Publications
Research Articles
- John G. Ratcliffe, Crossed extensions, Trans. Amer. Math. Soc. 257 (1980), 73-89.
- John G. Ratcliffe, On the second transgression of the Lyndon-Hochschild- Serre spectral sequence, J. Algebra 61 (1979), 593-598.
- John G. Ratcliffe, Free and projective crossed modules, J. London Math. Soc.22 (1980), 66-74.
- Philip S. Hirschhorn and John G. Ratcliffe, A simple proof of the algebraic unknotting of spheres in codimension two, Amer. J. of Math.102 (1980), 489-491.
- Mauricio A. Gutierrez and John G. Ratcliffe, On the second homotopy group, Quart. J. Math. Oxford 32 (1981), 45-55.
- John G. Ratcliffe, On the ends of higher dimensional knot groups, J. Pure Appl. Algebra 20 (1981), 317-324.
- John G. Ratcliffe, On one-relator groups which satisfy Poincare duality, Math. Z. 177 (1981), 425-438.
- A. M. Brunner and J. G. Ratcliffe, Finite 2-complexes with infinitely generated groups of self homotopy equivalences, Proc. Amer. Math. Soc. 86 (1982), 525-530.
- John G. Ratcliffe, Finiteness conditions for groups, J. Pure Appl. Algebra 27 (1983), 173-185.
- John G. Ratcliffe, A fibered knot in a homology 3-sphere whose group is nonclassical, In: Low Dimensional Topology, Contemp. Math. 20 (1983), 327-339.
- John G. Ratcliffe, Lyndon’s contribution to cohomology of groups, In: Contributions to Group Theory, Contemp. Math. 33 (1984), 24-28. 5
- John G. Ratcliffe, The cohomology ring of a one-relator group, In: Contributions to Group Theory, Contemp. Math. 33 (1984), 455-466.
- Nathan Habegger, Vaughan Jones, Pino Ortiz and John Ratcliffe, Relative cohomology of groups, Comment. Math. Helv. 59 (1984), 149-164.
- John G. Ratcliffe, On complexes dominated by a two-complex, In: Combinatorial Group Theory and Topology, Ann. Math. Studies 111 (1986), 221-254.
- John G. Ratcliffe, Euler characteristics of 3-manifold groups and discrete subgroups of SL(2,C), J. Pure Appl. Algebra. 44 (1987), 303- 314.
- John G. Ratcliffe, On the uniqueness of amalgamated product decompositions of a group. In: Combinatorial Group Theory, Contemp. Math. 109 (1990), 139-146.
- Magnhild Lien and John G. Ratcliffe, On the uniqueness of HNN decompositions of a group J. Pure Appl. Algebra. 75 (1991), 51-62.
- John G. Ratcliffe, On the isometry groups of hyperbolic manifolds, In: The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Special Functions, Contemp. Math. 169 (1994), 491-495.
- John G. Ratcliffe and Steven T. Tschantz, Volumes of integral congruence hyperbolic manifolds, J. Reine Angew. Math. 488 (1997), 55-78.
- John G. Ratcliffe and Steven T. Tschantz, On the representation of integers by the Lorentzian quadratic form, J. Funct. Anal. 150 (1997), 498-525.
- John G. Ratcliffe and Steven T. Tschantz, Gravitational instantons of constant curvature, Classical and Quantum Gravity, 15 (1998), 2613- 2627.
- John G. Ratcliffe and Steven T. Tschantz, On the torsion of the group O(n, 1;Z) of integral Lorentzian (n+1)x(n+1) matrices, J. Pure and Appl. Algebra. 136 (1999), 157-181.
- John G. Ratcliffe, On the isometry groups of hyperbolic orbifolds, Geometriae Dedicata 78 (1999), 63-67.
- N.W. Johnson, R. Kellerhals, J.G. Ratcliffe, and S.T. Tschantz, The size of a hyperbolic Coxeter simplex, Transformation Groups 4 (1999), 329-353.
- John G. Ratcliffe and Steven T. Tschantz, Spin and complex structures on flat gravitational instantons, Classical and Quantum Gravity 17 (2000), 179-188.
- John G. Ratcliffe and Steven T. Tschantz, The volume spectrum of hyperbolic 4-manifolds, Experimental Math. 9 (2000), 101-125.
- John G. Ratcliffe and Steven T. Tschantz, On the growth of the number of hyperbolic gravitational instantons with respect to volume, Classical and Quantum Gravity 17 (2000), 2999-3007.
- John G. Ratcliffe and Steven T. Tschantz, On the Davis hyperbolic 4-manifold, Topology Appl. 111 (2001), 327-342.
- N.W. Johnson, R. Kellerhals, J.G. Ratcliffe, and S.T. Tschantz, Commensurability classes of hyperbolic Coxeter groups, Linear Algebra Appl. 345 (2002), 119-147.
- John G. Ratcliffe, Hyperbolic Manifolds, Chapter in: Handbook of Geometric Topology, Edited by R.J.Daverman and R.B.Sher, Elsevier Sciences B.V., Amsterdam, (2002), 899-920.
