 CD19-142	
CD19-142 CD17-143 CD11b-144	CD117-143	
CD4-145 CD64-146	Select channels nust be chosen to run the analysis. Image: Setup Image: Select your Channels and press Done when finished. Image: Select your Channels and press Done when finished. Image: Setup Image: Select your Channels and press Done when finished. Image: Select your Channels and press Done when finished. Image: Setup Image: Select your Channels and press Done when finished. Image: Select your Channels and press Done when finished. Image: Setup Image: Select your Channels and press Done when finished. Image: Select your Channels and press Done when finished. Image: Setup Image: Select your Channels and press Done when finished. Image: Select your Channels and press Done when finished. Image: Setup Image: Select your Channels and press Done when finished. Image: Select your Channels and press Done when finished. Image: Setup Image: Select your Channels and press Done when finished. Image: Select your Channels and press Done when finished. Image: Setup Image: Select your Channels and press Done when finished. Image: Select your Channels your your your your your your your your	
CD7-147 CD34-148 CD61-150	CD4-145	
CD123-151 -	 CD04-140 CD7-147 	un viSNE Analysis

https://premium.cytobank.org/cytobank/experiments/44411/

Next: View All Channels to Make Figure 1 from Diggins et al.

Diggins, et al Methods 2015

While viSNE runs...

A brief interlude about topology

Is There 'Inherent Topology' in the Data?

An illustration of PCA. **a)** A data set given as 3-dimensional points. **b)** The three orthogonal Principal Components (PCs) for the data, ordered by variance. **c)** The projection of the data set into the first two PCs, discarding the third one.

Effects of dimensionality reduction on an inherently non-linear data set. **a)** The original data given as a two-dimensional set. **b)**PCA identifies two PCs as contributing significantly to explain the data variance. **c)** However, the inherent topology (connectivity) of the data helps identify the set as being one-dimensional, but non-linear.

Mapping Topology Matters When Considering "Travel"

Cartoon maps adapted from http://xkcd.com/977/

Multidimensional Scaling Can "Flatten" or "Unroll" Multidimensional Progressions / Topologies for Linear Analysis

Isomap at work on the "swiss roll" data set. **a)** The input data are given as three-dimensional, but are really two-dimensional in nature. **b)** Each point in the data set is connected to its neighbors to form a neighborhood graph, overlaid in light grey. Geodesic distances are approximated by computing shortest paths along the neighborhood graph (red). **c)** MDS applied to the geodesic distances has the effect of "unrolling" the swiss roll into its natural, two-dimensional parameterization. The neighborhood graph has been overlaid for comparison. Now, the Euclidean distances (in blue) approximate the original geodesic distances (in red).

Geodesic Distance Measurements May Better Capture Developmental Progressions

Geodesic distance. The geodesic distance between the two red points is the length of the geodesic path, which is the shortest path between the points, **that lies on the surface**.

Lydia E. Kavraki, Geometric Methods in Structural Computational Biology

"<u>Creode</u> is a neologism coined by the biologist C.H. Waddington to represent the developmental pathway followed by a cell as it grows to form part of a specialized organ. Combining the Greek roots for "necessary" and "path," the term was inspired by the property of regulation."

Geodesic Distance Measurements May Better Capture Developmental Progressions

Geodesic distance. The geodesic distance between the two red points is the length of the geodesic path, which is the shortest path between the points, <u>that lies on the surface</u>.

Lydia E. Kavraki, Geometric Methods in Structural Computational Biology

Bosslet, Nature Rev. Immuno. 2004

OK, back to work...

Workflow summary:

5) <u>Gate</u> on the t-SNE axes for "AML PB blasts" (CD45^{lo}) and "AML PB non-blasts" (CD45^{hi})

6) Export gated populations as 4 new FCS files & discard the empty one.

7) Concatenate the 3 remaining files into a merged file.

