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Abstract

In this manuscript, we present a finite strain formulation of a reduced order computational ho-
mogenization model for crystal plasticity. The proposed formulation leverages and generalizes
the principles of the Eigenstrain-based reduced order homogenization (EHM) approach. Asymp-
totic analysis with multiple scales is employed to describe the microscale problem in the deformed
configuration. A two-term Taylor series approximation of the constitutive behavior along with a
geometry-based basis reduction is employed to arrive at the reduced order model. An efficient im-
plementation scheme is proposed to evaluate the multiscale system without the need to recompute
the reduced basis as a function of evolving deformation. The ability of the proposed modeling
approach in capturing homogenized and localized behavior as well as texture evolution is demon-
strated in the context of single crystal and polycrystal microstructures.

Keywords: Crystal plasticity, Large deformation, Computational homogenization, Reduced
order modeling.

1. Introduction

Reliably predicting the mechanical behavior of structures made of polycrystalline materials
presents many challenges and complications. These complications are exacerbated in problems
that exhibit and are affected by global-local features, where phenomena at small (e.g., micro-
scopic) and large (i.e., structural) scales interact. Example applications include but not limited
to forming of highly anisotropic metals, fatigue failure initiation, and shear dominated failure in
metals subjected to high rate impact. Multiscale computational methods such as computational
homogenization [1], variational multiscale enrichment [2–5], multiscale finite elements [6], het-
erogeneous multiscale [7] and others directly bridge these disparate scales and offer rigorous ways
to tackle these challenging problems. This manuscript is concerned with formulating an efficient
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computational homogenization model for nonlinear, large deformation response of polycrystalline
materials.

Crystal plasticity finite element (CPFE) method [8–11] has been the computational workhorse
for modeling the complex and highly heterogeneous behavior of polycrystalline materials at fine
scales (see e.g., [12–14] among many others). Because of highly complex microstructural mor-
phologies and evolution laws that govern viscoplastic and failure processes, CPFE simulations
are typically computationally expensive even to track the behavior within a single characteris-
tic volume (i.e., a representative or statistical volume element). Direct incorporation of CPFE to
the aforementioned multiscale methodologies therefore remains prohibitive for most engineering
problems.

In order to alleviate the computational cost issue, several reduced order modeling (ROM) ap-
proaches have been proposed to efficiently approximate the mechanical response of polycrystalline
materials at the fine scale. In the context of small deformation kinematics, early attempts include
the classical Sachs [15] and Taylor models [16], which provide bounds based on uniform kinetic
and kinematic assumptions over the characteristic volume. More recent approaches such as visco-
plastic self-consistent (VPSC) models [17, 18], fast Fourier transform method (FFT) [19, 20],
nonuniform transformation field analysis [21, 22], proper orthogonal decomposition [23], self-
consistent clustering method [24–26] employ a range of kinematic and kinetic approximations
and computing algorithms aimed at reducing online computational cost of microstructure simula-
tion with minimal accuracy loss. Eigendeformation-based homogenization method (EHM) is an
alternative ROM approach that has been recently adapted to evaluate polycrystalline response [27].
In this approach the microstructure morphological information is retained in a small set of con-
stitutive tensors that are pre-computed for a given characteristic volume. These tensors are then
used to solve for the microscale response fields by evaluating a much smaller algebraic system
of equations that approximate the microscopic equilibrium. An important advantage of the EHM
approach is that it can keep the geometry information, grain interactions and intra-grain stress
and strain variations during upscaling. More recent developments of the EHM approach include a
sparse formulation that extends the computational advantages of EHM when solving large charac-
teristic volumes [28], generalization to anisotropic crystals and multiphase microstructures [29],
and extension to thermomechanics for analysis of large structural members operating in extreme
environments [30]. In addition to reduced order modeling, application of data driven modeling
principals to devise surrogate models provide a new and promising paradigm for drastic reduc-
tion of computational cost of microstructure simulation in the context of a multiscale analysis (see
e.g., [31–33]).

