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“Mechanization Takes Command?”: 
Powered Machinery and Production 

Times in Late Nineteenth-Century 
American Manufacturing

Jeremy AtAck, robert A. mArgo, And PAul W. rhode

During the nineteenth century, U.S. manufacturers shifted away from the “hand 
labor” mode of production, characteristic of artisan shops, to “machine labor,” 
which was increasingly concentrated in steam-powered factories. This transition 
fundamentally changed production tasks, jobs, and job requirements. This paper 
uses digitized data on these two production modes from an 1899 U.S. Commissioner 
of Labor report to estimate the frequency and impact of the use of inanimate 
power on production operation times. About half of production operations were 
mechanized; the use of inanimate power raised productivity, accounting for about 
one-quarter to one-third of the overall productivity advantage of machine labor. 
However, additional factors, such as the increased division of labor and adoption 
of high-volume production, also played quantitatively important roles in raising 
productivity in machine production versus by hand. 

Popular observers often place the adoption of inanimate power, espe-
cially steam power, at the heart of the first Industrial Revolution. 

Noting the “sudden, sharp, and sustained jump in human progress” after 
1780, Brynjolfsson and McAfee (2014, p. 6) in their influential book on 
the future of work assert that “steam started it all” by overcoming “the 
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limitations of muscle power, human and animal.” They further declare 
that the Watt steam engine was the “most important” technological 
development of the era.  They are hardly alone in treating the steam 
engine as the prime mover of industrialization (see, e.g., Rosenberg and 
Trajtenberg 2004), but economic historians are generally more cautious 
recognizing, for example, the earlier development of waterpower and 
the potential importance of scale economies and related organizational 
changes (Chandler 1977; Hilt 2015; Hunter 1979, 1985; Hunter and 
Bryant 1991). The analysis in this paper provides quantitative support 
for our profession’s wariness of monocausal narratives of complex 
historical events such as industrialization while providing fresh evidence 
on the productivity impact of mechanization across a wide swath of 
manufacturing. In this paper, we will equate “mechanization” in nine-
teenth-century manufacturing with the use of steam or water-powered  
machinery.1

To conduct this investigation into the relative importance of mechani-
zation, we analyze the remarkably detailed data in the U.S. Commissioner 
of Labor’s 13th Annual Report (United States, Department of Labor 1899) 
on Hand and Machine Labor (hereafter HML study). This report was 
commissioned by the U.S. Congress in 1894 to “investigate and report 
upon the effect of the use of machinery upon … the relative produc-
tive power of hand and machine labor” (United States, Congress 1894). 
To this end, it recorded all individual tasks from start to finish associ-
ated with the production of over 620 highly specific manufactured goods 
using “machine methods” in the late nineteenth century, along with those 
involved in the production of the same good by the traditional “hand 
methods.” The observations were paired with the production method, and 
the HML staff generated a crosswalk for the operations listed for hand 
and machine labor. It is a subset of these (n = 4,405), which are analyzed 
in this paper. The extraordinarily complex structure of the HML study 
overwhelmed statisticians at the time, preventing the computation of even 
summary productivity figures, let alone any kind of systematic analysis. 
Nor did the Cliometrics Revolution solve the challenges posed by the 
HML data until recent advances in computing and econometrics have 
allowed the analyses that Carroll Davidson Wright (the Commissioner of 
Labor), his team of agents, and prior generations of scholars were unable 
to deliver. 

1 A source of motive power is cited by contemporaries as a sine qua non for mechanization 
(see, e.g., Willis 1841, p. 1). We recognize that some machines at the time were driven by muscle, 
either directly or through stored energy, wind power, and, very late in the century, electricity. The 
quote in the title is a nod to Giedion (1948).
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We employ a “task-based,” or production operations approach to 
investigate the reductions in time devoted to specific production activi-
ties (Acemoglu and Restrepo 2018). This was the HML study’s measure 
of labor productivity. Our main regression analysis of the HML opera-
tions data uses ordinary least squares (OLS) with fixed effects for the 
specific individual goods (called “units” in the HML study).2 We find that 
(1) the more frequent use of inanimate power in factory production had 
significant positive effects on labor productivity but that (2) these effects 
accounted for just one-third of the average difference in production oper-
ation times between hand and machine labor. Further probing using an 
instrumental variables estimator suggests that this OLS effect of mecha-
nization is likely biased upwards compared with the true causal impact. 
We then conduct a broader, if less exacting, study of the roles of other 
factors measured in the HML study, including the division of labor and 
the adoption of high-volume or “quantity” production. We find that these 
additional factors are of roughly similar importance in accounting for 
the average difference in productivity between hand and machine labor. 
Because the HML study focused on what it called the “most modern” 
of machine labor, the average difference in productivity in the sample 
may overstate the true difference in the economy. However, there is no 
reason to believe that the relative explanatory power of mechanization is 
misstated, and the superior quality of the HML data makes our findings 
more convincing than the usual growth accounting studies of aggregate 
time series or conventional production function estimation. 

THE HAND AND MACHINE LABOR STUDY

Published in two volumes totaling almost 1,600 pages, the HML study 
detailed the tasks (including what and how) involved in the production 
of what the study termed “units.” These units were specific quantities of 
precisely defined goods such as “50 dozen regular taper, triangular saw 
files, 4 inches long, tapering 23/64 inch” (United States, Department of 

2 The empirical analyses in this paper differ from our previous work with the HML study data 
in several important ways. The analysis here focuses on productivity differences between hand 
and machine labor at the production operation level, unlike Atack, Margo, and Rhode (2017), 
which examined differences at the unit level. The main purpose of Atack, Margo, and Rhode 
(2019) was to study task transitions (referred to as “block-links” in the present paper) in the 
context of Acemoglu and Restrepo’s (2018) model of automation and, while our 2019 paper 
included an OLS regression of the effect of mechanization on productivity differences at the 
operation level, the analysis there was limited to just those individual operations that matched 
between hand and machine production and did not consider endogeneity, or the role of additional 
factors such as the division of labor. 
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Labor 1899, 1: 241–6 and 2: 1026–9). The report covered 672 units in 
various economic sectors, including transportation services, mining and 
quarrying, and agriculture. Ninety-three percent of the units—626 (units 
28–653) of 672—were manufactures. Although the products in the study 
embrace almost the entire range of broadly defined manufactured goods 
(2-digit SIC codes 20–39), including those in the first industrial revolu-
tion as well as the second, in no sense can it be claimed that they are a 
representative sample of manufacturing at the time (see Online Appendix 
Table 1). 

For each unit, the HML staff collected production data from multiple 
establishments that were using “hand labor” or “machine labor.”3 To 
preserve the confidentiality of respondents, the HML staff anonymized 
the information in the published report. We never know the names of the 
establishments and, except in a few instances, do not know their loca-
tion other than that 15 of the hand labor establishments were foreign.4 
The HML staff was aware of the widely held belief that the machine 
methods yielded a lower quality product than the hand methods, and they 
expended great efforts to find units producing factory goods that were 
not of inferior quality to artisan products. Based on textual comments 
regarding quality in the report, the Bureau was remarkably successful in 
keeping with the goal of the study.5 

In collecting data, the HML staff took the actual output of the estab-
lishment as a given. However, because the machine labor output almost 

3 The product descriptions were identical for the hand and machine labor goods for 524 of the 
units. Differences in the remaining descriptions varied from words like “dairy” vs. “creamery” or 
“30½” vs. “305/8” to “iron” vs. “steel.” In all cases, though, the product served the same purpose. 