- Change the z-axis coloring channel to CD45.
- Using the knowledge the AML blasts are CD45^{lo}, draw gates for "AML blast cells" and "non-blast cells".
- Use "Check Gates" button to make sure gates work well on both files. Healthy marrow should have <3% cells in the AML blast gate.
- Apply & Return.

Workflow summary:

httr

5) <u>Gate</u> on the t-SNE axes for "AML PB blasts" (CD45^{lo}) and "AML PB non-blasts" (CD45^{hi})

6) Export gated populations as 4 new FCS files & discard the empty one.

7) <u>Concatenate</u> the 3 remaining files into a merged file.

 Set up an illustration to export the viSNE gated data: Pick 2 Populations ("AML blast cells" & "Non-blast cells"). Pick one Channel (CD45). Activate "FCS files". Update & Save.

Cytobank Experiments	s Projects			🔧 Admin	Help 🧝	jonathan.irish@gma	il.com
 ✓ viSNE of AML and healthy bor ➡ Actions ▲ Illustrations ✓ ? Working Illustration 	ne marrow created from Di Sample Tags	iggins et al., Methods 2	2015 - Step 4 viSNE	1 (Clone) ☆ Gating	ିଆ Scales S	Vi <u>Comps</u> s Settings Templates	iSNE ettings S
Figure Dimensions 2 Channels Populations Dosag	es Timepoints Conditions I	Individuals Sample Type	s Fcs Files	Plate Column Plate Row	Plate		
Populations Image: Choose Gate 2 selected Choose Gate AML blast cells Image: Choose Cho	Fcs Files 2 of 2 selected Choose Step1a_AML_PB0_Intac t_cells_viSNE.fcs - Step1a_AML_PB0_Intac t_cells_viSNE.fcs Step1b_normal_marrow	Channels 1 selected Choose CD45-154 (v) - Panel 1 Unselected Channels: Time - Panel 1 CD123-151 (v) - Panel 1 CD62L-153 (v) - Panel 1 NA193 - Panel 1 NA193 - Panel 1 CD11b-142 (v) - Panel 1 CD11b-144 (v) - Panel 1 CD145 (v) Panel 1	Setup	Choose Your Population Select your Population Sort: 1 2 Reset order Showing: All 4 Populations Selected 2: AML blast cells, Ungated Intact cells	ons Do ns and press Dor Non-blast cells	ne when finished.	Type filter Select:
	Rows	Table 1		AML blast cells	Do	one	

Workflow summary:

- 5) <u>Gate</u> on the t-SNE axes for "AML PB blasts" (CD45^{lo}) and "AML PB non-blasts" (CD45^{hi})
- 6) Export gated populations as 4 new FCS files & discard the empty one.
- 7) <u>Concatenate</u> the 3 remaining files into a merged file.
- Export viSNE gated data: Actions => Cloning => Split Files by Population

Workflow summary:

- 5) <u>Gate</u> on the t-SNE axes for "AML PB blasts" (CD45^{lo}) and "AML PB non-blasts" (CD45^{hi})
- 6) Export gated populations as 4 new FCS files & discard the empty one.
- 7) <u>Concatenate</u> the 3 remaining files into a merged file.
- Name the experiment "Diggins et al. Export for SPADE" and click "Create Experiment"

6)	Cytobank Premium	Exper	riments	Projects				X A			
	Created from Actions	om viSNE of A	AML and rations	healthy bone marro 🌱 Sample Ta	w create gs	d from Diggii 秦 SPADE	ns et al., Methods 20 식 viSNE	15 - Step 1 🏠 Gating			
<	Split Files by Population										
	Split Files in the Wor Learn More	Split Files by Population will create a new experiment where each FCS file is comprised of only the events in eac in the Working Illustration. Learn More									
	* Purpose		The 2 datafiles needed to start analysis from Diggins et al., Methods 2015.								
	Start out by cloning your own copy of this experiment (Actions							ective			
		l					Create Experiment				