More recently, a number of the aforementioned ROM approaches have been extended to ac-
count for large deformation and texture evolution. In VPSC, this is achieved by updating the
Eshelby tensors associated with ellipsoidal inclusions that idealize each grain, where the shape
parameters and crystal orientation evolve with deformation [34–38]. The FFT approach was ex-
tended to large deformation analysis of polycrystalline microstructures by Eisenlohr et al. [39]
by extending the formulation proposed by Lahellec et al. [40]. Several integration schemes to
accelerate the computations were proposed in Refs [41–47]. Recent publications develop grain
cluster method [48, 49], self-consistent clustering method [50] and data-driven modeling [51, 52]
for large deformation analyses as well.
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In this manuscript, we propose a new reduced order multiscale formulation for large deforma-
tion response of polycrystalline materials undergoing texture evolution. The proposed formulation
leverages the principles of EHM to achieve the model order reduction. A two-scale asymptotic
analysis is performed over the original governing equations to decompose them into a micro-
scopic problem (defined over the characteristic volume) and a macroscopic problem (defined over
the macroscopic domain). Model order reduction is applied on the microscopic problem by em-
ploying the idea of representing the inelastic deformation rate using influence functions and a
coarse basis approximation of the microscale kinematics. The constituent behavior is taken to be
rigid-viscoplastic. The incremental constitutive form is approximated using a two-term Taylor se-
ries expansion, which allows us to express the rate of deformation with a form similar to the one
used to express the microscopic strain tensor in small-strain EHM. Texture evolution is also ac-
counted for in the present formulation. Accuracy and efficiency characteristics of the reduced order
model predictions are assessed by comparing with CPFE simulations of various single- and poly-
crystal configurations. Numerical results demonstrate the capabilities of the proposed approach in
efficiently capturing the overall as well as local mechanical response of the microstructure.

The manuscript is organized as follows: Section 2 describes the problem settings, where the
kinematics and original constitutive equations are introduced. In Section 3, mathematical homog-
enization method with two-scale asymptotic analysis is employed, resulting in a coupled system of
micro- and macroscale problems. The mapping function between the undeformed and deformed
configurations of the characteristic volume is introduced. Section 4 provides the reconstruction of
the microscale problem and the corresponding reduced basis approximation. Section 5 presents
the numerical implementation strategy for the multiscale problem. In Section 6, the accuracy and
efficiency of the proposed model are verified for voided single crystal and polycrystal microstruc-
tures in direct comparison with CPFE simulations. Section 7 provides conclusions and future
work.

2. Problem statement

Figure 1 schematically illustrates the multiscale mechanical deformation problem. Consider
a heterogeneous polycrystalline body, where the initial (undeformed) configuration is denoted as
Ω0 ⊂ Rnsd (nsd = 2, 3 is the space dimension). Under the applied loading, the heterogeneous body
undergoes large deformation. At time t, the current deformed configuration of the body is denoted
as Ω. The position vectors that parameterize the initial and current configurations are, X and x,
respectively. The deformation of the body is expressed as

xi = ψ
ξ
i (X, t) (2.1)

in which, ψξ is the deformation map. Superscript ξ indicates that the deformation response spa-
tially fluctuates due to the heterogeneity of the material microstructure. The body is constructed
by tiling a characteristic volume, CV (e.g., representative volume element, RVE or statistical vol-
ume element, SVE) that represents the microstructural morphology. The heterogeneity in the CV
is due to the polycrystalline structure with misaligned crystals with varying grain sizes, multiple
phases and other microstructural features. The domain of the periodic CV in its initial and current
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Figure 1: The two-scale problem: macro- and microscale problem domains in undeformed (left) and de-
formed (right) configurations.

states are respectively denoted as Θ0 and Θ in scaled coordinates Y and y, respectively. The scaled,
undeformed microscale coordinates are related to the original coordinates as