The HML staff first collected data from two machine labor establishments and then two 
matching hand establishments, before selecting “the better and more complete” accounting of 
each mode of production for publication (United States, Department of Labor 1899, 1: 13), 
sometimes also tracing a significant intermediate input purchased from elsewhere that was used 
in one type of production but manufactured in-house in the other. 

4 Contemporary newspapers sometimes carried brief notes regarding the cities being visited 
by the agents conducting the survey (see, e.g., Evening Star 1895), but the establishments to be 
visited were not specifically named. The original survey forms recorded fuller details such as the 
address of the business along with the names or initials of individual workers (as evidenced by 
blank forms retained in Record Group 257, entry 8, box 3 in the National Archives), but these 
details were suppressed in the published study and the completed survey forms themselves were 
subsequently destroyed (U.S. Congress, House 1906). Indeed, in preparing their report, the HML 
staff went to considerable lengths to anonymize the information, having promised the respondents 
anonymity in return for their cooperation.

5 The text of the HML study discusses quality differences, from which we were able to 
categorize whether the staff thought the quality was better for the product when made by hand 
or vice versa; or there was no difference detected or no opinion expressed. For the sample of 
operations (n = 4,405) analyzed in Table 2 (see below), 63.2 percent pertain to operations in 
units where the machine labor product was judged to be superior in quality; 5.6 percent, in units 
in which the hand good was of better quality; and no difference for the remainder. See also the 
discussion of quality effects in Table 5.
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always exceeded that of hand labor, the staff scaled all production times 
to match a standardized output level. This normalization varied across 
units but in a manner that would be “recognized and commonly used in 
the trade” (United States, Department of Labor 1899, 1: 15).6 Virtually 
all machine production data were contemporaneous with the report. 
For hand production, however, the HML staff found contemporaneous 
matching observations from the 1890s for only a quarter of the units. For 
the remainder, the staff assiduously sought out historical records, one of 
which was as early as 1813.7

The central goal of the HML study was to measure differences in 
production times for specific operations, and for each unit overall, between 
the “most modern machine method[s]” compared with the “old fashioned 
hand process … in vogue before the general use of automatic or power 
machines” (United States, Department of Labor 1899, 1: 11). The HML 
staff had no trouble finding machine establishments such that all units in 
the machine method used inanimate power at some point in production. 
Perhaps more surprisingly, the staff came fairly close to achieving its 
goal for hand production “before the general use of … power machines” 
because only a small fraction of hand operations involved the use of inan-
imate power, mostly by waterpower. We have excluded all units in which 
any operation in the “hand method” used inanimate power to approxi-
mate the Bureau’s ideal comparison. This reduces the sample size from 
the 626 manufacturing units in the published report to 551, which we call 
our base sample. 

Our regression analysis uses a subset of “paired” production opera-
tions from this base sample where the HML staff was able to match oper-
ations between hand and machine labor and reported the time taken to 
complete each. This complex matching procedure, which involves the 
“HML crosswalk,” is discussed later. Figure 1 displays a histogram of 
the unit-level mean values of the dependent variable used in the regres-
sion analysis. This variable is ∆ ln T, the log difference between hand 
and machine in the time to complete the matched production operations. 
The overall mean value across all units is shown by the dark line, –1.761. 

6 The HML staff was, in effect, holding establishment size fixed and varying the number 
of establishments to reach the desired standardized quantity. While some sort of rescaling is 
necessary to make the data interpretable, it should be kept in mind that these are “out of sample” 
predictions; it is entirely possible that the optimal establishment size (hand or machine) would be 
different at the standardized quantity.

7 Data for just three machine establishments predate the joint resolution authorizing the study, 
one by six years. On average, the hand labor observations predate those for machine labor by 
about three decades. The implications of this are explored in Table 5. Foreign establishments in 
the study are excluded from our analysis. 
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The associated geometric mean, 0.172 [= exp (–1.761)], implies that, on 
average, it took just 17.2 percent of the labor time to complete operations 
producing the same intermediate product using machine labor methods 
that it took using hand labor—an almost 6-fold productivity gain. We 
emphasize that these are the total labor times of all workers involved 
in the operation (or “block link” as discussed momentarily in the text); 
that is, the total labor input of that step in production. Because the HML 
study holds “output” fixed (literally), the geometric mean (or, equivalent,  
∆ ln T) is an exact index number of the inverse of labor productivity.8  
The overwhelming majority of the differences are negative, indicating 
that machine labor almost always took less time than hand labor. The 
support of the distribution is very large, suggesting a degree of variation 
across units that are unlikely to be explained by any single factor. 

Figure 1
DISTRIBUTION OF LOG CHANGE IN LABOR TIME BETWEEN MACHINE  

AND HAND PRODUCTION OPERATIONS

Notes: Figure uses data for regression sample (see Table 1). ∆ ln T: machine – hand difference in 
log T, T = time to complete the operation (n = 4,405). The histogram displays unit level averages 
of ∆ ln T, weighted by the number of observations in the unit. The dark line is at the overall 
sample mean across all units, –1.761. 
Source: Computed from digitized HML study (United States, Department of Labor 1899); also 
Atack, Margo, and Rhode (2022).

8 The variable ∆ ln T is a far superior measure of labor productivity than is normally available 
for the nineteenth century—typically, nominal value added per worker is deflated by an aggregate 
index of output prices (real value-added per worker), with no adjustment for output mix or labor 
time; see, for example, Sokoloff (1986).
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By the early twentieth century, the vast majority of value-added in 
manufacturing was produced in mechanized establishments, whereas 
to a first approximation, almost none was at the start of the nineteenth 
century.9 To reach a mean (ln) gap in production operation times of the 
size (–1.761) shown in Figure 1, labor productivity in U.S. manufac-
turing would have to have grown steadily at about 1.8 percent per year 
over the entire nineteenth century. A back-of-the-envelope estimate of 
the actual growth rate is 1.5 per year, which suggests that the machine 
labor establishments surveyed by the HML staff were somewhat more 
productive than the average such establishment in the late nineteenth 
century, consistent with the study’s goal.10 

The HML study provided a cornucopia of anecdotal examples of 
machine labor operations that were sped up through the use of powered 
machinery but also many examples of operations that were not mech-
anized. “The term ‘machine’,” Wright acknowledged, “as applied to a 
method of production, does not imply that every operation … is performed 
by machine. On the contrary, it is often found that … work [by] …. hand 
is necessary in certain operations … even under the most modern machine 
methods.” He also conceded that machine labor differed from hand labor 
in other ways, most notably in its embrace of a far more intricate division 
of labor in which “every workman has his particular work to perform, 
generally but a very small portion of that which goes to the completion 
of the article” (United States, Department of Labor 1899, 1: 11).11 Hence, 
in addition to quantifying the overall difference in productivity, Wright 
hoped to pin down the extent of mechanization of machine labor as well 
as the proportion of the difference in productivity that could be attributed 
to operations that were mechanized under machine labor. 

Wright knew, however, that he and his staff lacked the mathematical 
tools to do any of these computations. “This report,” Wright lamented, 
“answers in a measure the many demands for information … but no 

9 We estimate that approximately 94 percent of the value of manufacturing output in 1904 was 
produced in establishments using inanimate power, almost all by steam; see the Online Appendix.