Workflow summary:

- 5) <u>Gate</u> on the t-SNE axes for "AML PB blasts" (CD45^{lo}) and "AML PB non-blasts" (CD45^{hi})
- 6) Export gated populations as 4 new FCS files & discard the empty one.
- 7) <u>Concatenate</u> the 3 remaining files into a merged file.
- Download the files and concatenate (merge) into 1 file.

http://blog.cytobank.org/2013/10/29/new-fcs-file-concatenation-tool/

3	Cytobank Expe	ents Projects	
	Diggins Export for SPADE		
	E Actions ▼ L Illust	trati	ons 🛛 🌱 Sample Tags
<	Experiment Actions Output: View Summary		-y Clone
^	\delta Cloning	►	
	🔰 Import	•	
	😂 Export	►	From Experiment
1			Export Statistics
	🗊 Reset		😨 Export Experiment to ACS
0	📅 Delete		🎲 Export Sample Tags
		-	Export Gating-ML
0	🔧 Edit Reagents [admin or	nly]	Download Files
Ũ	Juice(5)		
0	Labels	: N	From Working Illustration
	Purpose	: т	Export Table of Statistics
4		D ye	Export Events

https://premium.cytobank.org/cytobank/experiments/44415/

Discovery and Characterization of Cell Subsets: Towards Machine Learning Cell Identity

Single Cell Biology Data Analysis

Data collection	 Panel design Data collection
Data processing	3) Cell event parsing4) Scale transformation
Distinguishing initial populations	5) Live single cell gating6) Focal population gating
Revealing cell subsets	 7) Feature selection 8) Dimensionality reduction 9) Identify cell clusters 10) Cluster refinement
Characterizing cell subsets	11) Feature comparison12) Model populations13) Learn cell identity14) Statistical testing

Feature selection

SPADE: cell subset clustering

Grouped populations of cells

Current Goal: Make Figure 2 from Diggins et al. with SPADE

Diggins, et al Methods 2015

SPADE Extracts Population Hierarchies from Multi-D Space

Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE

Peng Qiu^{1,2}, Erin F Simonds³, Sean C Bendall³, Kenneth D Gibbs Jr³, Robert V Bruggner³, Michael D Linderman⁴, Karen Sachs³, Garry P Nolan³ & Sylvia K Plevritis¹

VOLUME 29 NUMBER 10 OCTOBER 2011 NATURE BIOTECHNOLOGY

SPADE method:

SPADE stands for 'Spanning-tree Progression Analysis of Density-normalized Events'. A graphical interface and updates for fluorescence datasets are implemented on Cytobank.

SPADE Trees Depict Multidimensional Similarity

(not necessarily developmental relationships)

SPADE trees can sometimes be reorganized so that closely related branches appear far apart. In order to remove loops from the SPADE tree, breakpoints may be added in unexpected places.

SPADE Trees Depict Multidimensional Similarity

(not necessarily developmental relationships)

SPADE trees can sometimes be reorganized so that closely related branches appear far apart. In order to remove loops from the SPADE tree, breakpoints may be added in unexpected places.

SPADE Trees Depict Multidimensional Similarity (not necessarily developmental relationships)

SPADE trees can sometimes be reorganized so that closely related branches appear far apart. In order to remove loops from the SPADE tree, breakpoints may be added in unexpected places.

SPADE Trees Depict Multidimensional Similarity (not necessarily developmental relationships)

SPADE trees can sometimes be reorganized so that closely related branches appear far apart. In order to remove loops from the SPADE tree, breakpoints may be added in unexpected places.

SPADE Trees Depict Multidimensional Similarity

(not necessarily developmental relationships)

SPADE trees can sometimes be reorganized so that closely related branches appear far apart. In order to remove loops from the SPADE tree, breakpoints may be added in unexpected places.