- John G. Ratcliffe and Steven T. Tschantz, Integral congruence two hyperbolic 5-manifolds, Geometriae Dedicata 107 (2004), 187-209.
- M. Anderson, S. Carlip, J. G. Ratcliffe, S. Surya, S. T. Tschantz, Peaks in the Hartle-Hawking wave function from sums over topologies, Class. and Quantum Grav. 21 (2004), 729-741.
- John G. Ratcliffe and Steven T. Tschantz, Some examples of aspherical 4-manifolds that are homology 4-spheres, Topology 44 (2005), 341-350.
- Brent Everitt, John G. Ratcliffe, and Steven T. Tschantz, The smallest hyperbolic 6-manifolds, Electron. Res. Announc. Amer. Math. Soc. 11 (2005), 40-46.
- Dubravko Ivansic, John G. Ratcliffe, and Steven T. Tschantz, Complements of tori and Klein bottles in the 4-sphere that have hyperbolic structure, Algebraic & Geometric Topology 5 (2005), 999-1026.
- John G. Ratcliffe, The geometry of hyperbolic manifolds of dimension at least four, In: Non-Euclidean Geometries, Edited by A. Prekopa and E. Molnar, Math. Appl., 581 (2006), Springer, New York, 269-286.
- Michael L. Mihalik, John G. Ratcliffe, and Steven T. Tschantz, Matching theorems for systems of a finitely generated Coxeter group, Algebr. Geom. Topol. 7 (2007), 919-956.
- John G. Ratcliffe, and Steven T. Tschantz, Chordal Coxeter groups, Geom. Dedicata 136 (2008), 57-77.
- Michael Mihalik, John Ratcliffe, and Steven Tschantz, Quotient isomorphism invariants of a finitely generated Coxeter group, In: Aspects of Infinite Groups, Edited by B. Fine, G. Rosenberger, and D. Spellman, Algebra Discrete Math. 1 (2008), 212-227, World Sci. Publ., Hackensack, NJ.
- John G. Ratcliffe and Steven T. Tschantz, Abelianization of space groups, Acta Crystallogr. A65 (2009), 18-27.
- Michael L. Mihalik and John G. Ratcliffe, On the rank of a Coxeter group, J. Group Theory, 12 (2009), 449-464.
- John G. Ratcliffe, and Steven T. Tschantz, Fibered orbifolds and crystallographic groups,
Algebr. Geom. Topol. 10 (2010), 1627-1664. - Brent Everitt, John G. Ratcliffe, and Steven T. Tschantz, Right-angled Coxeter polytopes, hyperbolic six-manifolds, and a problem of Siegel, Math. Ann. 354 (2012), 871-905.
- John G. Ratcliffe, and Steven T. Tschantz, On volumes of hyperbolic Coxeter polytopes and quadratic forms, Geom. Dedicata 163 (2013), 285-299.
- John G. Ratcliffe, and Steven T. Tschantz, JSJ decompositions of Coxeter groups over FA subgroups, Topology Proc. 42 (2013), 57-72.
- John G. Ratcliffe, On normal subgroups of an amalgamated product of groups
with applications to knot theory, Bol. Soc. Mat. Mex., 20 (2014), 287-296. - John G. Ratcliffe, and Steven T. Tschantz, The Calabi construction for compact flat orbifolds
Topology Appl., 178 (2014), 87-106. - John G. Ratcliffe, and Steven T. Tschantz, On the isometry group of a compact flat orbifold,
Geom. Dedicata, 177 (2015), 43-60.
Books
- Contributions to Group Theory, edited by Kenneth I. Appel, John G. Ratcliffe and Paul E. Schupp, American Mathematical Society, Providence (1984), 519 pages.
- Philip Crooke and John Ratcliffe, A Guidebook to Calculus with Mathematica, Wadsworth Publishing Company, Belmont, California (1991), 256 pages.
- John G. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Math. 149, Springer-Verlag, New York, (1994), 747 pages.
- John G. Ratcliffe, Foundations of Hyperbolic Manifolds, Second Edition, Graduate Texts in Math. 149, Springer-Verlag, New York, (2006), 779 pages.
Book Reviews
- Functions on Manifolds, V.V. Sharko, Math. Reviews, (1994), Review 94j:57001.
- Two-dimensional Homotopy and Combinatorial Group Theory, C. Hog- Angeloni, W. Metzler, and A.J. Sieradski, Math. Reviews, (1995), Review 95g:57006.
- Introduction to Hyperbolic Geometry, A. Ramsay and R.D. Richtmyer, Amer. Math. Monthly, 103 (1996), 203-204.
- Stable modules and the D(2)-problem, F.E.A. Johnson, Math. Reviews, (2005), Review 2005b:57008.
- Topological Methods in Group Theory, R. Geoghegan, Math. Reviews, (2008), Review 2008j:57002.
©2024 Vanderbilt University ·
Site Development: University Web Communications