Y :=
X
ξ

with 0 < ξ � 1 (2.2)

in which ξ is the scaling parameter defined as the ratio between the size of the CV and the char-
acteristic deformation wavelength. Let f ξ(X) denote an arbitrary response field defined in the un-
deformed configuration expressed in terms of a single scale coordinate. The function is expressed
using the multiple spatial scales as

f ξ(X) = f
(
X,

X
ξ

)
= f (X,Y) (2.3)

Recalling Eq. (2.2) and using the chain rule, the gradient of the response field, f ξ(X) is

f ξ,Xi
(X) = f,Xi (X,Y) +

1
ξ

f,Yi (X,Y) (2.4)

All response fields are assumed to remain locally periodic throughout the deformation

f (X,Y) = f
(
X,Y + kŶ

)
∀X ∈ Ω0 (2.5)
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Figure 2: Kinematics of rigid-viscoplastic deformation of single crystal deformed by crystallographic slip.

where Ŷ is the period of the CV and k is a nsd × nsd diagonal matrix with integer components.
In the current manuscript, we restrict the formulation such that the constituent materials within

the CV are idealized as rigid-viscoplastic. The visco-plasticity within the crystals is represented by
a crystal plasticity model. The elastic response of the domain is ignored as we are primarily con-
cerned with the viscoplastic flow regime of the material behavior under large deformations [11].
Texture evolution is important when polycrystalline material undergoes large deformation, and is
therefore considered and explicitly tracked.

2.1. Kinematics
Following Kok [53], we consider the multiplicative decomposition of the deformation gradient(

Fξ = ∂x/∂X
)

into a rigid body rotation part Rξ and a viscoplastic part Fp,ξ

Fξ
i j = Rξ

imF p,ξ
m j (2.6)

The decomposition illustrated in Fig. 2 separates lattice rotation from plastic spin, and the for-
mer results in texture evolution. Employing the multiplicative decomposition of Fξ, the velocity
gradient Lξ := ∂vξ/∂x (where, vξ is velocity) is written as

Lξi j = Ḟξ
im

(
Fξ

m j

)−1
= Ṙξ

imRξ
jm + Lp,ξ

i j (2.7)

where Lp,ξ is the viscoplastic velocity gradient

Lp,ξ
i j = Rξ

imḞ p,ξ
mk

(
F p,ξ

kl

)−1
Rξ

jl (2.8)
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The rate of deformation tensor Dξ and the spin tensor Wξ are obtained from the velocity gradient
as

Dξ
i j = Dp,ξ

i j = sym
(
Lp,ξ

i j

)
= sym

(
Lξi j

)
; Wξ

i j = Ω
ξ
i j + W p,ξ

i j (2.9)

and
W p,ξ

i j = skew
(
Lp,ξ

i j

)
(2.10)

Ω
ξ
i j = Ṙξ

imRξ
jm (2.11)

using sym(ṘξRξ) = 0. Dp,ξ is the rate of viscoplastic deformation tensor and W p,ξ is the vis-
coplastic spin. Note that due to the equivalence between Dp,ξ and Dξ, we use Dξ to denote the
viscoplastic deformation rate in the remainder of this manuscript.

2.2. Constitutive equations
While the current formulation can account for different sources of plastic deformation, we

consider that the plastic deformation of a grain is only induced by the crystallographic slip along
the lattice-dependent slip planes. The viscoplastic velocity gradient Lp,ξ is written as

Lp,ξ
i j =

N∑
s=1

Z s,ξ
i j (x, t) γ̇s,ξ (x, t) (2.12)

where N is the number of slip systems, γ̇s,ξ is the slip rate of the sth slip system, and Z s,ξ is the
Schmid tensor defined as the dyadic product of the slip direction ns,ξ and normal to the slip plane
ms,ξ (i.e., Z s,ξ = ns,ξ ⊗ms,ξ) and represents the slip system orientation. Substituting Eq. (2.12) into
Eq. (2.9) and (2.10) yields

Dξ
i j =

N∑
s=1

sym
(
Z s,ξ

i j (x, t)
)
γ̇s,ξ (x, t) (2.13)

