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Abstract

We consider how some methods of uniform and nonuniform interpola-
tion by translates of radial basis functions – specifically the so-called general
multiquadrics – perform in the presence of certain types of noise. These
techniques provide some new avenues for interpolation on bounded domains
that is different from the existing literature by using fast Fourier transform
methods to approximate cardinal functions associated with the RBF.

Key words and phrases : Radial Basis Functions, Nonuniform Sampling,
Paley–Wiener Functions, Cardinal Functions

2000 AMS Mathematics Subject Classification 41A25, 41A30, 42B08

1 Introduction

The classical sampling problem may be asked in two parts: first, for a given class
of signals, does it suffice to know the samples, or values, of a signal at a given
discrete set of points in order to recover the signal in some manner? Second,
how might the signals be recovered, and moreover, how might it be done in a
computationally efficient way? There are many theoretical and practical answers
to this problem in various settings, and perhaps the most fundamental result
is the classical Whittaker–Kotelnikov–Shannon sampling theorem [26], which
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states that L2(R) functions whose Fourier transform is supported on [−π, π], for
example, may be recovered in L2 and uniformly via

f(x) =
∑
j∈Z

f(j)
sin(π(x− j))
π(x− j)

.

While Whittaker [30] saw the series above as a cardinal interpolation series, i.e.
evaluating the right-hand side at k ∈ Z produces f(k), it was later shown that
the convergence was uniform for bandlimited signals.

The drawback of this sampling formula for practical considerations is that
the series is difficult to approximate well by truncation since the cardinal sine
function sinc(x) := sin(πx)/(πx) decays slowly (like |x|−1). There is an abun-
dance of literature tracing back to this fundamental theorem, and correspond-
ingly many techniques to get around the slow decay of sinc. One such method
is oversampling, however this can be costly in practice. Another method inti-
mately related to the analysis here is what I. J. Schoenberg, the father of spline
theory, terms summability methods. Specifically, one attempts to replace sinc
in the series above by another function which decays more rapidly, nonetheless
requiring that the new series is close to the original signal in whatever way one
wants to measure (e.g. in L2 or uniformly).

Some study of summability methods using cardinal functions formed from
translates of a single radial basis function (RBF) – one which satisfies φ(x) =
φ(|x|)– has been made [3, 4, 5, 11, 12, 13, 17, 24, 27]. Cardinal functions are
those which satisfy the interpolatory condition L(k) = δ0,k, k ∈ Z, where of
course sinc is the canonical example. Such cardinal functions fashioned from
radial basis functions have a special form in the Fourier transform domain as
discussed in the sequel.

Building on these results, there are many techniques for sampling at nonuni-
form sets in Rd. Of course, the analysis is typically much simpler in one dimen-
sion, whereas many of the techniques that are currently known in higher dimen-
sions rely on the geometry of the points in Rd in a nontrivial way. Even the first
part of the classical sampling question leaves some deep open questions in this
area and has seen links with many interesting realms of mathematics including
space-tiling, convex geometry, basis theory, and abstract harmonic analysis. Of
interest to this work are those nonuniform sampling methods which use RBFs
[8, 10, 16, 25]. For a survey of some of these themes using multiquadrics, of
which this article is a continuation, consult [9].

The primary contribution here is to analyze what happens to various inter-
polation schemes involving RBFs for either bandlimited or time-limited signals
in the presence of noise. We consider two kinds of noise and the effect they
have on the sampling and reconstruction of certain classes of signals, and we
also give some indication of the computational feasibility and methodology for
performing the sampling scheme. The primary method will be that of sampling
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via interpolation, and consequently, this allows us to compare our method with
the traditional literature on RBF interpolation on compact domains.

The rest of the paper is laid out as follows: we list some basic definitions
and facts in Section 2, followed by the definition of the interpolation method in
Section 3. Section 4 recalls the recovery results in this setup for both uniform and
nonuniform sampling. Section 5 uses the combination of uniform and nonuniform
results from the previous section to determine what happens under two distinct
types of noise. Then, in Section 6, approximation rates in terms of the spacing
of the samples in one dimension and the effect of noise on them are considered.
Section 7 discusses how our method compares with classical RBF interpolation
theory for compactly supported functions, and we end with a brief discussion of
extensions in Section 8.

2 Definitions and Basic Notions

If Ω ⊂ Rd is a set of positive Lebesgue measure, then let Lp(Ω) be the typi-
cal Banach space of p–integrable (or essentially bounded in the case p = ∞)
Lebesgue measurable functions on Ω with its usual norm. If no set is specified,
it is to be assumed that Ω = Rd. Similarly, `p(I) are the usual sequence spaces
of p–summable sequences indexed by a set I, and if no set is specified, we mean
`p(Zd). Let C0(Rd) be the space of continuous functions on Rd which vanish at
infinity.

