A simplified derivation of Wang and Busemeyer’s Q-test

JM Yearsley

December 10, 2014

Notation: We have two measurements, A and B, to which Ps can respond “yes” or “no”. The projection operators corresponding to these measurement outcomes are $P_A, P_{\bar{A}}, P_B, P_{\bar{B}}$, with $P_A + P_{\bar{A}} = P_B + P_{\bar{B}} = 1$.

This derivation makes use of the properties of commutators and projection operators, which together imply,

$$[P_A, P_B] = [P_A, 1 - P_B] = -[P_A, P_B] = [P_B, P_A],$$

etc.

Note however that the use of commutators is just a mathematical convenience.

Now for the derivation. We begin with,

$$[P_A, P_B] - [P_A, P_B] = 0$$

Inserting two copies of the identity gives,

$$P_A[P_A, P_B] + P_{\bar{A}}[P_A, P_B] - [P_A, P_B]P_B - [P_A, P_B]P_{\bar{B}} = 0$$

Now we use the property of the commutator noted above, to get,

$$P_A[P_B, P_A] + P_{\bar{A}}[P_B, P_{\bar{A}}] - [P_B, P_A]P_B - [P_B, P_A]P_{\bar{B}} = 0$$

Expanding out the commutators gives,

$$P_BP_{\bar{B}}P_A + P_{\bar{B}}P_BP_A - P_BP_{\bar{B}}P_A - P_{\bar{B}}P_AP_B = 0$$

Since this operator is identically zero, it follows that for any density matrix ρ,

$$Tr\{P_BP_{\bar{B}}P_A + P_{\bar{B}}P_BP_A - P_BP_{\bar{B}}P_A - P_{\bar{B}}P_AP_B\} = 0$$

By the linearity and cyclic property of the trace this gives,

$$p(AyBn) + p(AnBy) - p(ByAn) - p(BnAy) = 0$$

Where $p(AyBn) = Tr(P_{\bar{B}}P_{\bar{A}}P_A)$ etc. This is Wang and Busemeyer’s Q-test.

There are two points worth noting:

1. This derivation does not rely on any property of ‘reciprocity’ or similar.

2. Instead the properties that are used are actually properties of the operators P_A etc. Specifically we use

 - Completeness, $P_A + P_{\bar{A}} = 1$ etc.
 - Idempotency, $P_A^2 = P_A$ etc.

The second property in particular holds only if the P’s are projection operators, which means in theory the Q-test could be violated by POVM type measurements.