10 According to Sokoloff (1986, table 13.4, p. 695, unweighted B estimates), real value-added 
per (equivalent) worker in manufacturing grew at 2.6 percent per year between 1820 and 1860 
versus 1.4 per year from 1870 to the end of the century; see Kendrick (1961, p. 265). A weighted 
average (the weight is the number of years) of the two estimates is 2.1 percent per year. For the 
1800–20 period little is known, but it seems unlikely that there was much, if any, change so we 
assume a growth rate of zero. For 1860–70, the annual growth rate was 1.0 percent per year, based 
on Gallman’s (1960, table A-1, p. 43) estimates of real value-added and counts of manufacturing 
workers from the 1860 and 1870 censuses (United States, Bureau of the Census 1975, 2: 666, 
Series P-5). A geometric weighted average of the estimates gives 1.5 percent per year. 

11 On average, production of the machine labor unit was divided into more operations than 
the hand labor unit, and the average worker in machine labor performed a smaller share of total 
operations; see Table 5. 
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aggregation can be made because it is impossible to carry out calcula-
tions through the innumerable ramifications of production under hand and 
machine methods … although such a summary would be of the greatest 
possible value in the study of the question” (Wright 1900, p. 211).

The HML Crosswalk, “Blocks,” and “Block-Links”

The tables in Volume One of the HML study summarize the data in 
terms of industry categories and product descriptions, the actual and 
standardized outputs, the reference year, the number of operations, the 
number of different workers employed in producing the good, total hours 
worked, total labor costs, and daily hours at the unit level. Volume Two 
then breaks down the hand and machine production data to the operation 
level, providing a brief description of operations in the order in which 
they were performed; a list of tools or machines used; the type of motive 
power; the number of workers assigned to that operation; some informa-
tion on the worker characteristics; the time spent on the task; and the 
labor cost of each employee engaged in the operation along with any 
miscellaneous comments.12 

These data lie at the heart of our analysis in this paper. Consider, 
for example, data on the production of 14-tooth steel garden rakes by 
machine labor (see Unit #30, United States, Department of Labor 1899, 
2: 480) was originally gathered from a plant that produced a batch of 
300 rakes through 16 distinct operations done by 6 adult males, but the 
data were normalized to the production of a dozen rakes by dividing the 
actual time spent on each operation by 25 (=300/12). The first, opera-
tion #1, was “cutting iron into sizes” using shears and waterpower by a 
40-year-old who was paid $3.00 per day would have taken 2 minutes and 
24 seconds to yield the pieces to make a dozen rakes. The last, opera-
tion #16, was “inspecting rakes and overseeing the establishment” done 
without any tools or assistance, again, by a 40-year-old male, paid $3.00 
a day taking the operative a total of 24 minutes. The HML staff assigned 
consecutive numbers to each of these (1–16) machine labor operations in 
the “Operation Number” column.

The HML staff then followed the same protocol for recording the hand 
labor data, once again arranging the data in the order in which it was 
performed. This order was not necessarily the same as that in machine 
production. The information in the Operation Number column, however, 

12 Information on gender and age is reported for many but not all workers. The regressions 
in the text (Tables 2, 4, and 5) exclude gender and age. However, as discussed in the Online 
Appendix and footnote 23, including age and gender variables does not affect the substantive 
conclusions.
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now consisted of letters, numbers, or combinations thereof; each with 
a distinct interpretation, but a number always referred to the analogous 
operation in machine production. These assignments were made by 
the HML staff based on their detailed knowledge and observation and 
provided a crosswalk between the hand and machine operations within 
units. 

This HML crosswalk is the key to our empirical analysis of the oper-
ations-level data. To understand how we use the crosswalk, it is helpful 
to employ the concepts of an operation “block” and an operation “block 
link.” An operation block is a collection of underlying operations of 
size H (for hand labor) or M (for machine labor), and H and M are non-
negative integers. A block link is a mapping, designated H:M, between 
the hand (H) and machine (M) blocks. The HML crosswalk provides 
the information to link together the specific machine and hand opera-
tions required to perform what Wright termed the “equivalent” work to 
make the product. Some hand operations could not be matched by the 
HML staff to any machine operations because the operations were no 
longer performed under machine labor—1:0 block links. Analogously, 
some machine blocks could not be matched to any hand blocks because 
the machine operations were not performed under hand labor—0:1 block 
links. For all other block links, H and M can take any integer value equal 
to or greater than one. 

Table 1 shows the distribution of the block links in the regression 
sample that we use, along with some key sample statistics. There are 
no 0:1 or 1:0 block links in the regression sample because the former 
represented hand operations that were no longer performed under 
machine labor, and the latter represented novel machine operations that 
were not performed under hand labor.13 The block links that are relevant 
for our regression analysis are those that overlapped between the two 
methods—1:1, 1:M, H:1, and H:M—as these are the operations that were 
matched by the HML crosswalk. By the HML’s construction, the inter-
mediate output of these block-links was the same under both hand and 
machine labor and is therefore held fixed in the productivity comparison. 

13 In the sample of units studied in this paper, there were 329 1:0 block links—hand operations 
no longer performed under machine labor—and 3,275 0:1 block links—novel machine operations. 
Many of these 0:1 links were associated with “furnishing power”; others involved “inspection” 
(for quality control given that the product passed through many hands) and “overseeing.” On 
average, the amount of labor time in machine production devoted to 0:1 block links exceeded that 
devoted in hand production to 1:0 block links (see Atack, Margo, and Rhode 2019). Including the 
0:1 block links, 47.5 percent of machine labor blocks were mechanized, 7.7 percentage points less 
than in the regression sample (55.2 percent). See Atack, Margo, and Rhode (2019) for a discussion 
of novel (0:1) versus abandoned operations (1:0) in the transition from hand to machine labor, in 
the context of Acemoglu and Restrepo’s (2018) model of automation. 
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We report the mean fractions using steam, water, or mechanized (that 
is, using steam and/or water) for each block link type under machine 
labor. These are “one-touch” or extensive margin estimates—that is, if 
any activity within the machine block used inanimate power, we code the 
block link as “mechanized.”14 

All told, there are 4,405 block links in the regression sample. Table 
1 shows the distribution by block link type and select sample statistics. 
Approximately 78 percent of these were singleton tasks under hand labor 
that the HML staff matched up to singleton tasks under machine labor 
(1:1 block links), slightly less than half (48.4 percent) of which were 
mechanized under machine labor. The remaining quarter of the regres-
sion sample block links was more complex, reflecting operations in which 
some task reorganization took place under machine labor compared with 

14 The one-touch measure is analogous to measures of inanimate power use in the 1850–1870 
manufacturing censuses, which recorded the type of power (e.g., steam) at the establishment 
level, see Atack and Bateman (1999).

tAble 1
DISTRIBUTION AND SAMPLE STATISTICS BY BLOCK-LINK TYPE:  

REGRESSION SAMPLE

Block Link Type
(Hand:Machine)

Number of 
Block  
Links

Mean  
Fraction  
Steam,  

Machine  
Labor

Mean  
Fraction  
Water,  

Machine  
Labor

Mean  
Fraction  

Mechanized, 
Machine  

Labor

Mean  
Value,
∆ ln T

1:1 3,412 0.460 0.025 0.484 –1.646
[0.193]

1:M, M > 1 619 0.732 0.055 0.784 –1.920
[0.147]

H:1, H > 1 250 0.704 0.052 0.744 –2.729
[0.065]

