Public Information, Public Learning, and Public Opinion: Democratic Accountability in Education Policy

Joshua D. Clinton
josh.clinton@vanderbilt.edu

Jason A. Grissom
jason.grissom@vanderbilt.edu

Theories of political accountability assume citizens use information about the performance of government to hold public officials accountable, but whether citizens actually use information is difficult to directly examine. We take advantage of the importance of citizen-driven, performance based accountability for education policy in Tennessee to conduct a survey experiment that identifies the effect of new information, mistaken beliefs, and differing considerations on the evaluation of public officials and policy reforms using 1,500 Tennesseans. Despite an emphasis on reporting outcomes for school accountability policies in the state, mistaken beliefs are prevalent and they produce overly optimistic assessments of the institutions responsible for statewide education policy. Moreover, individuals’ update their assessments of these institutions in an unbiased way when provided with objective performance data about overall student performance. Providing additional information about race-related performance differences does not alter this relationship, however. Finally, support for specific policies that are intended to improve student performance is unchanged by either type of performance information; opinions about policy reforms are instead most related to race and existing partisan commitments.

Fundamental to democratic governance is the willingness and ability of citizens to hold elected officials responsible for their actions and decisions. Electoral accountability requires that citizens are responsive to new information and appropriately update their opinions on the basis of this information so as to correctly reward and punish elected leaders (Key 1966; Dahl 1989). This task is not without its challenges. Not only must citizens not ignore new information, but they must also be able to interpret the meaning and relevance of the new information with respect to their existing beliefs and be willing to update those beliefs in light of new information.

Public policy reforms are increasingly mandating the reporting of objective performance information with the expectation that greater information means more accountability and superior outcomes (James 2011). In practice, however, the connection between information and opinions may be a tenuous one. Bayesian models of political learning demonstrate that—depending on the content, strength, and stability of prior beliefs and other factors—new information can produce either no learning or biased opinion change (Zechman 1979; Achen 1992, Gerber and Green 1999; Achen and Bartels 2006; Bullock 2009). For example, new information consistent with one’s prior beliefs will not lead to opinion updating (Hutchings 2003) and information inconsistent with prior beliefs may lead to little or no updating for recipients whose prior beliefs are strong—as may be the case for strong partisans whose opinions are based largely on ideological considerations (e.g., Berelson et. al. 1954; Campbell et. al. 1960)—or in cases where there are disagreements (including partisan or ideological ones) about the interpretation of the information (e.g., Bartels 2002; Lenz 2009). Still other citizens may fail to appropriately update their beliefs in the face of new information because they are either uninterested or
not understanding the importance of the information (MacKuen 1984). It is also unclear whether information itself may change attitudes given the importance of local conditions and personal experiences (see, for example, Egan and Mullin 2012; Erickson and Stoker 2011); individual experiences may be more influential than policy-relevant information.

Testing the connection between information and beliefs or opinions is critically important for evaluating the health of a representative democracy, but it is also a difficult empirical puzzle. The difficulty arises because in everyday life individuals not only selectively expose themselves to information (e.g., Prior 2007), but even if they choose to consume news, they also choose which type of information to consume (e.g., Stroud 2009).

As a result, there is a robust debate regarding the nature of accountability and whether the public holds public officials responsible for outcomes in seemingly irrational (e.g., Achen and Bartels 2002; Healy, Malhotra, and Mo 2010) or rational (e.g., Malhotra and Kuo 2008) ways (but see Ashworth 2012). We contribute to the critical task of assessing the prospects for democratic accountability by testing whether information about policy outcomes impacts citizens’ evaluations of public officials and policy proposals. Given the importance of past performance for future assessments (Woon 2012), we determine whether and how citizens update their initial beliefs about policy in response to objective information about recent performance outcomes for an issue that is salient, important, and consequential for the functioning of democracy: public education (Dewey 1916).

Although most of the literature on government accountability focuses on voters’ responses to economic performance (e.g., Fiorina 1981; Hibbing and Alford 1981; Markus 1992; Rudolph 2003; Stein 1990), the presumed linkage between information and accountability is perhaps clearest in public education reforms in the United States. During
the so-called “standards-based accountability movement” of the 1990s, many states began testing students against a set of standards for each grade and subject on an annual basis to create ratings for school performance (Hanushek and Raymond 2005). By 2001, 45 states created and published “report cards” on schools based on student test performance, and 27 of them used an explicit rating system to identify low performers (Figlio and Ladd 2008). The enactment of No Child Left Behind (NCLB) in 2002 applied such a test-based rating system to every school district in the nation.

The primary rationale for publicizing school performance is that such information empowers parents (or the community) to pressure relevant decision-makers—including school staff, local school board members, state officials and others—to increase the performance of less effective schools by finding new resources or using existing resources more efficiently (Dorn 1998; Loeb and Strunk 2007). This “bottom-up” pressure may take the form of informal communication, moving one’s child elsewhere, or, in the case of elected officials, voting for new representation (Berry and Howell 2007). The implicit theory of action assumes that citizens absorb and act upon school performance information.

Education is an appropriate and important focus for such an investigation for many reasons. Not only is it a policy where reforms have focused on increasing data collection and dissemination to promote bottom-up accountability, but the primary policy objective in education—increasing student learning—is also clear and uncontested. There are certainly disagreements over how best to achieve increase student performance, or the optimal role for the federal government and some may care about the policy more than others (e.g., parents with children or homeowners for whom education quality is
capitalized into housing values (Black 1999)), but when it comes to evaluating the performance of state governments on statewide educational performance for a given expenditure level, citizens are unlikely to disagree about the need to maximize student performance. The policy outputs of education policy are also directly measurable, comparable, and widely available because of the standardized testing regime. State laws and education policies are also made by officials who are either directly elected (in the case of local school boards) or who are overseen by elected officials (in the case of the Department of Education) and who are therefore, in principle, responsive to voters (Berkman and Plutzer 2005). Finally, public education is an important and essential public good. Understanding the foundations of education policy an important undertaking for political scientists given the close linkages among education, citizenship, and democracy (Guttman 1987).

Education is also an area in which a few existing studies have found connections between the availability of performance information and citizens’ views (e.g., Schneider, Teske, and Marschall, 2000). For example, parents’ give higher survey ratings to schools in New York City that have higher test score performance, attendance rates, and scores on district quality reviews (Favero and Meier 2013). Chingos, Henderson, and West (2012) show that survey respondents rate their schools higher when in fact student proficiency rates are greater, and that this correlation is higher among parents. They also present mixed evidence that higher state-assigned accountability grades lead to higher citizen ratings even for schools that perform very similarly that suggests that respondents respond to information provision. Henderson, Howell, and Peterson (2014) similarly find that survey respondents given information about how their local districts compare to state
or national averages rate their local schools less well, even when their district outperforms those averages. They also find that these newly informed respondents express stronger support for universal (though not targeted) voucher programs and charter schools, suggesting that information on performance can inform policy preferences.