For k ∈ N, let W k
p (Ω) be the Sobolev space of Lp(Ω) functions whose deriva-

tives of order at most k are all in Lp(Ω). If α = (α1, . . . , αd) is a multi-index,
then let Dα be the derivative operator given by Dαg = ∂α1

∂x
α1
1

. . . ∂
αd

∂x
αd
d

g. Then the

seminorm on the Sobolev space may be defined by

|g|Wk
p (Ω) := max

|α|=k

(∫
Ω
|Dαg(x)|pdx

) 1
p

= max
|α|=k
‖Dαg‖Lp(Ω),

and the following is a norm on W k
p : ‖g‖Wk

p (Ω) := ‖g‖Lp(Ω) + |g|Wk
p (Ω). Again, if

no set is specified, we refer to W k
p (Rd).

For a function f ∈ L1, define its Fourier transform via

f̂(ξ) :=

∫
Rd
f(x)e−i〈x,ξ〉dx,

where 〈·, ·〉 is the usual scalar product on Rn. Thus under suitable conditions
(for example, if f is continuous and f̂ ∈ L1) the following inversion formula
holds: f(x) = (f̂)∨(x) = (2π)−d

∫
Rd f̂(ξ)ei〈ξ,x〉dξ. The Fourier transform can

be uniquely extended to a linear isometry of L2 onto inself, and under this
normalization, the Parseval/Plancherel Identity states that 2π‖f‖L2 = ‖f̂‖L2 .
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Next, given a set S ⊂ Rd of positive Lebesgue measure, define the Paley–
Wiener space of S–bandlimited functions via

PWS := {f ∈ L2(Rd) : f̂ = 0 a.e. outside S}.

To reduce notational encumbrance, in the univariate case, we denote the space
as follows: PWσ := {f ∈ L2(R) : f̂ = 0 a.e. outside [−σ, σ]}. The Paley–
Wiener Theorem states that an equivalent definition of the latter is the space
of entire functions of exponential type σ > 0 whose restriction to R is in L2.
As all Paley–Wiener spaces are isometrically isomorphic, we typically restrict
ourselves to the canonical space PWπ; however all of the results mentioned here
may be dilated to a space with different band-size.

The interpolation scheme considered in the sequel will use the following ideas
for point distributions in Rd.

Definition 2.1.

(1) A sequence (xn)n∈N ⊂ Rd is a complete interpolating sequence (CIS) for
PWS provided for every a ∈ `2(N), there exists a unique f ∈ PWS such
that f(xn) = an, n ∈ N.

(2) A sequence (fn)n∈N in a Hilbert space H is a Riesz basis for H provided
(fn) is complete and the following inequality holds for all a ∈ `2(N):

A‖a‖2`2 ≤

∥∥∥∥∥∑
n∈N

anfn

∥∥∥∥∥
2

H

≤ B‖a‖2`2 . (1)

For Paley–Wiener spaces, complete interpolating sequences are equivalent to
Riesz bases of exponentials in the corresponding L2 space in the Fourier domain
via the following theorem.

Theorem 2.2 ([31], Theorem 9, p. 143). Let S ⊂ Rd be a set of positive Lebesgue
measure. Then (xn)n∈N ⊂ Rd is a CIS for PWS if and only if

(
e−i〈xn,·〉

)
n∈N is

a Riesz basis for L2(S).

It should be noted that the matter of existence of a CIS for the Paley–Wiener
space over a given set S is somewhat delicate whenever d > 1. For example, it
is unknown if such a sequence exists when S = Bd

2 , the Euclidean ball in Rd.
However, there are some examples of interest, namely finite unions of disjoint
intervals in R [20] or disjoint cubes with parallel axes in Rd [21]. There are some
specific types of polytopes that admit Riesz bases of exponentials as well, such as
zonotopes with vertices having rational coordinates [15], or centrally symmetric
polytopes whose faces of co-dimension 1 are also centrally symmetric and whose
vertices lie on a lattice [7].
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For subsequent use, we catalog here some facts related to Riesz bases of
exponentials. First, it bears noting that in dimension 1, such bases are abundant
by the following classical result.

Theorem 2.3 (Kadec’s 1/4–Theorem, [14]). If (xj)j∈Z ⊂ R satisfies

sup
j∈Z
|xj − j| <

1

4
,

then (xj) is a CIS or PWπ. Moreover, the bound is sharp, as (e±i(n−1/4)·)n∈N
is not a Riesz basis for L2[−π, π].

There are higher dimensional analogues of Kadec’s theorem, for example, see
[1, 2, 28]. Having a sufficient condition, we also note that a necessary condition
for (xj) to be a CIS is that it is separated, i.e. infj 6=k |xk−xj | > 0. For a complete
characterization by Pavlov using Muckenhoupt’s Ap condition in terms of zeros
of so-called sine-type entire functions, see [22].

There are also some important notions of stability of complete interpolating
sequences which will be required.

Proposition 2.4. If (xj)j∈N is a CIS for PWS, and (yj)j∈N is such that yj 6= xj
for only finitely many j ∈ N, then (yj) is also a CIS for PWS.

Theorem 2.5. If (xj)j∈N is a CIS for PWS, then there exists a positive constant
L such that if |yj − xj | ≤ L for every j ∈ N, then (yj) is a CIS for PWS.