SPADE Trees Depict Multidimensional Similarity (not necessarily developmental relationships)

SPADE trees can sometimes be reorganized so that closely related branches appear far apart. In order to remove loops from the SPADE tree, breakpoints may be added in unexpected places.

Steps 8 and 9: SPADE Clustering on t-SNE Channels

Workflow summary:

- 1) Clone experiment "Diggins et al., Methods 2015 Step 8"
- 2) Set the Scales so that the scale argument is 15 for all channels.
- 3) Run <u>SPADE</u>.
- Navigate to Diggins et al., Methods 2015 Step 8.
- Click the experiment name to load it.
- Clone the experiment, as before. Actions => Cloning => Selective Clone.
- Click <u>Scales</u> to edit the scales and set the argument to 15 for all channels. Click Apply and then close this window.
- The cells have already been gated, so no gating is needed.
- Choose <u>SPADE</u> => New SPADE Analysis & give it a name.

Steps 8 and 9: SPADE Clustering on t-SNE Channels

Workflow summary:

- 1) <u>Clone</u> experiment "Diggins et al., Methods 2015 Step 8"
- 2) Set the <u>Scales</u> so that the scale argument is 15 for all channels.
- 3) Run <u>SPADE</u>.
- Set SPADE to use 100 nodes & 1% downsampling.
- Select just the 2 t-SNE channels.
- Click the green bar to run the analysis.

Cytoba	ank emium	Experiments	Projects			🔧 Admin	Н
Diggin: Acti	s et al., Meth ons	ods 2015 - Ste	p 8 (Clone) Y Sample Tag	s 🄶 SPADE	E 🗳 viSNE	🏠 Gating	
< ? ♠	SPADE An	alysis <i>'SPA</i>	DE of AML ar	nd normal m	arrow'		
- SPA	ADE Analysis	Controls 💡	▼ SPADE Set	up		0	
Compe File-Int Target	nsation 🌈 Edit ernal Compensation Number of Node	on 🔹	Settings - click Ch Population 1 of 1 selected	oose/Gate/Setup to co Choose Gate	nfigure Clustering Char 2 of 38 selected	nnels	Fol
Percent 1 Absolut	a mpled Events t te Number	5 Target	Ungated		tSNE1 tSNE2 Unselected Cluster Channels: Time Cell_length Barium Barium	ing	Gro
✓ Act ✓ Re Co	ions name Analysis py Analysis Setti	ngs			CD235a-141 (v) CD19-142 (v) CD117-143 (v) CD11b-144 (v) CD4-145 (v) CD64-146 (v)		
			When you a	re done setting u	p your SPADE para	meters, click to	o run

Steps 8 and 9: SPADE Clustering on t-SNE Channels

Workflow summary:

- 1) <u>Clone</u> experiment "Diggins et al., Methods 2015 Step 8"
- 2) Set the <u>Scales</u> so that the scale argument is 15 for all channels.
- 3) Run <u>SPADE</u>.
- Explore the data in the SPADE viewer.
- Make your node size larger. Set the x/y axes to CD45 and CD34. Set the Node Color Parameter to CD34.
- See if you can find the AML blasts and bubble them.
- View various Parameters.

Steps 8 and 9: SPADE Clustering on t-SNE Channels

Workflow summary:

- 1) <u>Clone</u> experiment "Diggins et al., Methods 2015 Step 8"
- 2) Set the <u>Scales</u> so that the scale argument is 15 for all channels.
- 3) Run <u>SPADE</u>.
- Scroll way down and click "Select All Nodes".
- In the "Actions" panel, Choose
 "Download Statistics Table"
- In the ZIP file, you will find a folder called "By Sample" that has spreadsheets of median expression by node for all samples. These can be sorted, filtered, and clustered.