Utilizing a similar approach to Henderson, Howell, and Peterson (2014), we explore the potential for citizen-driven accountability in education policy by examining the impact of information on citizens’ evaluations of institutional performance and their education policy opinions. Given the methodological difficulties of estimating the effect of information when citizens selectively expose themselves to information, we conduct a survey experiment of 1,500 randomly selected Tennesseans. We measure their prior beliefs about statewide educational performance and the connection between their beliefs and their opinions about both public officials and proposed reforms. We then investigate whether and how they update those opinions in response to objective, non-partisan performance information that—in many cases—challenges their prior beliefs and we characterize whether the effect of information on opinion formation differs by respondent characteristics and the type of performance information that is provided. We show that while the information does appear to result in citizens’ updating their beliefs about the institutions of government responsible for education policy in meaningful ways, there is no evidence that the information also affected the support for various policy reforms that have been proposed to boost student performance and decrease the performance gap between races.

The Role of Information in Updating Beliefs
Understanding how objective and verifiable information affects the evaluation of public officials and opinions about public policies is critical for evaluating the prospects for democratic accountability. A necessary condition for “bottom-up” accountability is that the opinions of enough citizens must be responsive to new information and experiences to create electoral incentives for elected officials. If citizens ignore new information, or if new information is interpreted in accordance with existing partisan or ideological leanings, then there may be no independent effect of information on opinion formation.

Deriving hypothesized effects requires modeling how individuals process new information and adjust their opinions. Our interest is in assessing how new information affects citizens’ support for policies and institutions and the subsequent implications for democratic accountability. Although there are many models of cognitive processing, given our interests, we seek a suitably broad framework that can accommodate the possibility of both null and differential effects.

To this end, we use a Bayesian model of political learning (Zechman 1979; Achen 1992, Gerber and Green 1999; Bullock 2009). By reinterpreting how strong prior beliefs might be and what such beliefs entail, it is possible to accommodate the possibility of partisan bias (e.g., Campbell et. al. 1960; Lodge and Hamill 1986; Rahn 1993; Bartels 2002, Lenz 2009), or spur of the moment processing based upon primed considerations (e.g., McGuire 1969; Zaller 1992). A model of Bayesian learning can generate predictions ranging from no learning to biased updating depending on the model’s parameters (Achen and Bartels 2006; Bullock 2009). To be clear, our intention is not to “test” this model, but rather to use it to motivate the empirical investigation that follows and to illustrate how a
variety of differential effects of information may arise even holding constant a hypothesized model of citizen learning.

We want to characterize how new information \((x) \) changes individuals’ beliefs. Suppose that individual \(i \)'s opinion about an issue or public official is denoted by \(\mu \) (for the purposes of clarity we drop the individual superscript unless the between-individual variation is relevant). Suppose further that prior beliefs can be thought of as being normally distributed with mean \(\mu_p \) and variance \(\sigma^2_p \). That is, absent new information, asking \(i \) about her opinion on an issue will result in responses centered at \(\mu_p \), but there may be variation due to transient effects (e.g., priming, the ambiguities of how the question is interpreted, or other reasons why the survey response may contain error (Achen 1975; Bartels 1986; Zaller and Feldman 1992)). Opinions may be extremely stable (i.e., \(\sigma^2_p \) is small), as might be the case if the individual is a highly-educated partisan with very strong beliefs (e.g., Popkin 1994), or extremely variable (i.e., \(\sigma^2_p \) is large), as might be the case if the individual has no political attitudes and has never thought about the issue before being asked about it in the survey.

The effect of new information is simply the change in opinion that results. If the effect of new information can be thought of as being normally distributed with a mean of \(\mu_i \) and a variance of \(\sigma^2_i \), Bayesian updating requires that the opinion of individual \(i \) is a combination of prior beliefs and the new data, with the impact of each determined by the relative strength of each. Mathematically, the new (posterior) opinion is:

\[
\mu = \mu_p \left(\frac{1/\sigma^2_p}{1/\sigma^2_p + 1/\sigma^2_i} \right) + x \left(\frac{1/\sigma^2_i}{1/\sigma^2_p + 1/\sigma^2_i} \right)
\]
with the precision of the new belief being given by $1/\sigma_P^2 + 1/\sigma_I^2$. The effect of the new information is the difference $\mu - \mu_P$.

This seemingly sparse model reveals several possible effects of new information. One possibility is that there is no effect: $\mu - \mu_P = 0$. A null effect is possible for several reasons. First, it may be the information that is provided is either already known or consistent with existing opinions (e.g., individuals for whom the issue is relevant may possess correct beliefs (Hutchings 2003)). If so, $\mu = \mu_P$, and we would obviously expect no difference. Second, existing beliefs may be so strong so as to make the new information irrelevant. If $1/\sigma_P^2 > 1/\sigma_I^2$ and the difference is large, opinions may be unchanged even if $\mu \neq \mu_P$ and the difference is dramatic. This might be the case if the individual's belief is based on considerations that are unchanged by the new information or if the new information is thought to be untrustworthy. For example, parents with school-aged children may have strong beliefs about schools based largely on personal experiences. If so, new performance information may not change their opinions. Similarly, strong partisans may be less responsive to new information because their opinions are based purely on partisan considerations (e.g., Berelson et. al. 1954; Campbell et. al. 1960).

Information updating occurs if the new information differs from their existing beliefs and individuals are sufficiently motivated to update their existing beliefs (MacKuen 1984; Kuklinski et. al. 2001). Individuals are receptive to new information if their existing beliefs are sufficiently imprecise (i.e., σ_P^2 is large), or if the new information is precise in its implications (i.e., σ_I^2 is small). For a given piece of information, if there are not differential perceptions of the clarity of the new information (i.e., σ_I^2 is constant across individuals), differential effects between individuals can emerge if there is variation in the strength of
existing priors (σ_P^2) or in how distant the prior belief is from the new information; those with stronger prior beliefs and more accurate perceptions are less sensitive to new information.

Differences in whether and how individuals update their beliefs in response to new information may result from both individual level differences (e.g., how important and interested an individual is in education policy), as well as partisan differences. If, for example, the importance of statewide examinations, graduation rates and other seemingly objective measures differs by political orientation because of how partisans interpret such data in light of the real or imagined political orientations of public officials responsible for designing and implementing education policy, the contribution of the new information will differ between partisans even if they share a common goal of increased student performance given current expenditure levels.

While most education policies at least implicitly assume that there is a strong relationship between information and opinions, we do not actually know how providing objective, outcome-based information affects citizens’ assessment of those institutions that are responsible for designing and implementing education policy at the state level. We also do not know how such information influences the support for various policies aimed at increasing student performance. While we may hope that assessments are responsive to information in a way that brings about the convergence of citizens’ beliefs, there are also reasons to think that there may be either no effects or effects that depend on existing beliefs in ways that may prevent citizens from agreeing, even in issues such as education where everyone presumably agrees on the desirability of increasing student performance.
Experimental Design

We test the straightforward hypothesis that providing citizens with objective information about the public education system’s recent performance will change their opinions about (a) the performance of educationally relevant government institutions and (b) education policies and reforms, at least among the population for whom the objective information is inconsistent with their prior beliefs about system performance. While others have looked at how mistaken beliefs correlate with opinions (e.g., Sides and Citrin 2002), we employ an experimental design that identifies the effect of providing information controlling for existing beliefs. This detail is important because it avoids the complications that may result from differences in individuals’ ability to form accurate initial beliefs.

We utilize two pieces of objective performance information: (1) student achievement on standardized math tests and (2) the extent to which student achievement on these tests varies by the race of the student (the racial “achievement gap”). Under No Child Left Behind (NCLB), standardized test scores in math and reading form the basis of school accountability in every school district in the United States. Within each state, common tests cover the same material for each grade level, so scores have the same meaning across schools and districts. NCLB requires schools to publicly report proficiency levels from these tests both for the school as a whole and for racial and ethnic subgroups in part on the assumption that parents, communities, and other stakeholders can utilize these data to pressure schools to better serve the needs of students (see Figlio and Loeb 2011).