H:M, H, M> 1 124 0.815 0.073 0.879 –2.189
[0.112]

Total, regression sample 4,405 0.522 0.032 0.552 –1.761
[0.172]

Notes: Block links are defined as follows—1:1: a single hand labor operation is mapped to a 
single machine labor operation; 1:M, M > 1: a single hand labor operation is mapped to a block 
of M machine operations, M > 1; H:1, H > 1: A block of H (>1) hand operations is mapped to a 
single machine labor operation; H:M: A block of H hand labor operations is mapped to a block 
of M machine labor operations, H and M > 1. Mechanized = 1 if machine block used steam or 
waterpower or both; see text. NA: not applicable. Figures in brackets are geometric means of  
∆ ln T (e.g., 0.172 = exp (–1.761) for the regression sample in the final row). 
Sources: Computed from digitized HML study (United States, Department of Labor 1899, 2). See 
Atack, Margo, and Rhode (2022). 
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hand labor (1:M, H:1, or H:M block links). Three-quarters (n = 743) of 
the more complex block links (n = 993) were 1:M or H:M, in which 
one or more hand operations were mapped into M machine operations. 
Overall, these were the most mechanized (79.9 percent) block links.15 

Although less common than 1:M or H:M block links, the H:1 links 
were also highly mechanized (74 percent). All told, about 55 percent of 
the block links in the regression sample were mechanized under machine 
labor. The final column of Table 1 shows the mean values of ∆ ln T 
by block link type and overall (also shown in Figure 1). As previously 
discussed, ∆ ln T is the log difference between hand and machine labor 
in the time to complete the operation represented by the block link, and 
it is the dependent variable in our regression analysis. The associated 
geometric means by block-link type are shown in brackets.16 

Given that not much more than half of the machine labor block links 
were mechanized, if mechanization is to “account for” (see below) a 
large fraction of the mean (ln) productivity gap in the regression sample, 
then the direct impact of mechanization on productivity must necessarily 
be relatively large or the productivity differences for non-mechanized 
operations relatively small. The implications of this are addressed next 
through our empirical analysis of productivity differences at the opera-
tion level.

PRODUCTIVITY DIFFERENCES AT THE OPERATION BLOCK LEVEL: 
THE ROLE OF MECHANIZATION

In this section, we perform regression analyses of ∆ ln T using the sample 
of 4,405 block links that are matched between hand and machine labor 
through the HML crosswalk. We seek to measure the mean differential in 
the labor productivity gain between the mechanized (inanimately powered) 
and non-mechanized operations within the same production units. We 
present OLS estimates first followed by an instrumental variable analysis. 
The discussion in the text focuses on our base specification (Equation (1)).17 

15 The 80 percent figure is a weighted average of the mean mechanization rates of the 1:M and 
H:M block links.

16 On average, the mean value of ∆ ln T was larger by –0.512 (s.e. = 0.050) for the more 
complex blocks than the 1:1 block links. This difference, however, declines to –0.062 and is not 
significant (s.e. = 0.055) in a regression of ∆ ln T with unit fixed effects without controlling for 
mechanization. Most of the higher labor productivity of machine labor associated with the more 
complex block links is explained by their greater use in the production of certain goods for which 
machine labor had a greater productivity boost than average compared with hand labor. 

17 We also conducted additional estimations to be sure that our substantive findings from the 
base specification were robust to changes in the sample composition (such as 1:1 versus H:M), 
which they were. The robustness checks are reported in the Online Appendix.
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OLS Estimation 

The regression specification is given by Equation (1): 

∆ ln T (a, j) = β(j) + γ(a) + λ*Mechanized (a,j) + ε (a,j) (1)

The index j refers to the unit and a to the block link. The β(j) are unit 
fixed effects. We include these because the manufactured goods repre-
sented by the units were very different (such as circular saw blades vs. 
shoes) and there is no reason to believe that machine labor would be 
equally good at improving productivity across all manufactures, control-
ling for the extent of mechanization. Equally important, the β(j)’s 
control for any unit-level differences between the hand and machine 
labor establishments that were the same for all block links within the 
unit, such as the total number of workers in machine vs. hand labor, the 
year(s) to which the data pertain, and so on. As the unit fixed effects 
soak up all unit-level differences, we cannot include any unit-level 
differences in Equation (1).18 Because of the complexities potentially 
introduced by multi-operation grouped tasks, which involve about a 
quarter of the blocks, our base specification also includes dummy vari-
ables for the block link types, γ(a).19 In Table 2, we report the value of 
the coefficient λ for the single mechanization variable, Mechanized, 
which is the “one-touch” measure of mechanization of a machine 
labor block introduced in the previous section. While Mechanized = 1  

18 In the next section, we relax this restriction slightly by substituting four-digit SIC industry 
codes for the unit fixed effects. This allows us to include unit-level variables in the regression.

19 The values of β(j) and γ(a) from the various regressions estimated in this paper are not 
reported in the tables but are available on request. The left-out block-link dummy is 1:1. An 
F-test for the joint significance of the block link dummies for the OLS regression in Table 2 is 
well above the critical level (F = 29.7, significant at the 0.0001 level), indicating that the dummies 
belong in the regression. However, excluding the block link dummies has only a slight effect on 
the estimate of λ, reducing it to –1.006 (s.e = 0.065) from –1.037.

tAble 2
OLS REGRESSION AND DECOMPOSITION ANALYSIS OF ∆ Ln T

Variable Coefficient
Mean Value of  

Independent Variable
Percent Explained of  

Mean Value of ∆ Ln T
Mechanized –1.037

(0.060)
0.552 32.5

Adjusted R-square 0.498
Notes: The decomposition (“Percent Explained of Mean Value of ∆ Ln T”) is computed by 
multiplying the regression coefficient of Mechanized (–1.037) by the mean value of Mechanized 
(0.552) and dividing the product (–0.572) by the mean value of ∆ ln T (–1.761) = (–1.037 x 
0.552)/(–1.761) = 0.325, or 32.5 percent. The sample size for the regression is 4,405 block links. 
The regression also includes dummy variables for block link types and for units (see the text). 
Standard errors are clustered at the unit level. Sample means are from Table 1. 
Sources: See Table 1; also Atack, Margo, and Rhode (2022).
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means that either steam or waterpower was used somewhere in the block, 
the overwhelming majority used steam. The reason for the single mecha-
nization variable will become clear shortly. The OLS estimate of λ is 
identified through the variation in Mechanized across block links within 
units. The fundamental premise of the HML study was that mechaniza-
tion sped up production times, implying that λ should be negative. 