Discovery and Characterization of Cell Subsets: Towards Machine Learning Cell Identity

Single Cell Biology Data Analysis

Data collection	 Panel design Data collection 	Heatmap: clustering population
Data processing	3) Cell event parsing4) Scale transformation	CD45
Distinguishing initial populations	5) Live single cell gating6) Focal population gating	$ \begin{bmatrix} CD62L \\ CD34 \\ CD134 \\ CD183 \\ CD183 \\ CD183 \\ CD183 \\ CD19 \\ CD183 \\ CD19 \\ CD183 \\ CD19 \\ CD19 \\ CD183 \\ CD19 \\ CD$
Revealing cell subsets	7) Feature selection8) Dimensionality reduction9) Identify cell clusters10) Cluster refinement	It CD25 CD145 CD145 CD235a CD14 CD33 CD56 CD15 CD24 HLA-DR CD38 CD184 CD184 CD15 CD14 CD14 CD256 CD24 CD24 CD24 CD15 CD24 CD14 CD15 CD24 CD15 CD24 CD15 CD24 CD15 CD24 CD15 CD24 CD15 CD24 CD15 CD16 CD17 CD184 CD112 CD13
Characterizing cell subsets	 11) Feature comparison 12) Model populations 13) Learn cell identity 14) Statistical testing 	CD4+ T cells B cells Imm. AML AML Myel. 1 2

populations across datasets

3. Cluster SPADE Nodes and Display as Heatmap of Medians

3. Cluster SPADE Nodes and Display as Heatmap of Medians

Cluster SPADE Nodes and Display as Heatmap of Medians

3. Cluster SPADE Nodes and Display as Heatmap of Medians

Heatmaps Also Visualize Other Data Types (e.g. Stratified Clinical Outcomes) and Compare Across Analysis Runs

Heatmaps visualize across integrated data types, e.g. clinical outcomes, cytogenetics, & signaling profiles

Irish, et al Cell 2004

Other analysis tools

Principal Component Analysis

	Feature A	Feature B	Feature C
Principal Component 1	X _{A1} A	X _{B1} B	X _{C1} C
Principal Component 2	X _{A2} A	X _{B2} B	X _{C2} C
Principal Component 3	X _{A3} A	X _{B3} B	X _{C3} C

PC1 = XA1A + XB1B + XC1CPC2 = XA2A + XB2B + XC2CPC3 = XA3A + XB3B + XC3C

Newell et al 2012, Immunity

Mixture Modeling

FLAME

Mosmann et al, 2014 Cytometry A

Automated Clustering and Population Identification Methods Based on Density

SamSpectral

FLOCK

Zare et al, 2010 BMC Bioinformatics

Qian et al, 2010 Cytometry B Clin Cytom

Gemstone Uses Supervised Analysis to Identify Progressions

Verity Software House (www.vsh.com)

Inokuma, JIM 2013

Wanderlust Identifies Phenotypic Progression

Bendall, Cell 2014

ISOMAP guided analysis

ISOMAP dim. 2

to compare overall phenotypic relatedness of populations of neutrophil-like and

eosinophil-like cells³¹. Top, cells color-coded by DensVM cluster number are plotted by their scores for ISOMAP dimensions 1 and 2. Binned median expression of defining markers (middle) and the tissue composition (percentage of each cluster as a fraction of total granulocytes from each tissue, bottom) of cells along this phenotypic progression defined by ISOMAP dimension 1 and DensVM clusters 1–7 are plotted.

Citrus: Supervised Population Finding

Automated identification of stratifying signatures in cellular subpopulations

Robert V. Bruggner^{a,b}, Bernd Bodenmiller^c, David L. Dill^d, Robert J. Tibshirani^{e,f,1}, and Garry P. Nolan^{b,1}

^aBiomedical Informatics Training Program, Stanford University Medical School, Stanford, CA 94305; ^bBaxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Departments of ^dComputer Science, ^eHealth Research and Policy, and ^fStatistics, Stanford University, Stanford, CA 94305; and ^cInstitute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland

Contributed by Robert J. Tibshirani, May 14, 2014 (sent for review February 12, 2014)

Bruggner et al., PNAS 2014

Final notes & conclusions...