We embedded a survey experiment within a larger Random Digit Dial survey of 1,500 citizens of Tennessee. Tennessee provides a useful laboratory for this experiment because their long history with school performance data means that Tennesseans are
among the most familiar and, presumably, comfortable with their usage. Tennessee was a relatively early adopter of the school accountability policies that predated NCLB (Hanushek and Raymond 2005), and, prior to the mandates of NCLB, the state based its accountability policy almost purely on making information available to the public rather than on using student test data for the kinds of administrative interventions favored in other “consequentialist” accountability states (Carnoy and Loeb 2002). The use of student data for school improvement has maintained a high profile in the state in recent years; for example, in 2011, a law passed as part of Race to the Top reforms mandated that 50% of a teacher’s annual evaluation must come from the standardized test performance of his or her students (Sher, 2011). In the wake of Race to the Top—Tennessee was one of two first-round awardees in the federal grants competition, receiving more than $500 million—the state also began increasing the presence of charter schools, creating a statewide Achievement School District to turn around its lowest-performing schools, moving towards implementation of the Common Core State Standards, and investing heavily in innovation in science and mathematics instruction, among other reforms, ensuring the salience of education reform among the public at the time of the study.

The survey experiment contained five randomly assigned conditions comprising two experiments. As Table 1 summarizes, in four of the conditions (conditions 2 – 5), respondents’ beliefs about school performance in Tennessee were measured by asking about student performance on standardized math tests. Half were asked a single question about student performance on end-of-year math exams (the “performance experiment” in conditions 2 and 3), and half were asked this question and a question about the race-related gap in student performance on these tests (the “achievement gap experiment” in
In two of the four conditions, respondents received the treatment of being told the correct answer(s) after they expressed their beliefs concerning performance (condition 3) or both overall performance and the achievement gap between black and white students (condition 5). To identify the impact of the information itself rather than on the impact of the framing of student performance (see, for example Chong and Druckman 2007), the actual performance was reported without commentary.

After the intervention, respondents in conditions 2 through 5 were asked (1) to rate the performance of various public institutions involved in setting education policy and (2) what they thought about various educational reforms that have been proposed. Respondents in the remaining group (condition 1) were asked the same the battery of evaluations, but they were not primed to consider performance issues beforehand. This group lies outside both the performance and achievement gap experiments.

Our design identifies several effects of interest. Because asking citizens about student performance may prime considerations that are not commonly used when citizens articulate preferences for education policies or the public officials responsible for education policy (see, for example, the theories of McGuire 1969, Zaller 1992, and Zaller and Feldman 1992), the experimental manipulation may itself affect the evaluation by priming the respondent to think in terms of performance or equity considerations when answering the questions. We can identify the possible priming effect by comparing the responses of condition 1 to condition 2 (and also condition 1 to 4). To identify how the performance information we provide affects the opinions of otherwise similar individuals, we compare individuals’ responses in conditions 2 and 3. The difference in evaluations and opinions reveals whether individuals with otherwise identical characteristics and beliefs
about the statewide student performance differ as a result of being exposed to the objective performance information. Because we can condition on prior beliefs, we can identify the effect of the information we provide holding initial beliefs fixed. We also examine if the effect varies depending on how important educational issues are to the respondent because the importance of an issue is presumably related to the strength of prior beliefs or the motivation to update beliefs. Comparing the differences in conditions 2 and 4 reveals how additionally priming racial gap considerations—and, more specifically, the racial disparity in educational performance—affects opinions. Do opinions change if respondents are thinking not only in terms of overall performance, but also in terms of the relative performance of students by race?

Replicating the comparison for conditions 2 and 3 using conditions 4 and 5 reveals how providing information about student performance and student performance by race affects evaluations. Not only is the comparison between the corrected and uncorrected individuals of interest, but it is also of interest to see how the overall effect of providing these two pieces of information compares to the effect revealed when comparing conditions 2 and 3.

The Accuracy of Prior Beliefs about Student Performance and Racial Gaps

The effect of information presumably depends on both the accuracy and strength of existing beliefs. The first task in identifying the effect of information on citizens’ evaluations of public officials and public policy proposals therefore involves assessing the strength and accuracy of existing beliefs (Delli Carpini and Keeter 1996). Figure 1 graphs the distribution of beliefs regarding the percentage of elementary and middle school
students who are performing at grade level or better on Tennessee’s end-of-grade math tests (left), and the difference between the percentage of white students and black students performing at grade level or better on Tennessee’s end-of-year math tests (right).

Figure 1 facilitates several conclusions. First, as is the case for other issues (e.g., Kuklinski et. al. 2000; Gilens 2001), very few citizens hold accurate beliefs. Despite the amount of attention paid to the issue and the number of policies in Tennessee that use student performance data, only 20% chose the response category containing the true level of student performance (34%), and only 8% chose the category containing the true gap in student performance (22%). In fact, the nearly uniform distribution of responses to the achievement question suggests that the 71% of respondents who chose a response other than “Don’t know” were simply guessing. Second, Figure 1 reveals that citizens are less likely to possess correct beliefs about the race-related gap.

Third, citizens’ beliefs about statewide overall performance are too optimistic; 54% percent of the respondents think student performance is better than it actually is. However, more respondents also think the racial gap in student performance is larger than it actually is relative to the percentage who think it is smaller than it actually is (36% to 27% respectively). The inaccuracy of beliefs does not vary according to the importance of education to the respondent, however. In analysis not shown, we measured salience—and, presumably, strength of prior beliefs regarding education issues—using whether the respondent believes education should be the top priority of the Tennessee government, whether the individual has children that attend public school, and whether the respondent owns their home or has a mortgage (see Figlio and Lucas 2004). Proportions with correct
performance information were similar and statistically indistinguishable across these conditions.

The fact that many citizens are unaware of actual student performance despite the fact that it is a centerpiece of accountability-based educational reforms is consistent with the pervasive lack of information that the public has routinely exhibited on political issues (e.g., Campbell, Converse, Miller, and Stokes 1960; Delli Carpini and Keeter, 1996). However, what matters are the consequences of the misinformation (e.g., Bartels 1996) and whether citizens are willing to update these beliefs and the opinions for which these beliefs are relevant. It is to this analysis that we now turn.

Estimating the Effect of Objective Information About Performance Outcomes

Having shown that citizens often misperceive—by large margins—the performance of the public education system on commonly used metrics, we now assess: (1) whether misperceptions about performance and opinions are indeed linked, (2) whether correcting citizens’ misperceptions via provision of performance information leads to changes in policy opinions, and (3) whether opinions are differentially responsive to different types of performance information (i.e., overall performance vs. black-white gaps). We investigate these questions for opinions both on the performance of 3 education institutions (Tennessee schools as a whole, the Tennessee Department of Education, and the local school board) and on which education reforms should be pursued.