Equation (1) provides the basis for a decomposition exercise via regres-
sion, familiar in modern economics (if not to Carroll Wright or his staff), 
which we perform in Table 2. The expected value of the dependent vari-
able, E(∆ ln T), equals a baseline effect that depends on the coefficient of 
the unit dummy and that of the relevant block link type, plus a uniform 
effect (λ) for block links that were mechanized. Specifically, λ measures 
the average difference in (ln) labor productivity between mechanized 
and non-mechanized operations, controlling for the unit fixed effects 
and block link dummies. The average difference in productivity reflects 
gains in technological efficiency (total factor productivity) and in capital 
per worker (“more” capital was embodied in the steam engine and other 
machines than in hand tools), but the regression does not tell us how 
much of the increase is due to efficiency versus higher capital intensity.20

Table 2 shows the OLS estimate of λ, –1.037, which is precisely esti-
mated (s.e. = 0.060). Taking the exponent of λ, subtracting from one, 
and multiplying by 100 percent computes the (approximate) additional 
percentage reduction in production time above baseline from mechaniza-
tion—65 percent [= (1– (exp (–1.037))) x 100 percent]. This is a substan-
tial and statistically significant gain in average labor productivity—
clearly, mechanization mattered. The table also shows the percent of the 
mean productivity gap accounted for (“explained”) by mechanization, 
which is the estimate of λ multiplied by the mean value of Mechanized, 
divided by the mean value of ∆ ln T. The percent explained is 32.5 
percent [= ((–1.037 x 0.552)/–1.761) x 100 percent], or about one-third. 
By construction, the remaining gap (67.5 percent) is accounted for collec-
tively by the coefficients of the unit level and block link dummies.21

20 While we know exactly which tools are used in each operation, we have no way of reliably 
aggregating capital at the block level and no information whatsoever regarding buildings or any 
capital employed outside of the immediate production activities. There may also be unmeasured 
differences in worker characteristics between mechanized and non-mechanized operations in 
machine labor versus hand labor. However, for the reasons discussed in footnote 23, we believe 
these to be minor.

21 Evaluated at the sample means of the distribution of block links across units and across block 
link types, the unit level coefficients account for 69.5 percent of the mean value of ∆ ln T. Thus, 
the portion of the mean gap in productivity that is not accounted for by mechanization is attributed 
entirely (and then) to the unit fixed effects. We modify the regression analysis to explore how 
much of this variation can be attributable to measurable factors at the unit level, such as the 
division of labor and production scale. 
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Instrumental Variables Estimation

Up to this point, we imagine that Carroll Wright would be both pleased 
and puzzled by our results. Pleased—because we have been able to 
compute the average difference in production times between hand and 
machine labor in the HML data, a calculation that he wanted to make but 
which eluded him and his staff. Moreover, this average difference is large, 
consistent with the study’s professed aim and what Wright expected. But 
also puzzled—because Wright surely would believe that mechanization 
should account for a larger portion of the mean productivity gap than it 
evidently did. As we noted, Wright acknowledged that many machine 
labor operations were performed by hand, but he thought that “in the 
main” these were “simple and unimportant” (United States, Department 
of Labor 1899, 1: 11). Clearly, this was not the case.

However, before pressing forward to investigate what else besides 
mechanization might have mattered, it is worth pausing to ask if the OLS 
estimate of λ is affected by endogeneity bias. The HML study was obser-
vational; the staff did not randomly assign steam power to machine labor 
operations—they would not have known what this meant. Someone, 
presumably an owner or manager, made the decision to mechanize (or 
not) the operations in the survey’s machine labor establishments.

One standard source of OLS bias, measurement error in the indepen-
dent variable of interest, Mechanized, is almost certainly not present due 
to our use of the “one-touch” measure and the exceptionally careful data 
collection by the HML staff.22 Omitted variables are a second source of 
bias; however, we believe that the most likely omitted variables, those of 
worker characteristics, are unlikely to be a major problem in the study.23 
However, a third source, reverse causality, cannot be readily dismissed. 

In our view, the most likely source of reverse causality would create 
a negative correlation between Mechanized and the error term, ε. This 
would happen if the owner and/or manager of the machine labor estab-
lishment were more likely to mechanize an operation if the expected 

22 Measurement error would have been more likely, in our opinion, if the staff had attempted 
to collect data on horsepower. All that the one-touch measure requires, however, is that the staff 
accurately noted the presence of inanimate power in the establishment and its use somewhere in 
the performance of a task.

23 In our opinion, the most likely source of omitted variable bias would be omitted worker 
characteristics that affected productivity. Here, the evidence is limited but telling. We can 
estimate Equation (1) with and without indicators for the differences between machine and hand 
labor using the fraction of workers who were male and the fraction of children age 14 and under 
(this is all that can be measured consistently using the age information recorded in the report). The 
use of male labor is associated with higher productivity (shorter production time) and child labor 
with lower productivity (longer production time), but the inclusion of both variables has virtually 
no effect on the OLS coefficient of Mechanized. Details can be found in the Online Appendix.
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time savings were large and the expected time savings were posi-
tively correlated with ε.24 In this case, the OLS estimate of λ would be 
biased upwards in absolute value, thus overstating the casual impact of  
mechanization. 

To address reverse causality, we need an instrumental variable (IV) for 
Mechanized at the block link level, a difficult problem. Our identification 
strategy makes use of certain information in the textual descriptions of 
production operations. These descriptions, which are very brief, appear 
in the “General Table – Production by Hand and Machine Methods” in 
the column titled “Work Done,” organized by unit number and produc-
tion method in Volume Two of the HML study. 

Specifically, we extracted all unique occurrences of gerunds appearing 
in the “Work Done” columns.25 In general, the first word in the description 
of work is almost always a gerund, which describes the principal action 
taking place in the operation, so we call this the “principal gerund.”26

To understand the conceptual basis for our gerund IV, it is useful to step 
back and view the problem through the lens of Acemoglu and Restrepo’s 
(2018) model of automation. In their model, production activities are 
arrayed on the unit interval in order of labor’s comparative advantage over 
capital (automation) in performing them. Initially, technology is primi-
tive, and it is impossible to automate any production activities. Over time, 
however, scientific and engineering knowledge advances and it becomes 
technologically feasible to automate a subset of activities, starting from 
the left bracket of the unit interval to some point in it, T*. The activities 
that, in fact, are automated, [0, T], T < T*, depend on the relative cost 
of labor and capital. The Acemoglu–Restrepo model provides an impor-
tant clue to making progress on our identification problem—if a historical 
indicator of T* can be constructed that varies exogenously across produc-
tion operations, this becomes a candidate instrumental variable.

24 If the HML study were a true “before” (hand labor) vs. “after” (machine labor) panel of 
the same establishments, reverse causality would be very likely. The HML study, however, is 
not a panel; the owner or manager of the machine labor establishment would not have known 
the operation times in the matched hand labor establishment (recall that many of the hand labor 
observations are from decades before the 1890s). However, this does not rule out a priori that 
the error term in the regression is correlated with the expected time savings, which surely was an 
important factor in the decision to mechanize. We are grateful to a referee for this point.

25 Any standardized way to define production activities could be used to generate an 
instrumental variable. We use gerunds because these are the words the HML used to describe the 
task operations, and they represent actions/activity. A gerund is an English verb to which “-ing” 
has been appended. These function as a noun in grammatical contexts. 

26 Additional gerunds, if present, are always closely related to the main activity described by 
the principal gerund—the principal gerund is, in other words, the textual equivalent of a sufficient 
statistic.
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To implement this approach, a member of our research term with 
expertise in the history of technology was given just the list of gerunds 
and asked to sort them into two bins without consulting the HML 
study.27 Based solely on the expert’s knowledge of the history, activities 
described by the gerunds where the expert believed there was some tech-
nical feasibility of mechanization worldwide by the end of the nineteenth 
century were sorted into one bin (bin #1), while those for which there was 
very little or none were sorted into the other (bin #0). Once the sorting 
was completed, we used the results for the principal gerunds in the hand 
blocks in the regression sample to construct the IV.