Computational Tools + HD Cytomics Together Are Powering A New Era in Clinical Oncology & Immunity

1) Need pre-treatment prognosis & prediction

If diagnostic scheme does not provide <u>actionable</u> information, fix it. Who will benefit from expensive cell based therapies (~\$500,000 ea.)? In the absence of mutations, clinical response can be predicted by cell profiling.

2) Need to monitor treatment longitudinally

See early whether patient responded / adjust treatment, as needed. Monitor whether treatment is still required.

3) Need to check multiple biomarkers with one test

As with genetic tests, multiplexing biomarkers will give more information per sample, catch the unexpected, and cost less than repeated testing

4) Need to monitor biomarkers on all cell types

PD-L1 is a great example – expressed by many cell types & can be activated.

5) Need to characterize all cell types to monitor cancer Evolving cancer cells adopt unexpected phenotypes.

Conclusions: Data Analysis & Mapping Cell Identity

Workflow summary:

- 1) viSNE with minimal pre-gating
- 2) SPADE, works especially well on t-SNE axes
- 3) Heatmap to compare with other data, do statistical tests

1) A modular workflow allows comparison of different tools at each step. Synthetic channels are useful (e.g. t-SNEs).

2) Non-linear transformation may help; tool selection depends on 'what works', biology, & data shape.

3) Many outstanding tools are available (see Diggins et al. for reference list). Still need tools that learn.

Discussion Questions Covered in Today's Course

1) What are key differences between tools (viSNE, SPADE, PCA)? What is the difference between transforming, clustering, and modeling data? What type of modeling are we doing (if any)?

2) What does non-linear vs. linear analysis mean? Does the data's scale matter for analysis (arcsinh5, arcsinh15, linear)?

3) What do viSNE and SPADE settings do (viSNE iterations,SPADE downsampling & node #)? When should they be changed?

5) How does one compare new samples with a prior analysis? How do we test tools with expert gating?

6) What are some "red flags" indicating problems? What does a good viSNE or SPADE analysis run look like?

Acknowledgements & Thank you!

Oslo Collaborators June Myklebust Kanutte Huse

VU Collaborators

Madan Jagasia Michael Savona Jeff Sosman Doug Johnson Pierre Massion Rebecca Ihrie Ann Richmond

L to R: Deon Doxie, Mikael Roussel, Kirsten Diggins, Cara Wogsland, Jonathan Irish, Brent Ferrell, Nalin Leelatian, Hannah Polikowsky, Allison Greenplate

NIH/NCI R00 CA143231 (Irish Lab) F31 CA199993 (Greenplate) T32 CA009592 (Doxie) R25 CA136440 (Diggins) F31 CA203383 (Diggins) K12 CA090625 (Ferrell) VISP (Leelatian)

Vanderbilt-Ingram Cancer Center (VICC) Ambassadors, Hematology Helping Hands

Vanderbilt University Discovery

Norwegian Cancer Society (Huse) Swiss Foundation Nuovo-Soldati (Roussel)

R/BIOCONDUCTOR

R Flow Cytometry Data Analysis

Gate T Cells on CD4 and CD8 Expression

Compare T cell Subset Frequencies Between Individuals

Spec001a Spec001b Spec001c Spec002a Spec002b Spec002c Spec003a Spec003b Spec003c

What is R/Bioconductor?