3 The Interpolation Scheme

The primary concern of this paper is to analyze a scheme which samples a
smooth function via interpolation from a shift-invariant space of certain radial
basis functions. To wit, consider the following general problem: given a function
f with a certain order of smoothness (e.g. in PWS or W k

p (Rd)), a separated

sequence X := (xj)j∈N ⊂ Rd, and a radial basis function φ : Rd → R such that
φ(x) = φ(|x|), we aim to find an interpolating function of the form

Iφf(x) =
∑
j∈N

ajφ(x− xj), x ∈ Rd, (2)

which satisfies
Iφf(xk) = f(xk), k ∈ N.

When we need to make clear the reliance on the sequence X, we will use the
notation I X

φ f .
The sequel will primarily emphasize interpolation using the so-called general

multiquadrics as kernels. These are defined using two parameters via

φα,c(x) := (|x|2 + c2)α.
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To avoid notational encumbrance, we adopt the convention Lα,c := Lφα,c , and
Iα,c := Iφα,c . It should be noted that all of the techniques and results in what
follows have analogues for many different kernels; however, for ease of exposition,
we focus on the general multiquadrics and note the extensions in Section 8.

Let us first note that if c > 0, α < −1/2 and X is a CIS for PWπ, then for any
f ∈ PWπ, a multiquadric interpolant Iα,cf as in (2) exists [16]. Furthermore,
the interpolant is unique (i.e. the sequence (aj) is uniquely determined as the so-
lution to the equationMa = y, where yj = f(xj), andM := (φ(xj −xk))j,k∈N),
and Iα,c is a bounded linear operator from PWπ → C0 ∩ L2(R).

4 Recovery Results

Here we recall some of the recovery results for bandlimited functions using the
interpolation method set out in the previous section.

Theorem 4.1 (cf. [9], Theorem IV.1). Let α < −1/2 and let X be a complete
interpolating sequence for PWπ. If f ∈ PWπ, then I X

α,cf ∈ L2(R) and

lim
c→∞
‖I X

α,cf − f‖L2(R) = 0,

and
lim
c→∞
|I X

α,cf(x)− f(x)| = 0

uniformly on R.
Moreover, if f ∈ PWσ for some σ < π,

‖I X
α,cf − f‖L2(R) ≤ Ce−c(π−σ)‖f‖L2(R), (3)

where the constant C depends on α and X, but not on c.

While the first part of this theorem only says something about the asymp-
totic behaviour of the interpolants for functions whose Fourier transform is fully
supported in the band of the Paley-Wiener space, we nonetheless obtain expo-
nential convergence in terms of the shape parameter, c, of the multiquadric when
oversampling, corresponding to the same notions in classical sampling theory.
Currently, no good approximation rates in terms of c are known when f̂ has
support on the full interval [−π, π].

The following shows similar convergence phenomena in higher dimensions.
We eliminate some of the details, but the main idea is that since it is unknown
whether or not Riesz bases of exponentials for the Euclidean ball exist, one
approximates the ball with convex bodies (zonotopes) which do have such bases
in certain cases. Additionally, the interpolation is of functions in the Paley-
Wiener space over a smaller ball, and thus exponential decay rates are achieved
because the method is one of oversampling.
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Theorem 4.2 ([10], Theorem 4.7). Let α < −d/2. Suppose that δ ∈ (2/3, 1)
and β ∈ (0, 3δ − 2). Suppose that S is a symmetric convex body such that
δBd

2 ⊂ S ⊂ Bd
2 and that (e−i〈xk,·〉)k∈Z is a Riesz basis for L2(S). Then for every

f ∈ PWβB2,
lim
c→∞
‖I X

α,cf − f‖L2(Rd) = 0,

and
lim
c→∞
|I X

α,cf(x)− f(x)| = 0

uniformly on Rd. Moreover, there exists a constant C > 0 such that for every
f ∈ PWβB2,

max{‖I X
α,cf−f‖L2(Rd), ‖I X

α,cf−f‖L∞(Rd)} ≤ C
(
cβ

δ

)α+ d+1
2

e−c(3δ−2−β)‖f‖L2(Rd),

(4)
where C is independent of c.

5 Interpolation in the Presence of Noise

Given the preliminaries above, we turn our attention to considering how the
interpolation scheme behaves in the presence of noise. There are two main
kinds of noise that will be considered: noisy data, and so-called jitter error.

5.1 Stability under perturbation of sample points

Jitter error corresponds to the case when the sample points X are perturbed.
That is, instead of sampling at X := (xj)j∈Z, we sample at X̃ := (x̃j)j∈Z with
x̃j = xj + εj for some bounded perturbation (εj) ∈ `∞(Z). Physically, this
may correspond to non-ideal sensors which have some error in the timing of the
sampling.

Notice that it follows from Theorems 4.1 and 4.2 that the recovery results
therein are independent under perturbations of the sample points at least as
long as the perturbed points still form a complete interpolating sequence. So if
X̃ = X + ε is a complete interpolating sequence for the Paley Wiener space, we
have

lim
c→∞
‖IX̃α,cf − f‖L2(Rd) = lim

c→∞
‖IXα,cf − f‖L2(Rd) = 0.

Of course, the rate of convergence may differ, though it is difficult to relate how.

Proposition 5.1. Suppose that X satisfies Kadec’s 1/4–Theorem, and sup
j∈Z
|xj−

j| = L < 1/4. Then if ‖(εj)j‖∞ < 1/4 − L, X̃ given by x̃j = xj + εj is a CIS
for PWπ.