The Effect of Performance Information on Evaluations of Educational Institutions

We begin by assessing whether the act of simply asking about student performance primes considerations and influences evaluations, even in the absence of new information.
There is no evidence that priming affects institutional evaluations; given our sample sized we have sufficient power to detect differences of 0.2 on the 5-point scale we use.xiii Comparing the evaluations for respondents in Conditions 1 and 2 via \textit{t}-tests reveals that the smallest \textit{p}-value that was obtained was .55.xiv Comparing the average responses for Conditions 1 and 4 also produces null results even though the respondents in Condition 4 are asked to think about both overall performance and race-related differences. xv

To better test the association between performance information and evaluations of education institutions, we estimate a series of ordered probits of the form:

\begin{equation}
\text{Pr}(Y_{ig} = \{A, B, C, D, F\}) = \beta_0 + \beta_1 \text{Belief}_i + \beta_2 T_i + X_i \delta + \epsilon_i \tag{1}
\end{equation}

The dependent variable in equation (1) is the grade respondent \textit{i} gives to institution \textit{g}, using a survey question that asks every respondent to assign a grade of A, B, C, D or F to “public schools in Tennessee,” “the Tennessee Department of Education” (TDOE), and “your local public school board.” While the assumptions of the ordered probit are most appropriate given the ordinal nature of the evaluations, the supplemental appendix shows that translating the grades into their GPA equivalents (i.e., A=4, B=3, C=2, D=1, F=0) and using OLS produces identical substantive results.

We first compare conditions 2 and 3. Subjects in these two conditions were asked to assess the performance of Tennessee schools after providing their estimate of the percentage of elementary and middle school students performing at grade level or better according to state standardized tests using a series of twenty percentage point ranges (i.e., 0-19\%, 20-39\%, and so forth). We use these responses to measure prior beliefs using a series of indicator variables (i.e., the interval containing subject \textit{i}'s estimate, including “I
don’t know,” is set to 1 and all other intervals are set to 0, with the 0-19% interval being the omitted category).

Because all respondents in Condition 3 were told the correct answer, the treatment variable T_i is set to 1 if subject i is in Condition 3 and 0 if in Condition 2. The row-vector X_i for individual i contain the control variables used to improve the estimates’ precision. These include indicators for: female, black, Democrat, Republican, having a college education, having children in school, and owning a home as well as a linear (three-item) ideology scale, age, age squared, and the number of years residing in Tennessee and a six-category measure of respondent income. β_2 in equation (1) estimates the average effect of being told the true performance level, and the coefficient vector β_1 measures the association between the prior beliefs of i and the grade i assigns to institution g.

Table 2 presents the results. The odd-numbered columns display the results of estimating equation (1).xvi Several important conclusions are evident. First, as expected, respondents’ evaluations of both Tennessee schools in general and TDOE are increasing in their beliefs about statewide student math performance - the better an individual thinks student performance is, the higher grade that was given. Those citizens who overestimated student performance the most (i.e., a performance guess of 80-100% performing at grade level) also gave the highest average grade to the educational institution. However, this pattern is least true for evaluations of the local school board (Model 5). Consistent with the murkier connection between statewide performance and the efficacy of one’s local board, beliefs about statewide performance are largely uncorrelated with local board evaluations.

Second, the average effect of receiving the informational update containing the true student performance level is negative and statistically distinguishable from zero at
conventional levels for all three institutions. Moreover, the magnitude of the effect is sensibly ordered: the effects are largest for the evaluation of Tennessee schools (Model 1) and the TDOE (Model 3) which are most responsible and relevant for statewide performance, but there is little effect of learning about statewide performance on citizens’ evaluations of local school boards (Model 5).xvii

These results assume that the effect of information does not depend on prior beliefs. If the performance update treatment affects institutional evaluations via adjustment of respondents’ posterior beliefs, however, the treatment effect should be the greatest among those respondents who most overestimate student performance. To test this hypothesis, we control for a possible interaction between prior beliefs and treatment status using the specification of equation (2):

$$\Pr(Y_{ig} = \{A, B, C, D, F\}) = \beta_0 + \beta_1 \text{Belief}_i + \beta_2 T_i + \beta_3 (T_i \times \text{Belief}_i) + X_i \delta + \epsilon_i$$ (2)

The even-numbered columns of Table 2 report the results of estimating equation (2) by ordered probit. Several important refinements emerge. First, columns 2 and 4 reveal that the negative effect of the performance update is driven by the substantially lower performance evaluations given to Tennessee schools and TDOE by those respondents who most overestimate student performance. Figure 2 graphs the substantive magnitude of this effect on the probability of assigning a grade of A. Margins are shown separately for those in the treatment and control groups, with the vertical bracketed lines corresponding to 95% confidence intervals. (The effects are substantively similar using the probability of assigning a B or higher, and the supplemental appendix replicates the results using OLS.)

Figures 2a and 2b reveal that the provision of objective performance information similarly affects citizens’ evaluations of Tennessee schools and TDOE. In both cases, the
blue line denoting the opinions of the control group shows that in the absence of information, the respondents who most severely overestimate student performance are also much more inclined to assign a high grade to institutional performance. In contrast, those given the information update in the treatment group (red line), have a roughly equal low probability of assigning the highest grade regardless of their prior belief. Because respondents are equally likely to assign a grade of “A” regardless of the initial beliefs after they are told the actual level of performance, this pattern is consistent with the evaluations being based on the provided information rather than prior beliefs or individual experience.

Figure 2c provides an important contrast by showing that the information has almost no effect on citizens’ evaluations of local school boards. This null effect is consistent with the observation that evaluations of local school boards should not be affected by the information provided by the experimental condition because information about statewide performance is irrelevant for assessing the performance of the school board.

We also tested whether the effect of information on evaluations varied according to the likely importance of the issue of education to the respondent. We did so using measures of issue salience based on having a child in school, owning a home, and naming education as the top priority for state government. We might expect salience to matter, for example, if it predicts stronger prior beliefs that are more difficult to update. For instance, parents can access numerous sources of information—including their day-to-day interaction with their children’s schools—about school performance on a variety of dimensions in forming opinions, which may make them less responsive to test score information. We re-estimated equation (1) including interactions between each measure of issue salience and the performance assessment indicators and the treatment indicator.
Table A1 in the supplemental appendix reveals no evidence that there are differences in the treatment effect related to the saliency of the issue.xviii

The Effect of Performance Information on Support for Policy Reforms

Ostensibly, citizens’ support for a policy initiative is driven in part by perceptions that it can address deficiencies in the status quo. If so, does learning about the status quo change opinions about specific public policies? More specifically, does learning that student performance is lower than expected increase citizens’ support for education reforms?

We answer this question for six policies common to current education reform debates: test-based performance pay for teachers, No Child Left Behind, governmental provision of pre-kindergarten programs, public vouchers for private school attendance, charter schooling, and differential pay for teachers to work in low-income schools. Following the 3 institutional evaluation questions, each respondent was asked whether or not they support each of these 6 policies using the questions listed in supplemental appendix B. The effect of information was identified by re-estimating equations (1) and (2) to predict the support for each policy separately using probit models.

Figure 3 summarizes the effect of information on policy opinions by graphing the predicted probabilities of supporting each reform for otherwise typical and identical individuals in the treatment and control groups and allowing the effect of information to vary by prior beliefs about student performance (equation 2).xix The six panels reveal that the effect of information is quite different from the effects evident in prior sections

First, there is not a decreasing (or increasing) association between a respondent’s prior beliefs about student performance in the status quo—shown on the x-axis—and the
likelihood of supporting *any* of the examined reforms. There is slight evidence of a U-shaped relationship (i.e., respondents in the 40-59% or 60-79% categories having statistically significantly lower likelihoods of support than categories on the ends) for three of the six policies (performance pay, vouchers, and charter schools), but the reason for this relationship is unclear.

