Problem Statement

- Each year, millions of animals and human cadavers are used in research settings, driving up the costs of discovery and design of new medical devices.
- Anthropomorphic phantoms provide a cheaper, reusable option for testing new devices.
- Currently, coloanal phantoms for colonscopy device testing are not widely available and accurate, even using gastrointestinal (GI) phantoms for endoscopy device testing do not exist.

Needs Assessment

- Fidelity of Model
 - Look and feel as real as possible
 - Closely match dimensions and material properties of human organs
- Durability
 - May be used repeatedly for extended periods of time without wear
 - Can be removed from suspension and cleansed
- Targets
 - Polyps in the large intestines
 - Locations of routine screening in stomach
 - Can be altered between trials

Primary Objective

- Create a repeatable protocol for the development of two gastrointestinal phantoms to test potential new endoscopic and colonscopy screening devices:
 - Upper GI: esophagus, stomach, upper ⅓ of duodenum
 - Lower GI: colon, rectum
- Embed targets in the phantoms to represent physiological phenomena

Design Components: Materials and Features

About Ecoflex and Dragon Skin

Ecoflex is a platinum-catalyzed super soft silicone rubber product designed for medical research applications. It is both highly elastic and durable, allowing for repeated stretching with no permanent deformation. Dragon Skin is a high-performance platinum-catalyzed silicon rubber product designed for special effect applications. It is also highly durable but slightly less elastic and holds a more rigid form.1-4

<table>
<thead>
<tr>
<th>Material</th>
<th>Tensile Strength (MPa)</th>
<th>Modulus (MPa)</th>
<th>Elongation at Break (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecoflex 30-10</td>
<td>0.83</td>
<td>0.06</td>
<td>900</td>
</tr>
<tr>
<td>Dragon Skin 10</td>
<td>2.27</td>
<td>0.15</td>
<td>1000</td>
</tr>
</tbody>
</table>

Curing Protocol

1. Sand 3D printed segment to ensure smooth surface to prevent tears
2. Mix ⅔ Quarter Part A + ⅓ Quarter Part B thoroughly
 - a. Makes one 10 m³ layer
 - b. Add dye to make pinkred
3. Spread thin layer of mixed Ecoflex on surface with sponge brush and rotisserie
4. Let cure for at least 4 hours, while still rotating around rotisserie for at least 2 hours.
5. Repeat to create 6 layers
 - a. Optional: insert one layer of pantyhose material between layers 3 and 4 to add tensile strength
 - b. To remove:
 - Carefully pull back one edge of Ecoflex
 - Add soap between Ecoflex and 3D mold to help separate
 - Gently peel back remaining Ecoflex, adding more soap as needed

Upper GI Structure & Function

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Esophagus</th>
<th>Stomach</th>
<th>Superior Duodenum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>2.0 cm (inner)</td>
<td>3.2 cm (outer)</td>
<td>10 cm (widest point)</td>
</tr>
<tr>
<td>Length</td>
<td>40 cm</td>
<td>30 cm (greater curvature)</td>
<td>5 cm</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>1.3 MPa</td>
<td>0.5 MPa</td>
<td>0.92 MPa</td>
</tr>
</tbody>
</table>

Esophagus Creation Process

Step 1: Create PVC pipe and rubber-coated wooden dowel rod exactly matching human esophageal dimensions

Step 2: Pour dyed Ecoflex into mold to create our hollow cylinder esophagus

Stomach Creation Process

Step 1: Create a smooth, curved Styrnoform mold covered in protective tape, then attach braided insulated wire via hot glue to mimic gastric nodule

Step 2: Cure Ecoflex to stomach; the first, second, and third iterations developed the stomach from a smooth, clear prototype to our flesh-toned, textured final phantom

Lower GI Structure & Function

<table>
<thead>
<tr>
<th>Colon Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomach</td>
<td>3D printed model with added wires to create haustral folds.</td>
</tr>
<tr>
<td>Antrum</td>
<td>3D printed model.</td>
</tr>
<tr>
<td>Gastric Curvature of Body</td>
<td>3D printed model.</td>
</tr>
<tr>
<td>Lesser Curvature of Antrum</td>
<td>3D printed model.</td>
</tr>
<tr>
<td>Insulcus Anularis</td>
<td>3D printed model.</td>
</tr>
<tr>
<td>Lesser Curvature of Body</td>
<td>3D printed model.</td>
</tr>
</tbody>
</table>

Polyp Creation Process

Step 1: Acquire a compiled set of CT scans of a human patient’s colon which was converted to a file suitable for 3D printing

Step 2: Break up the file into 8 pieces to enable printing of the colon in our design studio without outside resources

Step 3: Print 6 pieces of colon and glue each piece together with super glue in the proper orientation for a reproducible, accurate, and detailed model of a human colon

Step 4: Cure Ecoflex to 3D model as mold spins on a commercial rotisserie at 5 rpm so that the Ecoflex cures evenly

Step 5: Remove cured colon from mold for final iteration of our synthetic phantom for lower GI device testing

Step 6: Install internal magnets to the inside of the colon in order to attach removable polyps for testing

Polyp Contrast Results

- We found our phantoms to have a very similar average contrast compared to human polyps.
- In addition, our polyp contrast should be low, so as to mimic sessile polyps: the most difficult polyps to locate during colonoscopy.

Arduino Tracking and LED Results

- Research of Ecoflex electrical properties confirmed that the material is a suitable insulator (between ~3 MV/m- and nesrene rubber—up to 26.7 MV/m-1 dielectric strength), ensuring minimal current noise or cross-talk within wires or in direct contact with the polymer.
- Testing of LDR detection in Ecoflex confirmed no significant change in light transmittance in dyed and clear Ecoflex.
- Sufficient light signal changes in both instances were transmitted through polyps and other phantom structures greater than ⅓”, which is no thicker than our greatest thickness throughout the phantoms.

Conclusions

- We have designed a system for generating inexpensive, realistic, synthetic tissue phantoms of the upper and lower GI tract for testing in new medical device testing.
- Our phantoms are accurate in terms of dimensions and material properties when compared to a real GI tract.
- We introduced interactive features to simulate stomach points of interest and colon polyps with light-controlled LEDs and removable magnets, respectively.
- Our work is reproducible and useful to the STORM lab, among other research labs, and has the potential to be useful to medical device testing labs around the world.

References

- [1] Taylor Cannon, Samantha Kopinsky, William McKinney, Tanner Nelson, Maggie O’Connor, Max Puidak, Alexander Smith, Ethan Vanderwalker, Advisors: Dr. Keith Obstein; Dr. Matthew Walker III
- [2] Poly CONTRAST Results: We found our phantoms to have a very similar average contrast compared to human polyps.
- [3] Arduino Tracking and LED Results: Research of Ecoflex electrical properties confirmed that the material is a suitable insulator (between ~3 MV/m- and nesrene rubber—up to 26.7 MV/m-1 dielectric strength), ensuring minimal current noise or cross-talk within wires or in direct contact with the polymer.
- [5] Our work is reproducible and useful to the STORM lab, among other research labs, and has the potential to be useful to medical device testing labs around the world.

Acknowledgements

We would like to thank Dr. Keith Obstein, the Vanderbilt Science and Technology of Robotics in Medicine (STORM) Lab, and the Vanderbilt University Department of Biomedical Engineering, as well as Dr. Matthew Walker III, for their support and guidance with this project.