Proof. Notice that X̃ still satisfies the condition of Kadec’s Theorem.
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Similarly, if εj = 0 for all but finitely many j, Proposition 2.4 implies that
Y is again a CIS. Theorem 2.5 also implies that for any CIS X, there exists a
constant L such that if ‖ε‖`∞ ≤ L, then X̃ is again a CIS.

However, one drawback is that this L may be very small. One can see this,
for example, because the 1/4-Theorem is sharp, so if X was perturbed from the
integer lattice arbitrarily close to 1/4, a small perturbation might fail. Using
the example in Theorem 2.3, one can take xn = n − 1/4 − ε for n > 0 and
xn = −n+ 1/4 + ε for n < 0, where ε > 0 is fixed. Then there is a perturbation
of X of norm ε which fails to be a CIS.

Nonetheless, we may make some estimate on L based not on the magnitude
of ‖ε‖`∞ , but on the so-called frame bounds of the basis (e−ixj ·)j . Note that it
follows from (1) that with the same constants A,B > 0 (the frame bounds), for
any f ∈ PWπ,

A‖f‖2L2(R) ≤
∑
j∈Z
|f(xj)|2 ≤ B‖f‖2L2(R). (5)

The following can be found in [6]:

Proposition 5.2. Suppose that (e−ixj ·)j∈Z is a Riesz basis for L2[−π, π] with

frame bounds A,B > 0. Then if 0 < L < π−1 ln

(√
A
B + 1

)
, and x̃j = xj + εj,

with ‖ε‖`∞ ≤ L, (e−ix̃j ·)j∈Z is a Riesz basis for L2[−π, π] with frame bounds
A(1−

√
C)2 and B(1 +

√
C)2, where C = B

A (eπL − 1)2.

5.2 Robustness to noisy samples

Consider what happens if, instead of sampling f(xj) exactly, we actually measure
yj = f(xj) + δj . For now, assume that (δj) ∈ `2, and ‖(δj)j‖`2 ≤ δ. In this case,
the noise is added to the signal, and could appear as random background noise,
or in some cases deterministic (or adversarial) noise. There are many ways to
model such noise, but our focus here will be on that which is square-summable.

Given noisy samples, let ĨXα,cf be the interpolant of the data yj . Note that
(yj) ∈ `2 by the condition on the noise sequence (δj). Consequently, on account
of Definition 2.1, there is a unique g ∈ PWS such that g(xj) = yj . Thus, by

uniqueness of the interpolant, there is a unique g ∈ PWS such that ĨXα,cf = IXα,cg,
and the following holds.

Theorem 5.3. Let S and X be as in Theorem 4.1 or Theorem 4.2, and let
yj = f(xj) + δj with ‖(δj)‖`2 ≤ δ. Then for every f ∈ PWS,

‖ĨXα,cf − f‖L2 ≤
δ√
A

+ o(1), c→∞,

where A is as in (5).
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Proof. Let g ∈ PWS be the function described above. Then we have

‖ĨXα,cf − f‖L2 = ‖IXα,cg − f‖L2 ≤ ‖IXα,cg − g‖L2 + ‖g − f‖L2 =: N1 +N2.

It follows from Theorem 4.2 that N1 = o(1), c → ∞ (and in fact we may
take the upper bound of N1 to be the right hand side of (3) or (4) if one applies).
Applying (5), we estimate

‖g − f‖L2 ≤ A−
1
2 ‖(g(xj)− f(xj))j‖`2 = A−

1
2 ‖(δj)j‖`2 ≤ A−

1
2 δ.

6 Approximation Rates Based on Spacing

As discussed in the previous section, the approximation rates in terms of the
shape parameter, c, of the multiquadric are maintained in the presence of noise
(hence the error of approximation is dominated by the `2 norm of the noise as
in Theorem 5.3). But another type of approximation rate has been considered.
Specifically, we fix a CIS, X, and consider interpolation at hX for 0 < h ≤ 1,
and we tune the shape parameter of the multiquadric to reflect the dilation.
That is, we interpolate from the space∑

j∈Z
ajφα,1(· − hxj) =

∑
j∈Z

aj
(
| · −hxj |2 + 1

)α
: (aj)j∈Z ⊂ R

 .

In the uniform interpolation setting (X = Z) these interpolants have a special
structure, which will be discussed later. To emphasize the distinction (and the
reliance of the shape parameter on h) we write this new interpolant in a different
manner as IhXα f . One may show that the relation to the original interpolant is
IhXα f(x) = 1

hIα,h−1fh
(
x
h

)
, where fh(x) := hf(hx). When α is fixed, we drop

the subscript to ease the notation.
To begin our analysis of the effect of noise on this process, we recall the

following.