- R: statistical and graphical programming language/environment
- Bioconductor: provides open source packages for bioinformatics analysis in R

RStudio	Products Resources	Pricing About Us Blog Q	Bioconductor Open source software for bioinformatics	Home Install Hel	Search:
Download RStudio		Home / Overview / RStudio / Download RStudio			
RStudio is a set of integrated tools designed to hel It includes a console, syntax-highlighting editor the as well as tools for plotting, history, debugging and If you run R on a Linux server and want to enable u using a web browser please download RStudio Ser	o you be more productive with f it supports direct code executio workspace management. seers to remotely access RStudio ver.	Do you need support or a commercial license? Check out our commercial offerings Bioconductor provides tools for the analysis and comprehension of high- throughput genomic data. Bioconductor uses the R statistical programming language, and is open source and open development. It has two releases each year, <u>524</u>		Install » Get started with Bioconductor • Instal Bioconductor • Explores packages • Support • Latest newsiter • Follow uson Twitter • Using R	Learn » Mater Bioconductor tools a desent-courage Support dat Packae vuentes Community exportes Cammunity resources Videos
Download RStudio Desktop v0.9 Notes RStudio requires R 2.11.1 (or higher). If you don't al it here.	8.1087 — Release	Let's stay in touch. Give us your email and we'll keep you in the loop.	software packages, and an active user community. Bioconductor is also available as an <u>Amazon</u> <u>Machine Image (AMI).</u> News • <u>Bioconductor 3.0 is released!</u> • Use the <u>support site</u> to get help installing, learning and using Bioconductor. • <u>Course:</u> Learning A. Bioconductor for.	Use » Create bioinformatic solutions with Bioconductor	Develop » Contribute to Bioconductor • <u>Use Bioc Jevel</u> • Devel Software, Appointation and
Installers for ALL Platforms			Sequence Analysis, Seattle, Oct. 27-29. Publication: Stable Genomics with R and Bioconductor. Read our latest <u>newsletter</u> .	Actage Amazon Machine Image Amazon Machine Image Latest release annoucement Visit the Bioconductor support site	Experiment packages - Package multiling - New package submission - Developer resources - Build reports
Installers	Size Date	MD5			
RStudio 0.98.1087 - Windows XP/Vista/7/8	45 MB 2014-10-30	a14d1a2dc0a4867ffac254c947f326d9			
RStudio 0.98.1087 - Mac OS X 10.6+ (64-bit)	38.4 MB 2014-10-30	dc033590b5129fa374ba2cb5a4a16595			
RStudio 0.98.1087 - Debian 6+/Ubuntu 10.04+ (32-bit)	53 MB 2014-10-30	a8724f9d2159365336aba6a3334c1646			Tweets Solow
KStudio 0.98.1087 - Debian 6+/Ubuntu 10.04+ (64-bit)	54.9 MB 2014-10-30	dcee52d5/d58cde13cd83tc632e5/58f	<u>support</u>		Bioconductor 15 Oct
natucio 0.90.1007 - Fedora 13+/openSUSE 11.4+ (52-bit) RStudio 0.98.1087 - Fedora 13+/openSUSE 11.4+ (64-bit)	Studio 0.81.007 - Fedora 13+/openSUSE 11.4+ (32-bit) 53.4 MB 2014-10-30 88ed864214526927bad94c853ab9bb0 Studio 0.81.007 - Fedora 13+/openSUSE 11.4+ (64-bit) 55 MB 2014-10-30 dde8e80f266543667835388e8df73fa1			Next Generation Data Analysis 05 - 08 December 2014 — Riverside, CA, USA	@Bioconductor bioconductor.org/packages/devel SGSeq Prediction, quantification and visualization of alternative transcript events from RNA-seen
			limma eBayes() with contrasts.fit vie about an hour ago	BioC Europe 2015 12 - 13 January 2015 — Heidelberg, Germany Advanced Course: R programming and development 15 - 16 January 2015 — Heidelberg, Germany	data Expand Bioconductor 15 Oct
			GSVA	13 - 10 January 2013 - Heldelberg, Germany	Bioconductor

Anatomy of an FCS File in R

> description(FlowFrame)