Second, providing correct information about the status quo has no effect on the probability that a citizen supports any of the policies. Regardless of prior beliefs, receiving information about actual student performance has any impact whatsoever on the support for some of the reforms that have been proposed to increase student performance.

What may explain the pervasive null effect of information on the support for proposed reforms? One possibility is simply that respondents do not believe that any of these reform strategies are likely to produce changes in student achievement, so they do not update their beliefs in response to this information. Alternatively, the Bayesian learning model described in section 1 reveals that performance information and its updating will not substantially affect opinion formation if prior beliefs about policies are strong. Although citizens possess inaccurate beliefs about student performance and are seemingly willing to update them when called upon to evaluate educational institutions, it is possible that opinions about public policies are more strongly held because they are closely tied to the individuals’ ideology and partisanship. If partisan or ideological beliefs drive policy preferences, or if there are partisan and ideological disagreements about the efficacy of the various policies (and their costs), correcting mistaken beliefs about student performance may be insufficient to change opinions about the policies themselves (Rahn 1993). In other words, these results would be consistent with citizens’ policy evaluations being primarily
driven by party and ideology (Campbell et. al. 1960; Jacoby 1998; Green, Palmquist and Schickler 2002; Highton and Kam 2011).

Examining the covariates of these models reveals evidence consistent with this explanation. Two factors—political ideology and race—are the only consistent predictors of respondents’ policy opinions across the various specifications. The joint test that the ideology and party variables are statistically indistinguishable from zero can be rejected at the 0.05 level in four of the six models (performance pay and NCLB are the exceptions). Perhaps because of the racial gap in student performance, black respondents are more supportive of five of the six proposed reforms (differentiated pay for teachers in low-income schools is the exception).

The Effect of Information about the Racial Achievement Gap

So far, we have considered the effect of providing performance information about overall level of student performance. In reality, citizens may also be responsive to other types of performance information and different citizens may respond differently depending on the type of information. In education policy, for example, a significant amount of research and public debate focuses on the achievement gaps between students with different backgrounds, particularly with respect to race (Hochschild and Shen 2012). Closing the achievement gap between white students and black students—estimated to be a standard deviation or more on standardized tests (Fryer and Levitt 2004)—is a demonstrably important goal in education and a central aim of many education reform efforts. In evaluating the performance of education institutions or making decisions about
their support for particular education policy changes, do citizens’ perceptions about the relative performance of white and black students inform their evaluations?

To characterize the effect of the information, we use conditions 4 and 5 in our survey experiment (see Table 1). Subjects in these conditions were given the overall performance prompt asking them to estimate the percentage of elementary and middle school students testing at grade level in math (performance prompt), but they were also asked to estimate the difference in this percentage for white and black students (achievement gap prompt). Respondents in condition 4 serve as the control group. In Condition 5 (treatment), respondents were given an information update containing the true percentages for overall performance (34%) and the percentage gap between white and black students (22 percentage points).

Table 3 reports the associations between prior beliefs about overall performance and race-related performance differences and institutional evaluations. The coefficients for prior beliefs about overall performance reported in the top half of Table 3 reveal that institutional evaluations increase the more a respondent overestimates overall student performance. This pattern is consistent with the results of Table 2. However, in contrast to the prior results, the coefficients for prior beliefs regarding the race-related achievement gap show no clear pattern and most are indistinguishable from the reference group of those who believe that there is no gap. All else equal, individuals who think that there is no difference in student achievement and those who think that the performance gap is more than 35% provide the same grade to educational institutions. This finding suggests that while evaluations of education officials depend on beliefs about overall student
performance, evaluations do not depend on beliefs regarding race-related differences in student performance.

To identify whether priming or updating information about race-based achievement differences affects citizens’ opinions, we pool data from all subjects in conditions 2 through 5 and examine their institutional evaluations. We estimate a version of equation (1) that controls for prior beliefs about student performance and includes indicators for which condition the respondent was assigned. An indicator’s coefficient tells us the average response change that is attributable to random assignment to that condition relative to the excluded category (condition 2, the control group for the performance experiment).xvi

There are several comparisons of interest. A significant coefficient on condition 4 (the control group for the equity experiment) would suggest that receiving the equity prime (i.e., the question about race-related differences, but not the update) in addition to the overall performance prime affects opinions because the only difference between conditions 2 and 4 is that condition 4 respondents were also asked to think about the black-white test score gap (and neither group was given updated information). A significant difference between the coefficients for conditions 4 and 5 would suggest that receiving the actual information about student performance update changes opinion relative to simply being asked about performance and equity (without being told the actual performance). Lastly, a significant difference between conditions 3 and 5 (the two treatment groups) would suggest that receiving information about the achievement gap in addition to receiving information about overall performance changes the average response.

Table 4 summarizes the main results (Table A2 in the supplemental appendix contains the full results). Interestingly, respondents in condition 4 and who were primed to
think about the achievement gap (but not updated) gave more negative institutional evaluations in two of the three models; the coefficient is negative but not significant at conventional levels in the third. Comparing the coefficients for Conditions 4 and 5 reveals that the coefficients are statistically distinguishable only for evaluations of all Tennessee schools. The effect of being informed about actual student performance only matters for evaluations of Tennessee schools. This result is surprising given the effect of Condition 3 in Table 4 that show that receiving only the overall performance update negatively affects institutional evaluations.

Moreover, in only one model—again, for all Tennessee schools—does receiving an informational update about overall performance and equity result in a different response from being updated about overall performance alone. Somewhat surprisingly, the coefficient for condition 5 is smaller, meaning that receiving additional information about the race-related achievement gap reduces the impact of being updated about overall performance.

We also replicated this analysis for the six policy reforms. Supplemental appendix Table A3 shows that (1) prior beliefs about the achievement gap are not clearly related to support for policy reforms, and (2) receiving updated information has no effect. Instead, opinions about educational reforms are best explained by partisan self-identification.

Overall, the effect of being updated on both overall student performance and the racial achievement gap is largely consistent with the effects of being informed only about overall performance. We cannot determine from these data why we find no effect of achievement gap information. One possibility is that citizens’ opinions regarding education policy are not influenced by achievement gap concerns. Another is that receiving
information on race-based gaps primes respondents to consider aspects of student achievement that are heavily correlated with family characteristics and thus beyond the control of schools. Alternatively, it could be simply that providing two pieces of information prevented respondents from being able to cognitively process the second piece.

Discussion and Conclusion

Assessing citizens’ responsiveness to new information is critical for determining the prospects for democratic accountability. Unless citizens change their opinions and beliefs in response to new information, it is hard to imagine how votes cast at the ballot box could reflect an informed assessment of public officials’ performance and create the correct incentives for elected officials (Achen and Bartels 2002). To form accurate beliefs, however, requires that citizens be able to appropriately update their existing beliefs in response to new information. If citizens update their beliefs in biased ways based on prior beliefs and partisan leanings, or if they fail to update beliefs, the prospects for democratic accountability may be dim, a particularly disconcerting possibility in areas like education where the stakes are high and many reforms either implicitly or explicitly depend on public pressure to improve performance.