Theorem 6.1 ([8], Theorem 3.4). Suppose that α < −1/2, k ∈ N, 0 < h ≤ 1,
and X is a CIS for PWπ. Then there exists a constant C independent of h such
that for every f ∈W k

2 (R),

‖IhXf − f‖L2(R) ≤ Chk|f |Wk
2 (R). (6)

Remark 6.2. Note again that the estimate in Theorem 6.1 is invariant under
perturbing the CIS in a certain manner. Specifically, if X is a CIS for PWπ,
and so is Y , then (6) holds for both interpolants albeit with a different constant
C. Moreover, one finds via the triangle inequality that

‖IhXf − IhY f‖L2 ≤ (CX + CY )hk|f |Wk
2
. (7)
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6.1 Noise in nonuniform interpolation

To discuss the question of reconstruction from noisy data in the setting we have
described in this section, it is pertinent to recall a theorem on the stability of
interpolating a given Sobolev function via a bandlimited one as an intermediate
step to analyzing the interpolant.

Theorem 6.3 ([8], Theorem 3.1). Let k ∈ N, h > 0, and let X be a fixed CIS
for PWπ. There exists a constant C = Ck,X , independent of h, such that for
every f ∈W k

2 (R), there exists a unique F ∈ PWπ
h

such that

F (hxj) = f(hxj), j ∈ Z,

|F |Wk
2
≤ C|f |Wk

2
,

and
‖F − f‖L2 ≤ Chk|f |Wk

2
.

We also have the following uniform bound on the interpolants.

Theorem 6.4 ([8], Theorem 3.3). For each k ≥ 0, there is a constant C,
independent of h, such that

|IhXf |Wk
2
≤ C|f |Wk

2
, f ∈W k

2 (R).

Suppose h > 0 is fixed. Again, suppose that we measure yj(h) = f(hxj) +

δj(h) with sup
h
‖(δj(h))j‖`2 ≤ δ. Let ĨhXf be the interpolant of yj(h). Then we

have the following rate of approximation.

Theorem 6.5. Under the assumptions of Theorem 6.3, there is a constant C
such that, for every f ∈W k

2 (R),

‖ĨhXf − f‖L2 ≤ Chk|f |Wk
2

+
δ√
A
,

where A is the lower frame bound for X given by (5).

Proof. The first key observation is that hX is a CIS for PWπ
h

, which can be
seen because Riesz bases are preserved under bounded, invertible linear trans-
formations. Consequently, let g ∈ PWπ

h
be the unique function such that

g(hxj) = yj(h). Then we have

‖ĨhXf − f‖L2 = ‖IhXg− f‖L2 ≤ ‖IhXg− IhXf‖L2 + ‖IhXf − f‖L2 =: N1 +N2.

Theorem 6.1 implies that N2 ≤ Chk|f |Wk
2

. Secondly, Theorem 6.4 with k = 0
implies that

N1 ≤ ‖IhX(g − f)‖L2 ≤ C‖g − f‖L2 .
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Let F ∈ PWπ
h

be the function given by Theorem 6.3 such that F (hxj) = f(hxj).
Then we have

‖g − f‖2 ≤ ‖g − F‖2 + ‖F − f‖2 ≤ ‖g − F‖2 + Chk|f |Wk
2
.

From (5),

‖g − F‖2 ≤ A−
1
2 ‖(g(hxj)− f(hxj))j‖`2 = A−

1
2 ‖(δj(h))j‖`2 ≤ A−

1
2 δ.

Thus N1 ≤ Chk|f |Wk
2

+A−
1
2 δ.

Combining the estimates on N1 and N2 completes the proof.

6.2 Uniform Sampling

In the uniform case (when X is a lattice), the interpolation scheme we have
discussed has some special properties, including the possibility of using growing
kernels such as multiquadrics with positive α. Additionally, the interpolants
themselves have a simpler form as they lie in the span of shifts of a single
cardinal function which behaves like the classical cardinal sine function.

Given a multiquadric, we form a cardinal function Lα,c satisfying Lα,c(j) =
δ0,j , j ∈ Z, which lies in the closure of the linear span of (φα,c(· − j))j∈Z. Then
the multiquadric interpolant can be written as

I Z
α,cf(x) :=

∑
j∈Z

f(j)Lα,c(x− j). (8)

The cardinal function Lα,c can be defined by its Fourier transform:

L̂α,c(ξ) :=
φ̂α,c(ξ)∑

k∈Z
φ̂α,c(ξ + 2πk)

, ξ ∈ R \ {0}. (9)

Note that the series in (8) is rather similar to the series in the classical
Whittaker-Kotelnikov-Shannon sampling theorem if f ∈ PWπ, but with the
sinc function replaced by the cardinal function associated with the general mul-
tiquadric. This indeed was the observation made by Schoenberg, who instigated
the study of cardinal spline interpolation. The point was to apply a sort of
summability method to the sinc series in the sampling theorem because the fact
that sinc(x) = O(|x|−1) implies that it takes a rather large number of terms to
well-approximate the series via truncation. If the cardinal functions Lα,c decay
faster than the sinc function, then the series in (8) will be easier to approximate
by truncation; of course, the question then is whether or not the cardinal inter-
polant I Z

α,cf is close to f (either in L2 or uniformly depending on the kind of
guarantees one desires). For an in-depth study of the decay rates of the cardi-
nal functions associated with general multiquadrics, see [11], especially Section
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4 therein. For almost all values of α, Lα,c decays faster than |x|−1. We note
also that for the cases α = ±1/2, such considerations were already made by
Buhmann [4] and Riemenschneider and Sivakumar [23]. Additionally, Lp ap-
proximation rates of the same order as in Theorem 6.1 for interpolation at hZ
can be found in [12].