Table 3 shows the distribution of the five most common principal 
gerunds for the hand blocks in the 1:1 and 1:M block links in the regres-
sion sample, grouped by bin #0 (little or no technical feasibility of 
mechanization) versus bin #1 (some technical feasibility). The five most 
common activities judged to have little or no feasibility of mechanization 
were “making,” “putting,” “overseeing,” “finishing,” and “marking.” 
For each, human judgment played a substantial role, and the require-
ments of the activity were idiosyncratic. Conversely, the five most 
common activities judged to have some feasibility of mechanization 
were “cutting,” “sewing,” “smoothing,” “stitching,” and “conveying.” 
These are all activities for which the activity was repetitive and for which 

tAble 3
THE TOP-FIVE ACTIVITIES (PRINCIPAL GERUNDS) IN HAND PRODUCTION, 1:1 
AND 1:M BLOCK-LINKS IN THE REGRESSION SAMPLE: BIN #0 VERSUS BIN #1

Bin #0 Number Bin #1 Number

Making 170 Cutting 679
Overseeing 169 Sewing 139
Putting 133 Smoothing 92
Finishing 44 Stitching 80
Marking 33 Conveying 71
Total count in Bin #0 778 Total count in Bin #1 3,253
Notes: The table shows the distribution of the five most common principal gerunds classified into 
bin #1 (some feasibility of mechanization) versus bin #0 (little or no feasibility of mechanization) 
for the 1:1 and 1:M block links in the regression sample. Block-links with missing values for the 
principal gerund are coded into Bin #0.
Sources: See Table 1; also Atack, Margo, and Rhode (2022). 

27 The list of gerunds was produced from a digitized version of the HML text. Because some 
gerunds can describe very different activities depending on a single letter—for example, “striping” 
vs. “stripping”—in very few cases, the expert was forced to consult the printed version of the 
HML study to be sure that the distinction was also present in the original text and not somehow 
garbled in the digitization, but the expert did not contemplate the text preceding or following the 
gerund in question.
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special-purpose machinery was invented, often early in the nineteenth  
century.28 

For the 1:1 and 1:M block links, there is a one-to-one mapping from 
the two bins to our IV, which is the “one-touch” analog to Mechanized, 
MECHABLE = 1 if principal gerund was sorted into bin #1, or 0 (if sorted 
into bin #0). For the H:1 and H:M block links, there is an intermediate 
step in the construction of the IV because when H > 1, there may be more 
than one principal gerund.29 MECHABLE, in other words, is our measure 
of T*, representing exogenous shifts in the likelihood of mechanization. 
Note that, because we have one instrument, we can only have one endog-
enous variable (Mechanized).

For the exclusion restriction to hold, it must the case that MECHABLE 
affects productivity solely by exogenously shifting the likelihood of use 
of inanimate power, as required by the Acemoglu and Restrepo frame-
work. This would be violated, for example, if the expert used additional 
information about the unit to classify the gerund into bins but, as noted 
earlier, only the list of gerunds was used. The exclusion restriction might 
also be violated if MECHABLE affected unmeasured worker character-
istics directly; however, as previously noted, we believe there is little 
evidence of omitted variables bias of this type.30 

Table 4 shows the results for the IV estimation of Equation (1). The 
first stage coefficient of MECHABLE, 0.316 (s.e. = 0.020), is positive 
(as it should be) and the associated Kleibergen–Paap F-statistic (240.7) 
indicates that the instrument is very strong (p-value = 0.00001).31 The 
2SLS estimate of λ, –0.749, is negative and significant (s.e. = 0.165) but 
about 28 percent smaller in magnitude than the OLS estimate, consistent 

28 Some additional examples of gerunds involving repetitive activities and for which special-
purpose machinery was available by the late nineteenth century are “boring,” for which 
Wilkinson’s boring machine (first patented in 1774) could be used; and “turning,” for which 
Blanchard’s lathe (first patented in 1819), could be used. The complete gerund distributions 
grouped by bin type underlying Table 3 are available from the authors on request.

29 In the intermediate step we construct a weighted average of technical feasibility of 
mechanization for each principal gerund in the H operations in the hand block, where the weight 
is the share of time devoted to the operation in the overall time in the hand block. If the weighted 
average exceeds zero, MECHABLE = 1 for the overall block link. 

30 The exclusion restriction would be violated if the HML staff selected gerunds for the hand 
descriptions of activities that were mechanized under machines such that our expert would then 
classify them into bin #1 125-odd years in the future. Our reading of the HML protocols, however, 
indicates that the staff took great care to describe operations exactly as they occurred in practice, 
making this very unlikely.

31 Aside from a successful first stage (see Table 4), one test of the plausibility of MECHABLE 
as an indicator of T* is that there should be very few “Always Takers” (Angrist and Pischke 
2009)—operations that were mechanized under machine labor whose principal gerund was 
sorted into bin #0 (little or no technical feasibility). In a two-by-two crosstab of Mechanized and 
MECHABLE, just 5 percent [= (220/4,405) x 100 percent] of block-links in the regression sample  
have Mechanized = 1 and MECHABLE = 0, suggesting there were very few “Always Takers.”
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with the presence of upward OLS bias due to reverse causality.32 If we 
repeat the decomposition exercise using the 2SLS estimate, the percent 
explained by mechanization is about 24 percent, compared with 33 
percent for OLS. 

Like all such instrumental variable estimates, ours is a local average 
treatment effect (LATE) which, theoretically, could be smaller in magni-
tude than the population average treatment effect (ATE). This does not 
seem likely to us, however, given the aims of the HML study, which 
sought to characterize the behavior of the “most advanced” machine 
labor establishments.

PRODUCTIVITY DIFFERENCES: THE ROLE OF DIVISION OF LABOR, 
QUANTITY PRODUCTION, AND OTHER FACTORS

In answering the questions posed by Carroll Wright, our analysis of the 
HML data has uncovered a curious and unexpected puzzle. While mech-
anization clearly raised productivity at the production operation level, 
most of the superior productivity of machine labor on average cannot be 
explained directly by the greater mechanization of machine labor. But, if 
that is the case, what accounts for the unexplained portion, particularly 
that captured by the unit fixed effects?

tAble 4
2SLS REGRESSION AND DECOMPOSITION ANALYSIS OF ∆ Ln T

Variable Coefficient

Mean Value of 
Independent 

Variable
Percent Explained of Mean 

Value of ∆ Ln T

First stage, MECHABLE 0.316
(0.020)

0.820

Kleibergen-Paap F-statistic 240.7

2SLS, Mechanized –0.749
(0.165)

0.552 23.5

Notes: The decomposition (“Percent Explained of Mean Value of ∆ Ln T”) is computed by 
multiplying the 2SLS regression coefficient of Mechanized (–0.749) by the mean value of 
Mechanized (0.552) and dividing the product (–0.413) by the mean value of ∆ ln T (–1.761) = 
(–0.413)/(–1.761) = 0.235, or 23.5 percent. The sample size is 4,405 block links. The first stage 
and 2SLS regressions also includes dummy variables for block link types and for units (see the 
text). The Kleibergen-Paap F-statistic refers to the instrumental variable MECHABLE. Standard 
errors are clustered at the unit level. Sample means of ∆ ln T and Mechanized are from Table 1. 
Sources: See the text and Table 1. Also Atack, Margo, and Rhode (2022).