Flow Analysis in R

- <u>flowCore</u>: access data in fcs files
- <u>flowQ</u>: quality control for flow data
- <u>flowStats</u>: statistical analysis of flow data
- <u>flowViz</u>: visualization of flow data
- <u>flowClust</u>: mixture-modeling to find clusters
- <u>flowMerge</u>: merge clusters from mixture modeling
- <u>flowUtils</u>: parse Gating-ML files
- <u>flowFP</u>: transforms high dimensional data using modeling to facilitate data analysis

flowCore

- R package flowCore
 - Read fcs files into R and perform basic analysis functions
 - View and access intensity matrix

> head(exprs(TcellData\$Spec001a))												
	FSC-A	FSC-H	FSC-W	SSC-A	SSC-H	SSC-W	FITC-A	PerCP-Cy5-5-A	APC-A	Alexa Fluor 700-A	APC-H7-A	V450-A
[1,]	74313.46	64310	75730.17	26153.92	28082	61036.37	345.28	1647.36	1310.4	688.5	100.8 3	174.22
[2,]	54602.26	45362	78885.72	25446.72	16436	101464.84	236.08	2462.72	2231.1	1161.9	846.9 8	924.06
[3,]	67478.18	49500	89338.38	15140.32	17640	56249.21	143.52	2442.96	2241.0	1305.0	687.6 7	780.16
[4,]	83260.04	64328	84823.56	31904.08	21015	99493.97	295.36	2546.96	2165.4	1104.3	538.2 8	496.02
[5,]	54679.66	43581	82225.88	14768.00	15760	61410.89	260.00	1998.88	2108.7	945.9	346.5 9	673.54
[6,]	107701.24	83691	84337.73	30740.32	23988	83983.55	101.92	5040.88	3944.7	2043.0	1160.1 5	296.38
	V500-A	PE-A	PE-Cy7-A	\ Time								
[1,]	6639.540	66.33	102.96	5 0.4								
[2,]	7260.280	1548.36	10053.45	5 0.7								
[3,]	7010.180	1472.13	9365.40	2.1								
[4,]	7343.100	1545.39	5906.34	2.1								
[5,]	9341.439	1074.15	3357.09	3.0								
[6,]	1669.520	1062.27	16261.74	4 3.2								
>												

> print(TcellData\$Spec001a)									
flowFrame object 'Spec001a'									
with 32423 cells and 16 observables:									
name	desc	range	minRange	maxRange					
\$P1 FSC-A	FSC-A	262144	0	262144					
\$P2 FSC-H	FSC-H	262144	0	262144					
\$P3 FSC-W	FSC-W	262144	0	262144					
\$P4 55C-A	SSC-A	262144	0	262144					
\$P5 SSC-H	SSC-H	262144	0	262144					
\$P6 SSC-W	SSC-W	262144	0	262144					
\$P7 FITC-A	CD57	262144	-111	262144					
\$P8 PerCP-Cy5-5-A	CD28	262144	-111	262144					
\$P9 APC-A	CD27	262144	-111	262144					
\$P10 Alexa Fluor 700-A	CD56	262144	-111	262144					
\$P11 APC-H7-A	CD8	262144	-111	262144					
\$P12 V450-A	CD3	262144	0	262144					
\$P13 V500-A	CD4	262144	-111	262144					
\$P14 PE-A	CCR7	262144	-111	262144					
\$P15 PE-Cy7-A (CD45RA	262144	-111	262144					
\$P16 Time	Time	262144	0	262144					
250 keywords are stored in the 'description' slot									

flowViz

• Contour plot, density plot, scatter plot, trellis plot, and histograms for flow data

flowQ

- Compare number of cells between files
- Check for margin events
- Check for time anomalies
- Data normalization
- KL Divergence

Timeline

Cell Number

flowStats

- Functions for statistical analysis of flow data
 - Probability binning + Chi-squared test
 - Create filters for high density regions (auto-gating)
 - Quadrant gating
 - Methods for data normalization

Quadrant Gating