6.3 Interpolation of Compactly Supported Functions

Let us now turn our attentions to some more practical considerations which
may prove useful in applications. Of course, everything from Theorem 5.3 to
Theorem 6.1 holds whenever we take X = Z, which is clearly a CIS for PWπ. Let
us consider for the moment what happens whenever we consider interpolation of
univariate compactly supported Sobolev functions. To wit, consider g ∈W k

2 (R)
with supp(g) ⊂ [−1, 1] (this choice of interval is arbitrary for ease of presentation,
and can easily be dilated). Then for N ∈ N, the interpolant IN

−1Zf is actually
interpolating f at the sequence { jN }

N
j=−N , and has the following form via the

relation established at the beginning of this section:

IN
−1Zf(x) =

N∑
j=−N

f

(
j

N

)
Lα,c(Nx− j). (10)

Consequently, Theorem 6.1 shows that the approximation rate in this case
has an upper bound in terms of the number of sample points. Namely, if X =
{ jN }

N
j=−N , then

‖IN−1Zf − f‖L2 ≤ CN−k|f |Wk
2

= C|X|−k|f |Wk
2
. (11)

Also, Theorem 5.3 still holds with h replaced by |X|−1 as well.
But now, consider N−1X = {xjN }

N
J=−N to be an arbitrary set of distinct

points in [−1, 1] (i.e. xj are arbitrary in [−N,N ]). Then let

x̃k :=

{
k, |k| > N
xk, |k| ≤ N.

Evidently, X̃ is a CIS for PWπ because it was formed by perturbing only
finitely many integers. It follows from (7) that

‖IN−1X̃f − f‖L2 ≤ ‖IN
−1X̃f − IN−1Zf‖L2 + ‖IN−1Zf − f‖L2

≤ (C
X̃

+ 2CZ)N−k|f |Wk
2
. (12)

The constant C
X̃

depends on a few things: the minimum spacing of the
sequence (i.e. infj 6=k |xj − xk|), and the frame bounds for the basis as in (1).
However, by Proposition 5.2, we have the following.
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Theorem 6.6. Let L < ln(2)/π. There is a constant C such that for any X̃
with supk∈Z |x̃k − k| < L,

‖IN−1X̃f − f‖L2 ≤ CN−k|f |Wk
2
, f ∈W k

2 [−1, 1].

This theorem implies that if one wishes to approximate a compactly sup-

ported f by its interpolant IN
−1X̃f , it suffices to consider the more simple

uniform interpolant IN
−1Zf . The usefulness of this will be discussed further in

the next section.

7 Computational Feasibility

In this section, we investigate the computational feasibility, peculiarities, and
potential advantages of the interpolation based on cardinal functions compared
to traditional radial basis function (RBF) theory. For ease of presentation we
limit our discussion to problems in one dimension. As discussed in Section
6, consider a function f ∈ W k

2 (R) whose support lies inside [−1, 1], and we
interpolate at a sequence of points (xj)

N
j=−N ⊂ [−1, 1]. The classical method

using RBFs is to do interpolate from the linear span of {φα,c(· − xj) : j =
−N, · · · , N}. The drawback in this case if φ is a multiquadric or the Gaussian
kernel is that forming the interpolant can be computationally quite expensive as
it is formed by inverting the matrixMN := (φα,c(xk − xj))Nk,j=−N and applying
it to the data vector yj = f(xj). Part of the problem is that if the minimum
spacing of the points is h, then the condition number for this matrix can be as
bad as e1/h2 ([19]), which is very bad. The other disadvantage of this framework
is that it is not robust to noise. RBF interpolation is very good at recovering
smooth functions, but is sensitive to noise unless other smoothing techniques
are applied.

On the other hand, given a sequence (xj)
N
j=−N ⊂ [−1, 1], by (12) and The-

orem 6.6, we may simply use the uniform interpolant IN
−1Zf to approximate

f . The benefit of this, is that IN
−1Zf is less difficult to compute. Indeed, one

must first estimate the function L̂α,c by truncating the series in the denomina-
tor of (9), then evaluate Lα,c via the Fast Fourier Transform (FFT). Then one
directly forms the series in (10) from the already known sample values f(j/N).
Moreover, as discussed in both of the previous two sections, this method enjoys
the advantage of being robust to noise. Notice however, that this interpolation
scheme is different in the sense that IN

−1Zf is in the span of (Lα,c(· − j))Nj=−N ,
which in turn is in the span of (φα,c(· − j))j∈Z, as opposed to only the span of
2N + 1 translates of the multiquadric.
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7.1 Approximation of the Fourier transform of the cardinal func-
tion

As stated above, one first needs to truncate the series in the denominator of
the Fourier transform of the cardinal function. It is known (see for instance [29,
Theorem 8.15]) that the Fourier transform of a multiquadric is given (in one
dimension) by

φ̂α,c(ξ) =
21+α

Γ(−α)

(
c

|ξ|

)α+1/2

Kα+1/2(c|ξ|), ξ ∈ R\{0}, (13)

where Kν(r) :=
∫∞

0 e−r cosh(t) cosh(νt)dt, r > 0, ν ∈ R is the modified Bessel
function of the second kind. Note that these functions have a pole at the origin
and decay exponentially.