Our results suggest mixed implications from the perspective of democratic accountability. Despite Tennessee’s long-standing emphasis on reporting educational outcomes and the large number of existing policies utilizing such assessment information—which make it unlike many other states—most citizens overestimate student performance and therefore hold overly favorable assessments of the institutions responsible for education policy. However, consistent with prior work (e.g., Chingos, Henderson, and West 2012; James 2011), we also find that citizens’ assessments of
educational institutions respond in seemingly rational ways to performance-related information. Not only are assessments driven by the level of student performance rather than ideological predispositions, but the institutions that are most closely associated with statewide performance are most affected by information about statewide performance.

To be clear, the fact that citizens’ evaluations of educational institutions are responsive to performance-based information is not necessarily evidence of democratic accountability in action because this is only the first step of what is required for policy performance-based accountability. Our experimental design allows us to cleanly identify the effect of learning about various dimensions of student performance and the possibility of priming, but we cannot determine whether the effects are transient or long-lasting (but see, for example, Chong and Druckman 2010). Moreover, even if citizens are completely informed and unsatisfied with educational performance, they may be reluctant to punish elected officials and create required electoral consequences for a lack of performance in secondary education if they are content with other issues (James 2011). Creating the incentives necessary for democratic accountability in education policy may be difficult given the many possible dimensions of interest to citizens. Future research might link experimental data like ours to voter files or later survey responses about voting behavior to assess whether information provision affects subsequent turnout or voting choices as a means of delving further into these processes. Of course, voting behavior is but one mechanism through which citizens can express dissatisfaction with public institutions, and future research might delve into the connections between performance information and other mechanisms, such as advocacy or residential or school mobility, as well.
The fact that citizens’ opinions about particular policies designed to improve educational performance are unresponsive to learning about student performance in the status quo is also potentially sobering for the prospects of citizen-led policy change. Unlike the results in Henderson, Howell, and Peterson (2014), learning that educational performance is worse than expected does not cause any change in the support for various policies aimed to increase student performance, perhaps reflecting the conflicting state of both the evidence base and policy discourse surrounding the effectiveness of these reform initiatives. Instead, citizens’ opinions about education policies are primarily driven by ideological and partisan affiliations. These affiliations may represent prior beliefs that are too strong to be affected by the information we provide, or perhaps citizens base their policy opinions on beliefs or information unrelated to average student performance. In either case, consistent with the conclusions of other work highlighting the importance of elite messaging for public opinion change (e.g., Ladd and Lenz 2009; Noel 2013), changing the public’s support for particular reforms would appear to depend on the actions of partisan and ideological leaders. Clearly, investigation of the factors underlying education policy opinion formation would be another fruitful avenue for research.

Works Cited

Bios:

Joshua D. Clinton is a Professor of Political Science, Department of Political Science and Co-Director of the Center for the Study of Democratic Institutions at Vanderbilt University.
PMB 505, 230 Appleton Place, Nashville, TN 37203-5721.
EMAIL: josh.clinton@vanderbilt.edu

Jason A. Grissom is an Assistant Professor of Public Policy and Education, Peabody College of Education and Human Development, Vanderbilt University. PMB 414, 230 Appleton Place, Nashville, TN 37203-5721.
EMAIL: jason.grissom@vanderbilt.edu
Figure 1: Distribution of Citizens’ Beliefs

Note: The figures provide the distribution of responses using the 1,328 respondents in conditions 2-5 who were asked the overall performance question (left) and the 650 respondents in conditions 4-5 who were asked about possible racial disparities in student performance. (right) The vertical line denotes the true percentage in each instance.
Figure 2: The Effect of Prior Beliefs on the Effect of Information

2a: Probability of Assigning Tennessee Schools a Grade of A

![Predictive Margins for Pr(Grade TN Schools = A)]

2b: Probability of Assigning the Tennessee Department of Education a Grade of A

![Predictive Margins for Pr(Grade Dept of Ed = A)]

2c: Probability of Assigning the Local School Board a Grade of A

![Predictive Margins for Pr(Grade Local School Board = A)]
Figure 3: Beliefs about Student Performance and Support for Education Policy Reform with and without Informational Updating

3a: Teacher Performance Pay

3b: No Child Left Behind

3c: State-Provided Pre-Kindergarten

3d: Private School Vouchers

3e: Charter Schools

3f: Higher Pay for Teachers in Low-Income Schools

Predictive Margins

Estimate of percentage of students at grade level

Control Treatment

Pr(Support for Teacher Performance Pay)

Pr(Support for NCLB Reauthorization)

Pr(Support for State-Provided Pre-Kindergarten)

Pr(Support for Vouchers)

Pr(Support for Charter Schools)

Pr(Support for Higher Pay for Teachers in Low-Income Schools)

Estimate of percentage of students at grade level

Control Treatment

Don't Know

0-19% 20-39% 40-59% 60-79% 80-100%

0-19% 20-39% 40-59% 60-79% 80-100%

0-19% 20-39% 40-59% 60-79% 80-100%

0-19% 20-39% 40-59% 60-79% 80-100%

0-19% 20-39% 40-59% 60-79% 80-100%

0-19% 20-39% 40-59% 60-79% 80-100%

0-19% 20-39% 40-59% 60-79% 80-100%
<table>
<thead>
<tr>
<th>Condition 1: No Prime or Correction</th>
<th>Condition 2: Performance Prime (Control)</th>
<th>Condition 3: Performance Prime and Correction (Treatment)</th>
<th>Condition 4: Performance + Achievement Gap Prime (Control)</th>
<th>Condition 5: Performance + Achievement Gap Prime and Correction (Treatment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Question</td>
<td>Performance Question</td>
<td>Performance Question</td>
<td>Performance Question</td>
<td>Correct Answer Provided [Both]</td>
</tr>
<tr>
<td>Correct Answer Provided</td>
<td>Achievement Gap Question</td>
<td>Achievement Gap Question</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N=150</td>
<td>N=330</td>
<td>N=345</td>
<td>N=330</td>
<td>N=345</td>
</tr>
</tbody>
</table>
Table 2: The Effect of Prior Beliefs about Performance on Evaluations of Education Institutions