32 Note, however, that the 95 percent confidence interval around the 2SLS estimate of λ (–0.426, 
–1.071) includes the OLS estimate so, technically, we cannot reject the hypothesis that the 2SLS 
and OLS estimates are the same.
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The published study grouped the units in Volume One by broad 
product categories. However, the HML product descriptions were very 
detailed, often to the point where the separately reported units were 
producing goods that were literally the same (such as “Vicuna worsted 
single-breasted vests, notched collars, breast measure 37 inches, length 
26 inches” by Units 214 and 215 (United States, Department of Labor 
1899, 1: 38)) or very similar. Using these detailed descriptions of the 
goods produced, we found that we could map the HML units into 70+ 
four-digit SIC codes. These allow us to estimate Equation (2), which is a 
slightly more parsimonious version of our base specification, where the 
SIC codes substitute for the unit fixed effects:

 ∆ ln T (a, j) = η(s) + γ(a) + λ*Mechanized (a,j) + ∆ X(j)*δ + ε (a,j) (2)

The η(s) are coefficients of the 4-digit SIC fixed effects. Because Equation 
(2) does not include unit fixed effects, we can add differences between 
machine and hand labor in continuous or dummy variables, ∆ X(j), at 
the unit level—for example, measures of the division of labor or scale. 
However, because the unit variables of interest are not available for all 
units in the original regression sample, the sample size for Equation (2), 
about 3,900 block links, is smaller than the sample size in Table 1.33 
Coefficients of the unit-level variables are identified by variation across 
units within the 4-digit SIC codes. 

OLS estimates of λ and δ and the associated percent explained calcu-
lations are shown in Table 5. It is highly reassuring that the point esti-
mate of λ, –1.072, is the same to the third decimal point as that obtained 
using the Equation (1) specification with the Table 5 sample, indicating 
that the combination of the 4-digit SIC dummies and particular unit-level 
variables shown in Table 3 does almost as well as capturing the salient 
variation in the data.34 

Three “returns to scale” variables are included in the regression—two 
measures of the division of labor, and a “quantity production” dummy.35 

33 The main reason for the smaller sample is that for some hand units, the HML staff found it 
necessary to blend data from different years (see, e.g., United States, Department of Labor 1899, 
1: 174). As a result, the year of observation is not precisely defined for these units, and so they 
are excluded from the regression sample for Table 5. We also lose some observations because of 
missing data on average daily hours or because we lack sufficient information to compute one of 
the measures of the division of labor (the fraction of operations performed by the average worker, 
see the text and Table 5).

34 See the notes in Table 5. We say “almost as well” because the adjusted-R square with 4-digit 
SIC codes (0.411) accounts for about 81 percent as much of the variance compared with the 
Equation (1) specification for the same sample (adjusted R-square = 0.510). 

35 We cannot measure the division of labor at the block link level for all observations in the 
regression sample because, to do so, we would need the names of the individual workers, which, 
as previously noted, were not included in the published study.
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We know that Wright considered a high degree of division of labor to be 
an essential feature of machine labor methods. Indeed, as we previously 
pointed out, in describing machine production, Wright notes, “matters 
are so arranged that every workman has his particular work to perform, 
generally but a small portion of that which goes to the completion of the 
article to be produced” (United States, Department of Labor 1899, 1: 
11). Since Adam Smith, economists have claimed that division of labor 
would raise labor productivity, as workers are allocated to production 
tasks based on their comparative advantage and by saving on any set-up 

tAble 5
OLS REGRESSION OF ∆ Ln T WITH 4-DIGIT SIC CODE DUMMIES

Variable Coefficient
Mean Value of  

Independent Variable
Percent Explained at 

Sample Mean of ∆ Ln T
Mechanized –1.072

(0.057)
0.553 34.6

Unit-level difference  
(∆) machine—hand labor:
 Ln (# of operations) –0.222

(0.085)
0.472 6.1

 Frac_oper 0.442
(0.121)

–0.397 10.2

 Volume production –0.297
(0.084)

0.139 2.4

 Ln (daily hours) 1.489
(0.545)

–0.030 2.6

 Hand quality better –0.291
(0.205)

0.030 0.5

 Year of observation –0.006
(0.002)

27.0 9.5

Percent explained,  
unit-level variables

31.3

Percent explained, unit  
level + Mechanized

65.9

Adjusted R-square 0.411  

Notes: Sample size is 3,876 block links because of missing data on some unit-level variables (see 
text). Mean value of ∆ ln T for this sample is –1.713. Regression includes 4-digit SIC code dummies 
and block link dummies (coefficients not reported). Coefficient of Mechanized = –1.072 (s.e. = 
0.064) if Equation (1) specification is estimated instead. Frac_oper is the fraction of operations 
in the unit performed by the average worker. Volume production = 1 if actual quantity >1,500; 0 
otherwise. All unit variables enter the regression as differences (∆) between the machine unit and 
hand unit values, except Hand quality better = 1 if HML staff judged the hand labor unit to be of 
better quality than the machine labor unit. Standard errors are clustered at the unit level.
Sources: See Table 1; also Atack, Margo, and Rhode (2022). 
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costs from switching tools between tasks. However, the various nine-
teenth-century American censuses of manufacturing never attempted to 
measure the division of labor directly, and its presence (and potential 
impact on productivity) in census data can only be inferred from vari-
ation across establishments in the number of workers. To our knowl-
edge, the HML study is the only data source for nineteenth-century U.S. 
manufacturing for which direct measures of the division of labor can be  
constructed.36 

The first division of labor variable, Frac_oper, is the difference (∆) 
between machine and hand labor in the fraction of operations performed 
by the average worker. Holding constant the number of operations to 
be performed, if the average worker performs a greater share of total 
operations, there was less division of labor; conversely, if the share of 
operations performed by the average worker declines, the division of 
labor increases.37 Assuming that an increase in the division of labor raises 
productivity, therefore, the coefficient of this variable should be posi-
tive—if the average worker performs a larger share of total operations, it 
will take more labor time to do so. The second division of labor variable, 
ln (# of operations), is the difference in the logarithm of the number of 
operations performed in manufacturing the unit by machine versus hand. 
Holding constant the fraction of tasks performed by the average worker, 
an increase in the number of tasks will imply a greater division of labor—
hence, its coefficient should be negative.38 As can be seen in Table 5, the 
signs of both coefficients are as expected and are highly significant. The 
mean values of both variables are also as expected, indicating a greater 
degree of division of labor under machine production than under hand. 

The third scale variable, Volume production, measures the difference 
between machine and hand labor in a dummy variable indicating whether 
the actual machine or hand quantity produced exceeded a critical cutoff 
level where substantial scale economies might have kicked in. While the 
ideal cutoff should be guided by historical examples and discussion, the 

36 Sokoloff (1984) identifies division of labor through scale effects on labor productivity 
in production function estimation using establishment-level data from the 1820 and 1850 
manufacturing censuses of manufacturing. Margo (2015) shows that the scale coefficient is highly 
non-robust to measurement problems in the labor input in the 1850 data.

37 We compute the share of operations performed by the average worker using the following 
formula: ([∑ (#workers assigned to operation i) /(total number of different workers)]/(number 
of operations), see Atack, Margo, and Rhode (2017). This formula considers the possibility that 
some operations may overlap across workers (i.e., are shared, in addition to operations performed 
alone).

38 If the fraction of operations performed by the average worker is held fixed, an increase in the 
number of tasks performed necessarily implies dividing up the operations among more workers—
more division of labor.
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relevant literature provides no operational guidance.39 The threshold we 
adopted was the quantity associated with the 75th percentile of the machine 
labor distribution, 1,500. Volume production was more common under 
machine labor, as indicated by the positive mean value (0.139) of the 
dummy variable. If volume production did raise productivity, the coef-
ficient of the dummy variable should be negative—which it is, –0.297, 
and highly significant (s.e. = 0.084).