It follows that the truncation of the series in the Fourier transform of the
cardinal function associated with the general multiquadrics is possible thanks to
the fast decay of the Bessel function. In particular, we have the following.

Theorem 7.1. Let ε > 0. Let α ∈ R and α < 0. For any c > 0, there exists
a natural number τ := τc,α,ε ∈ N, such that for all ξ ∈ R, there exists a kξ ∈ Z
with ∣∣∣∣∣∣

∑
k∈Z

φ̂α,c(ξ + 2πk)−
kξ+τ∑

k=kξ−τ
φ̂α,c(ξ + 2πk)

∣∣∣∣∣∣ ≤ ε
∣∣∣∣∣∑
k∈Z

φ̂α,c(ξ + 2πk)

∣∣∣∣∣ . (14)

Proof. First note that Sα,c(ξ) :=
∑
k∈Z

φ̂α,c(ξ + 2πk) is 2π-periodic. It is straight-

forward to see that (14) is equivalent to finding τ such that for any ξ∗ ∈ (−π, π)∣∣∣∣∣∑
k∈Z

φ̂α,c(ξ
∗ + 2πk)−

τ∑
k=−τ

φ̂α,c(ξ
∗ + 2πk)

∣∣∣∣∣ ≤ ε
∣∣∣∣∣∑
k∈Z

φ̂α,c(ξ
∗ + 2πk)

∣∣∣∣∣.
From [29, Lemma 5.13] it follows that for ν ∈ R, 0 ≤ Kν(r) ≤

√
2πr−1/2e−reν

2/(2r).
In particular, let rk := ξ∗+2πk > 0, for some k > τ ; it follows, with ν = α+1/2
that

φ̂α,c(rk) ≤
21+α

Γ(−α)
cα
√

2πr−α−1
k e−crke

(α+1/2)2

2crk .

With λ := 21+α

Γ(−α)c
α
√

2π, this expression simplifies to φ̂α,c(rk) ≤ λr−α−1
k e−crke

(α+1/2)2

2crk .
For k large enough, there exists a constant γ > 0 such that

φ̂α,c(rk) ≤ γe−crk . (15)

Plugging back in the definition of rk yields

φ̂α,c(rk) ≤ γe−cξ
∗
e−2πck, for any k > τ.
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Similarly, given k < −τ , we arrive at the following estimate:

φ̂α,c(rk) ≤ γecξ
∗
e2πck, for any k < −τ.

Summing for all k outside of {−τ, · · · , τ} finally yields, for ξ ∈ R

∣∣∣∣∑
k∈Z

φ̂α,c(ξ + 2πk)−
kξ+τ∑

k=kξ−τ
φ̂α,c(ξ + 2πk)

∣∣∣∣ =
∑
k<−τ

φ̂α,c(ξ
∗ + 2πk) +

∑
k>τ

φ̂α,c(ξ
∗ + 2πk)

≤
∑
k<−τ

γe2πce−cξ
∗
e2πck +

∑
k>τ

γe−cξ
∗
e−2πck

≤ 2γe−cξ
∗

1− e−2πc
e−2πcτ

The sum for k ∈ Z can be estimated from below (see for instance [11, Proof
of Prop.3.2]) by ∑

k∈Z
φ̂α,c(ξ) ≥ D−4πc,

for a certain constant D := Dα,c > 0. Therefore, for (14) to be valid, it suffices
to find τ such that

2γe−cξ
∗

1− e−2πc
e−2πcN ≤ εDe−4πc,

which is achieved whenever (noticing that ξ∗ > 0)

τ ≥ 2 +
ln(ε−1)

2πc
+

ln
(

2γ
(1−e−2πc)D

)
2πc

.

Remark 7.2. A careful analysis of the proof of Proposition 3.2 from [11] gives
insight on how to pick D. For instance, for 0 > α ≥ −1, one can choose
D ≤ β 21+α

Γ(−α)c
α(2π)−α−1e−2πc, where β := βα is given in [29, Corollary 5.12].

Remark 7.3. The constant γ appearing in (15) can be easily picked in some

particular cases. For instance, for α = −1, then γ :=
√

2π
c e

1
16cπ . In this case,

Theorem 7.1 is satisfied for τ ≥ 2 +
ln
(

2
√
2π
c

)
2πc + 1

32π2c2
− ln((1−e−2πc)D)

2cπ .

7.2 Particular cases of Theorem 7.1

Poisson kernel: case α = −1 This case is associated to the approximation
using a Poisson kernel as the basis function. The Bessel function involved can
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be simplified to K−1/2(r) =
√

π
2re
−r. Carrying out a similar analysis as in the

proof of Theorem 7.1 with rk = ξ∗ + 2πk 6= 0 and k > τ ≥ 1, yields

φ̂−1,c(rk) = c−1

√
π

2
|rk|−1/2e−c|rk|,

≤ e−cξ
∗

2c
e−2πck.