<table>
<thead>
<tr>
<th>Grade for:</th>
<th>Tennessee Schools</th>
<th>TN Dept. of Ed.</th>
<th>Local School Board</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Performance guess:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-39%</td>
<td>0.147</td>
<td>0.157</td>
<td>0.151</td>
</tr>
<tr>
<td></td>
<td>(0.204)</td>
<td>(0.279)</td>
<td>(0.209)</td>
</tr>
<tr>
<td>40-59%</td>
<td>0.244</td>
<td>0.313</td>
<td>0.339*</td>
</tr>
<tr>
<td></td>
<td>(0.196)</td>
<td>(0.275)</td>
<td>(0.201)</td>
</tr>
<tr>
<td>60-79%</td>
<td>0.470**</td>
<td>0.879***</td>
<td>0.652***</td>
</tr>
<tr>
<td></td>
<td>(0.200)</td>
<td>(0.284)</td>
<td>(0.205)</td>
</tr>
<tr>
<td>80-100%</td>
<td>0.908***</td>
<td>1.403***</td>
<td>1.353***</td>
</tr>
<tr>
<td></td>
<td>(0.280)</td>
<td>(0.378)</td>
<td>(0.281)</td>
</tr>
<tr>
<td>Don't Know</td>
<td>0.238</td>
<td>0.201</td>
<td>0.479**</td>
</tr>
<tr>
<td></td>
<td>(0.223)</td>
<td>(0.308)</td>
<td>(0.232)</td>
</tr>
<tr>
<td>Received performance update</td>
<td>-0.55***</td>
<td>-0.299</td>
<td>-0.37***</td>
</tr>
<tr>
<td></td>
<td>(0.098)</td>
<td>(0.344)</td>
<td>(0.098)</td>
</tr>
<tr>
<td>Received performance update x Performance guess:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-39%</td>
<td>0.021</td>
<td>-0.127</td>
<td>0.773*</td>
</tr>
<tr>
<td></td>
<td>(0.403)</td>
<td>(0.415)</td>
<td>(0.415)</td>
</tr>
<tr>
<td>40-59%</td>
<td>-0.143</td>
<td>-0.081</td>
<td>0.383</td>
</tr>
<tr>
<td></td>
<td>(0.388)</td>
<td>(0.397)</td>
<td>(0.396)</td>
</tr>
<tr>
<td>60-79%</td>
<td>-0.754*</td>
<td>-0.391</td>
<td>0.779*</td>
</tr>
<tr>
<td></td>
<td>(0.396)</td>
<td>(0.404)</td>
<td>(0.405)</td>
</tr>
<tr>
<td>80-100%</td>
<td>-1.127**</td>
<td>-1.020*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.559)</td>
<td>(0.554)</td>
<td>(0.549)</td>
</tr>
<tr>
<td>Don't Know</td>
<td>0.117</td>
<td>0.368</td>
<td>0.909**</td>
</tr>
<tr>
<td></td>
<td>(0.435)</td>
<td>(0.446)</td>
<td>(0.443)</td>
</tr>
<tr>
<td>Observations</td>
<td>511</td>
<td>511</td>
<td>499</td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>0.061</td>
<td>0.072</td>
<td>0.075</td>
</tr>
</tbody>
</table>

Ordered probit coefficients shown. Models also condition on control variables. Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01.
Table 3: Prior Beliefs about Achievement Gaps Do Not Predict Institutional Evaluations

<table>
<thead>
<tr>
<th>Grade for:</th>
<th>Tennessee Schools</th>
<th>TN Dept. of Ed.</th>
<th>Local School Board</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Performance guess:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-39%</td>
<td>-0.04 (0.21)</td>
<td>0.12 (0.21)</td>
<td>0.32 (0.21)</td>
</tr>
<tr>
<td>40-59%</td>
<td>0.10 (0.20)</td>
<td>-0.01 (0.20)</td>
<td>0.48** (0.20)</td>
</tr>
<tr>
<td>60-79%</td>
<td>0.29 (0.21)</td>
<td>0.17 (0.21)</td>
<td>0.72*** (0.21)</td>
</tr>
<tr>
<td>80-100%</td>
<td>1.19*** (0.29)</td>
<td>0.88*** (0.29)</td>
<td>0.90*** (0.29)</td>
</tr>
<tr>
<td>Don't Know</td>
<td>0.30 (0.23)</td>
<td>0.29 (0.23)</td>
<td>0.50*** (0.23)</td>
</tr>
<tr>
<td>Achievement gap guess:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5%</td>
<td>-0.01 (0.30)</td>
<td>0.32 (0.30)</td>
<td>0.19 (0.30)</td>
</tr>
<tr>
<td>6-10%</td>
<td>-0.10 (0.25)</td>
<td>0.01 (0.25)</td>
<td>-0.17 (0.25)</td>
</tr>
<tr>
<td>11-15%</td>
<td>-0.11 (0.22)</td>
<td>0.02 (0.22)</td>
<td>-0.20 (0.22)</td>
</tr>
<tr>
<td>16-20%</td>
<td>-0.27 (0.23)</td>
<td>-0.32 (0.23)</td>
<td>-0.03 (0.22)</td>
</tr>
<tr>
<td>21-25%</td>
<td>-0.02 (0.22)</td>
<td>0.01 (0.22)</td>
<td>0.08 (0.22)</td>
</tr>
<tr>
<td>26-30%</td>
<td>-0.05 (0.24)</td>
<td>-0.26 (0.24)</td>
<td>0.03 (0.24)</td>
</tr>
<tr>
<td>31-35%</td>
<td>-0.25 (0.23)</td>
<td>-0.30 (0.23)</td>
<td>-0.41* (0.23)</td>
</tr>
<tr>
<td>35%+</td>
<td>-0.10 (0.20)</td>
<td>-0.30 (0.20)</td>
<td>-0.16 (0.20)</td>
</tr>
<tr>
<td>Don't Know</td>
<td>-0.48** (0.19)</td>
<td>-0.34* (0.19)</td>
<td>-0.18 (0.19)</td>
</tr>
<tr>
<td>Received performance and equity update</td>
<td>-0.20** (0.10)</td>
<td>-0.04 (0.10)</td>
<td>0.03 (0.10)</td>
</tr>
<tr>
<td>Observations</td>
<td>509</td>
<td>504</td>
<td>507</td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>0.051</td>
<td>0.042</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Ordered probit coefficients shown. “No difference” is the omitted category for the equity guess. Models also condition on control variables. Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01.
Table 4: Equity Prime, Equity Information Update, and Institutional Evaluations

<table>
<thead>
<tr>
<th>Grade for:</th>
<th>Tennessee Schools</th>
<th>TN Dept. of Ed.</th>
<th>Local School Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>Condition 3: Received Overall Performance Prime and Update</td>
<td>-0.54***</td>
<td>-0.33***</td>
<td>-0.26***</td>
</tr>
<tr>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td></td>
</tr>
<tr>
<td>Condition 4: Received Performance and Equity Prime</td>
<td>-0.11</td>
<td>-0.17*</td>
<td>-0.17*</td>
</tr>
<tr>
<td>(0.09)</td>
<td>(0.09)</td>
<td>(0.09)</td>
<td></td>
</tr>
<tr>
<td>Condition 5: Received Performance and Equity Prime and Update</td>
<td>-0.30***</td>
<td>-0.24**</td>
<td>-0.14</td>
</tr>
<tr>
<td>(0.09)</td>
<td>(0.10)</td>
<td>(0.09)</td>
<td></td>
</tr>
<tr>
<td>p-value from test of equality of coefficients for Conditions 4 and 5</td>
<td>0.04</td>
<td>0.42</td>
<td>0.70</td>
</tr>
<tr>
<td>p-value from test of equality of coefficients for Conditions 3 and 5</td>
<td>0.01</td>
<td>0.35</td>
<td>0.18</td>
</tr>
<tr>
<td>Observations</td>
<td>1031</td>
<td>1013</td>
<td>1018</td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>0.047</td>
<td>0.048</td>
<td>0.028</td>
</tr>
</tbody>
</table>

Ordered probit coefficients shown. Models run on pooled sample from Conditions 2 through 5. Models also condition on performance guess and control variables. Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01.

1 Other models of political learning would also suggest that opinions are responsive to new information. For example, the “on-line” model of Lodge, Steenberger and Brau (1995) would predict that new information is immediately used to update opinions, and prior beliefs only define the baseline evaluation that is being updated. The survey-response model of Zaller (1992) and MacGuire (1969) predicts that survey responses are responsive if only because exposure to the information will prime that consideration and cause respondents to use the information when constructing a response to the survey question.