The HML staff also collected data on average daily hours. Over the 
nineteenth century, there was a downward trend in average daily hours; 
on average, daily hours were shorter in the machine labor establish-
ments, although the mean difference was slight. There is some evidence 
that shorter hours in nineteenth-century manufacturing were associated 
with increases in labor productivity (Atack and Bateman 1992; Atack, 
Bateman, and Margo 2003; Goldmark and Brandeis 1912). To test for 
this, we included the variable ln (daily hours), the (ln) difference in daily 
hours of plant operation between machine and hand labor. This vari-
able has a positive and significant coefficient, 1.49 (s.e. = 0.55), which 
is consistent with shorter daily hours being associated with higher labor 
productivity.

As previously mentioned, the HML staff attempted to assess the 
quality differences in goods produced by the machine and hand units 
in the surveyed establishments. For the most part, they concluded there 
was either no meaningful difference or a quality difference in favor of 
the machine labor version of the good. That said, if the hand product 
were of better quality, we would expect that the hand operations would 
take longer to perform, increasing the apparent productivity advantage 
of machine labor. To test this, we include a unit-level dummy, Hand 
quality better, in the regression; as can be seen, the coefficient is nega-
tive, –0.291, although it is imprecisely estimated (s.e = 0.205).

Lastly, the variable, Year of observation, is the difference in the obser-
vation year between machine and hand labor. This difference is almost 
always positive, and the mean is 27, indicating that, on average, the hand 
labor data were older than the machine labor data by 27 years. The coef-
ficient of this variable is negative, –0.006, and significant (s.e. = 0.002), 
indicating that the older the hand labor data was relative to machine 

39 Here we have in mind the distinction made by Scranton (1997) between “flow production”—
bulk and mass production—as opposed to custom and batch production. However, the only 
occasion Scranton attaches a concrete number to any of these modes (other than the limiting 
case of “custom” as one of a kind) is that Brown and Sharpe’s contract production of as many as 
33,000 Willcox and Gibbs sewing machines a year (over 1,000 per day) represented “bulk” rather 
than “mass” production (Scranton 1997, p. 29). Similarly, Hounshell (1984) does not attach any 
quantity number to “mass production.”
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labor, the greater the productivity advantage of the latter, other factors 
held constant. This pattern makes sense because earlier hand labor estab-
lishments were likely closer to the “old-fashioned” methods that Wright 
had in mind for the study and, thus, less productive compared with the 
“most advanced” machine labor establishments in the 1890s.

Of course, we cannot and do not claim that the coefficients of these 
unit-level variables reflect causal impacts, and we have no way of instru-
menting them individually. Still, the mere fact that we can include these 
measures at all in the regression goes far beyond what is possible with 
other nineteenth-century data. Further, each of the coefficients has its 
expected sign suggesting that it is still useful to compute their explanatory 
power (“percent explained”) at the sample mean values. These are shown 
in the last column of Table 5. Of the various unit-level variables, the three 
scale variables account for 18.7 percent of the mean productivity gap in 
concert, of which the two pertaining to the division of labor are the most 
important, accounting for 16.3 percent by themselves, equal to almost half 
of the explanatory power of mechanization alone. Machine establishments 
operated for fewer hours per day compared with hand, and this difference, 
too, contributed to the overall productivity advantage, albeit modest (2.6 
percent). All told, the unit-level variables account for 31.3 percent of the 
mean value of ∆ ln T, about nine-tenths (= 31.3/34.6) of that explained 
by mechanization in the Equation (2) specification (34.6 percent).40 

CONCLUDING REMARKS

Economic historians have long been interested in quantifying the 
sources of labor productivity growth during the historical Industrial 
Revolution. One common approach is growth accounting, attrib-
uting some portion of productivity growth to greater use of capital per 
worker, including that associated with inanimate power (see also Atack, 
Bateman, and Margo 2005). The results of such analyses (Crafts 2004a, 
2004b; Crafts and Mills 2004) generally find a relatively modest role for 
inanimate power and, in that sense, are broadly consistent with our find-
ings. But a growth accounting exercise, no matter how well-executed, 
can only reveal whether inanimate power mattered within the confines 
of the growth accounting framework. This requires assumptions about 
output elasticities or else time-series estimation of the same, with 
inherent limitations. In the American case, another approach is to use 

40 Mirroring the earlier results in the paper, if we estimate Equation (2) using 2SLS, the percent 
explained by mechanization declines to 23 percent while that of the unit-level variables is 34 
percent (20 percent for the three scale variables).
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establishment-level data from the 1850–80 censuses of manufacturing 
(Atack and Bateman 1999) to estimate the extent of economies of scale in 
a production function framework (see, e.g., Margo 2015), but the litera-
ture has yet to reach consensus on this because of serious econometric 
problems that may never be fully resolved.41 By contrast, the HML data 
are vastly more informative than any of the census data, allowing us to 
pinpoint exactly which operations were affected by the use of inanimate 
power and to develop and apply an identification strategy to explore 
endogeneity. Albeit with less rigor, we can also measure the effects of 
other key factors, including the division of labor, which is otherwise 
impossible for the period on any systematic basis. 

Our OLS and 2SLS analyses of the HML operations data reveals that 
“mechanization” clearly did “take command”; it is likely that no other 
single factor was more important quantitatively in advancing productivity 
growth in the transition from hand to machine labor. At the same time, 
however, our results establish (solidly, in our view) that mechanization 
accounts for less than a majority of the large average productivity differ-
ence between machine and hand labor which, therefore, must be due to 
other factors. Our expanded analysis of the HML data in the final section 
of the paper is more speculative, but we believe it justifies a fresh effort 
to investigate the role of these other factors in raising labor productivity 
in nineteenth-century manufacturing. 

In particular, the HML study suggests that division of labor, volume 
production, and improvements in the work environment within factories, 
such as shorter daily hours, are worthy of closer scrutiny. Of these, the 
role of division of labor may deserve the most attention. The HML study 
did not investigate why the division of labor increased in the transition 
from hand to machine labor, but there is little doubt that the transportation 
revolution was a critical factor (Atack, Haines, and Margo 2011). The 
transportation revolution increased market access and in so doing, made 
a larger scale of operation more profitable—as the saying (from Adam 
Smith) goes, “the division of labor is limited by the extent of market.” 
As the division of labor increased, workers became more specialized in 
production, and the “average worker” was a convex combination of indi-
viduals performing different operations according to comparative advan-
tage, more productive than a single artisan performing all tasks from start 
to finish. Compared with such artisans, the typical nineteenth-century 

41 Using establishment-level manufacturing data from the 1850–80 censuses, Atack, Bateman, 
and Margo (2008) show that the use of inanimate power significantly increased value-added per 
worker, but unlike the HML data, the census data do not identify which operations were affected, 
nor is it possible to control for differences in the output mix across establishments.
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factory operative had much less to learn on the job, lowering the costs 
of supplying labor to manufacturing. Although advances in technology 
and emerging complementarity with capital increased the skill demands 
on factory workers, this calculus remained the same until well into the 
twentieth century, when the forces of automation eventually caught up, 
making operatives highly vulnerable to displacement by machinery 
(Acemoglu and Restrepo 2018; Goldin and Katz 1998).
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