When k < −τ ≤ −1, φ̂−1,c(rk) ≤ ecξ
∗

2c e
2πck. Hence,

∑
k>τ

φ̂−1,c(rk) ≤
e−c(ξ

∗+2π)

2c

e−2πcτ

1− e−2πc
, and

∑
k<−τ

φ̂−1,c(rk) ≤
ec(ξ

∗−2π)

2c

e−2πcτ

1− e−2πc
,

whereby, ∑
|k|>τ

φ̂1,c(ξ
∗ + 2πk) ≤ ec(ξ

∗−2π)

c(1− e−2πc)
e−2πcτ .

We want now to ensure the condition ec(ξ
∗−2π)

c(1−e−2πc)
e−2πcτ ≤ εDe−4πc where D

is given by Remark 7.2 as follows:

D−1 =
1

2c
√

2
. (16)

Finally, putting everything together and using the fact that ξ∗− 2π < 0, we get
that

τ ≥ ln(ε−1)

2πc
+

1

2
+

3 ln(2)

4πc
− ln(1− e−2πc)

2πc
(17)

ensures a relative error of the truncated series within ε, for any ε > 0. As an
example, let us consider the accuracy of a single precision machine ε = 10−16 and
a shape coefficient c = 1. In this case, τ ≥ 6.53 is sufficient. In other words, only
15 evaluations are required for an accurate estimation of the Fourier transform of
the cardinal function. Similarly, for a double precision machine with ε = 10−32,
only 27 coefficients in the expansion are sufficient for the accurate estimation of
the Fourier transform.

Gaussian case As mentioned before, every result stated here holds when the
Gaussian kernel, gλ := e−λ|·|

2
, is used. Typically, one considers 0 < λ ≤ 1,

and the limiting results above hold for λ → 0+. For simplicity, we omit the
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calculations for the Gaussian as they are rather similar to the Poisson kernel.
One finds that to obtain relative error ε, one needs τ ≥ 2

π2 | ln(ε/4)| + 4 terms,
whence for machine precision, 12 terms are sufficient.

Remark 7.4. In the end, starting with (10), we are left with the numerical
approximation of the cardinal function at a given point x ∈ [−N,N ]. This can

be done by first evaluating its (approximate) Fourier transform L̂α,c(ξ) at the
sampling points ξk = k/(2N + 1), for −N ≤ k ≤ N. Following Theorem 7.1, it
suffices to evaluate Bessel functions at only few sampling points and sum them
together. Finally, a direct application of a Discrete Fourier Transform allows
for the computation of the cardinal function Lα,c at some (uniform) sampling
points (xj)j∈J for some uniform finite set J ⊂ [−N,N ] via

x(k) =
N∑

n=−N
L̂α,c(ξn)e2πikn/|J |.

Note that with the use of a Fast Fourier Transform algorithms, this can be
achieved with a total complexity of O(N log(N)). For a sampling set J large
enough – in other words, which samples the Fourier transform of the cardinal
function L̂α,c with enough details – we are able to build an accurate estimation
of Lα,c at uniform points. Then one can interpolate to approximate the points
in the expansion (10) that have not been calculated exactly via the FFT.

8 Extensions

In what follows, assume that S is a symmetric, convex body in Rd, i.e. a compact,
convex set which is symmetric about the origin. Under some restrictions on the
sequence X, the kernel φ, and the smoothness of the space under consideration,
such interpolants exist. To wit, consider the following notion developed by
Ledford in [16] and in higher dimensions in [10].

Definition 8.1. A function φ : Rd → R is a d-dimensional interpolator for PWS

if the following hold:

(I1) φ(x) =
∫
Rd ψ(ξ)ei〈x,ξ〉dξ = ψ∨(x), for some ψ ∈ L1 ∩ L2.

(I2) φ̂ ≥ 0 and there exists an ε > 0 such that φ̂ ≥ ε on S.

(I3) If Mj := sup
ξ∈S\ 1

2
S

|φ̂(2jξ)|, j ∈ N, then
(

2
jd
2 Mj

)
∈ `1.

With this definition in hand, the following holds.

Theorem 8.2 ([10], Theorem 3.3). Let S ⊂ Rd a symmetric convex body. Sup-
pose that X is a CIS for PWS and that φ is a d-dimensional interpolator for
PWS.
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(i) For every f ∈ PWS, there exists a unique sequence (aj) ∈ `2 such that∑
j∈N

ajφ(xk − xj) = f(xk), k ∈ N.

(ii) The Interpolation Operator Iφ : PWS → L2(Rd) defined by

Iφf(·) =
∑
j∈N

ajφ(· − xj),

where (aj) is as in (i), is a well-defined, bounded linear operator from PWS to
L2(Rd). Moreover, Iφf belongs to C0(Rd).

We note as in [10, Section 4] that the following are examples of d-dimensional
interpolators for PWS where S is as above: the Gaussian kernel gλ := e−λ|·|

2
,

for any parameter λ > 0, the general inverse multiquadrics φα,c := (| · |2 + c2)α

for α < −d/2, c > 0, and the functions gα := (e−α|·|
p
)∨ for α > 0, p > 0.

Every theorem stated here holds for such kernels. In particular, more details
may be found in [8, 10, 16, 17, 25]
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