2 The incentive for performance may also be elite-driven, but the fact that elite pressure may be sufficient to ensure accountability does not lessen the importance of exploring the extent to which bottom-up accountability is possible.

3 State departments of education are overseen by elected superintendents in 14 states. In other states, including Tennessee, the department is overseen by an appointed superintendent who is in turn overseen by an elected governor or board of education.

4 Of course, other models of political learning would also suggest that opinions are responsive to new information. For example, the “on-Line” model of Lodge, Steenberger and Brau (1995) would predict that new information is immediately used to update opinions, and prior beliefs play no role in the process other than defining the baseline evaluation that is being update. The survey-response model of Zaller (1992) and MacGuire (1969) would suggest that opinions would be responsive if only because exposure to the information will prime that consideration and cause respondents to use the information when constructing a response to the survey question being asked.

5 This possibility highlights the need to control for existing beliefs when evaluating the effect of new information because the new information will obviously only affect those for whom the information is “new.”

6 For example, in our case, Democrats may support educational institutions regardless of the performance of these institutions, or else they may be less supportive in Tennessee because the statewide policies are a result of the Republican controlled legislature and governorship.
though neither race nor homeownership is significant for the other two dependent variables.

Exceptions. First, being a Democrat positively predicts the evaluation of all three institutions, as does having a child in school. African Americans and homeowners evaluate the local school board significantly worse, though neither race nor homeownership is significant for the other two dependent variables.

vi We focus on math performance to simplify data collection; in practice, math and reading performance are very highly correlated across schools. NCLB also requires subgroup-level reporting for other groups, including economically disadvantaged students and students with disabilities.

vii Respondents were asked to assess the performance of Tennessee’s public schools via the question, “Based on state standards, what percent of elementary and middle school students in all schools in Tennessee do you think performed at grade level or better on Tennessee’s end-of-grade math tests?” Respondents were provided with five possible ranges within which to answer (0-19%, 20-39%, 40-59%, 60-79%, 80-100%). To assess the possible achievement gap between black and white students, we asked: “Now thinking about the performance of white and black elementary and middle school students, historically white students have performed more strongly on state math tests than black students. What do you think was the difference between the percentage of white students and black students who performed at grade level or better on Tennessee’s end-of-year math tests?” Respondents were provided with 9 possible ranges within which to answer (No difference in performance, 0-5% more white students than black students were at grade level, 6-10%, 11-15%, 16-20%, 21-25%, 26-30%, 31-35%, More than 35% more white students than black students were at grade level).

viii After their response was recorded but before being asked the assessment and policy preference item, for Treatment 3 the interviewer provided the actual performance level by reading: “You thought that <fill in based on their answer> of elementary and middle school students in Tennessee last year performed at grade level or better on Tennessee’s end-of-grade math tests. The actual percentage of students performing at grade level or better on Tennessee’s end-of-grade math tests was 34%.” For treatment 5, the respondents received: “You thought that <fill in with performance response> of elementary and middle school students in Tennessee last year performed at grade level or better on Tennessee’s end-of-grade math tests. The actual percentage of students performing at grade level or better on Tennessee’s end-of-grade math tests was 34%. You also thought that <fill in with gap response>. Actually, the gap between the performance of white students at grade level and the percentage of black students at grade level on the Tennessee state math tests was 22 percentage points.” The design is similar to the one employed by Cruces, Truglia, and Tetax (2011) to study the effect of knowing the income distribution on preferences towards redistribution.

x This number was based on the fraction of students in grades kindergarten through eighth grade who scored at level “proficient” or better on the 2009-10 round of statewide standardized tests. State-level data from 2010-11, the most recently completed academic year, were not yet publicly available at the time of the survey, so respondents could not know statewide results from those tests. When those results were released in January 2012, they showed that for the 2010-11 school year, 41% of tested elementary and middle school students attained grade-level proficiency or better in mathematics, a 7 percentage point increase.

xi If we examine the distribution of knowledge among the 424 respondents in conditions 4 and 5 who answered both the performance and the racial disparity question with a response other than “don’t know,” the responses exhibit a slightly negative correlated (Spearman’s \(r = -0.15, p < 0.01 \)) -- the higher a respondent thought the overall performance of the state was, the smaller the racial difference in performance was thought to be. Interestingly, black and white respondents provided qualitatively similar assessments of the black-white gap (\(\chi^2 = 5.8, p = 0.76 \)).

xii This question was asked well before the experimental treatments so as to not confound the effects or be confounded by the treatments.

xiv The difference in average evaluations for “schools in Tennessee” is -.06 (with a standard error of .10), for “the Tennessee Department of Education” the difference is .04 (.11), and for “your local school board” the difference is -.05 (.12).

xv The smallest \(p \)-value for the hypothesis test of no difference is .14, followed by .42 and .66.

xvi Control variables are omitted from the tables for brevity, though see Table A1 in the supplemental appendix for full results. Most are statistically indistinguishable from zero across models, with a few notable exceptions. First, being a Democrat positively predicts the evaluation of all three institutions, as does having a child in school. African Americans and homeowners evaluate the local school board significantly worse, though neither race nor homeownership is significant for the other two dependent variables.
We also investigated whether the impact of the treatment varied by the performance of the respondent’s school district. For this analysis, we first had respondents’ phone numbers geocoded to their billing addresses and used geographic information systems (GIS) technology to place those addresses in school districts. Next, we obtained 2011 district report card data from the TDOE web site. These data include district mean student achievement information for K-8 math and reading and high school end-of-course tests, plus ACT scores, high school graduation rates, and suspension rates. Factor analysis of these measures showed 1 underlying latent trait, which we take to be district performance. Factor scores from this analysis were then assigned to each respondent as a measure of the performance of the district in which he or she resided. We then re-estimated the odd-numbered models in Table 2, interacting the treatment variable with the district performance measure. This interaction was not significant for any of the models, nor was an indicator for being below the mean. Thus, it does not appear that receiving performance information affects institutional evaluations differently in relatively high and low performing districts.

There is some evidence in Table A1 that homeowners are not as negatively impacted by the performance update as non-homeowners when evaluating TDOE.

Estimating the specification of equation (1) reveals substantively identical effects. Given the number of tables needed to display the 12 regression specifications, the results are available from the authors upon request.

A comparable set of probit models run for the six policy opinion variables also show scant evidence of a pattern between prior beliefs about equity and opinions.

Determining if information about overall performance and equity differentially affect opinion formation at different points in the distribution of prior beliefs is more complicated because respondents are simultaneously updated on two dimensions at once. Recoding respondents as having prior beliefs that underestimated, overestimated, or correctly assessed the true performance of the Tennessee education system on both the overall performance and the equity dimension and estimating models predicting institutional evaluations along with treatment interactions reveals no statistically significant results.

The results show some evidence that achievement gap information may be important for opinion formation for some policies. First, whereas receiving information about overall performance only (Condition 3) is unrelated to support for any of the policies, for two of them—charter schools and vouchers—respondents are more likely to express support when given the information update containing information about both performance and equity (the coefficients for Conditions 4 and 5 are statistically different from one another). Moreover, for two of the policies—vouchers and charter schools—we can reject the null hypothesis that Conditions 3 and 5 are the same. In both cases, the coefficient for Condition 5 is more positive, suggesting that receiving information about equity (and performance) increases support for the policy relative to receiving only information about performance, suggesting that respondents may view vouchers and charters as potentially effective interventions for reducing achievement gaps.