W p,ξ
i j =

N∑
s=1

skew
(
Z s,ξ

i j (x, t)
)
γ̇s,ξ (x, t) (2.14)

The slip rate γ̇s,ξ is described by a flow rule as a function of resolved shear stress τs,ξ and
the slip system strength gs,ξ. While the present formulation allows arbitrary forms for flow and
hardening evolution, we adopt a frequently used flow rule suggested by Rice and Peirce [8, 54] for
simplicity

γ̇s,ξ = γ̇0

(
|τs,ξ(x, t)|

gs,ξ

) 1
m

sgn(τs,ξ(x, t)) (2.15)

in which, m is the rate sensitivity parameter, and γ̇0 is the reference slip rate. The resolved shear
stress is the projection of the Cauchy stress σξ onto an individual slip system through the Schmid
tensor

τs,ξ (x, t) = σ
ξ
i j (x, t) Z s,ξ

i j (x, t) (2.16)

The evolution of the slip system strength follows a hardening rule considering latent hardening
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proposed by Anand [55]

ġs,ξ = h0

gs,ξ
sa − gs,ξ

gs,ξ
sa − gs,ξ

0

 N∑
s=1

|γ̇s,ξ | (2.17)

where h0 is the initial hardening rate, gs,ξ
sa is the saturation stress of the sth slip system, and gs,ξ

0 is
the initial strength of sth slip system. The saturation stress is further defined as

gs,ξ
sa = gs

sa,0

 N∑
s=1

|γ̇s,ξ |

γ̇s0

m′

(2.18)

in which gs
sa,0, γ̇s0 and m′ are material parameters.

The evolution of the texture is described by the evolution of the Schmid tensor Z s,ξ. Let the
crystal orientation be described by Euler angles (ψ1, φ, ψ2), from which the rotation tensor Cξ is
constructed (detailed expression is stated in Section 5). The rotation matrix is used to transform
the orthonormal slip system vectors (ns,ξ

0 ,m
s,ξ
0 ) from lattice axis to sample axis

ns,ξ
i = Cξ

i jn
s,ξ
0 j ; ms,ξ

i = Cξ
i jm

s,ξ
0 j (2.19)

Hence, the Schmid tensor is rotated as

Z s,ξ
i j = Cξ

imZ s,ξ
0mnC

ξ
jn (2.20)

where Z s,ξ
0 = ns,ξ

0 ⊗ ms,ξ
0 describes the slip system orientation with respect to the lattice axis.

Equation (2.20) indicates that the Schmid tensor evolves with the rotation matrix Cξ, which is
constructed by the rotation tensor Rξ as

Cξ
i j = Rξ

imCξ
0m j (2.21)

where Cξ
0 is the initial orientation and is prescribed as part of the crystal initial state.

2.3. Governing equilibrium and boundary conditions
The equilibrium is written in the deformed configuration using Cauchy stress as the stress

measure
σ
ξ
i j,x j

(x, t) + bξi (x, t) = 0 (2.22)

in which bξ stands for the body force per unit volume. The boundary conditions for the boundary
value problem are

uξi (x, t) = ūi (x, t) x ∈ Γu

σ
ξ
i j (x, t) n j = t̄i (x, t) x ∈ Γt (2.23)

in which ū and t̄ are the prescribed displacement and traction on the boundaries Γu and Γt, where
Γu ∪ Γt = ∂Ω and Γu ∩ Γt = Ø. n is the unit normal to Γt.
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3. Mathematical homogenization with two scales

In this section, we employ the method of asymptotic analysis with multiple scales to analyze
the system of equations defined in Section 2. Asymptotic analyses of large deformation problems
have been previously performed (see e.g. [56, 57]), while in the previous studies, the analyses
have been typically performed in the undeformed configuration. We perform the analysis in the
deformed configuration in the current work. While equivalent, the resulting system at the mi-
croscale is more amenable to model order reduction using EHM. In what follows, we establish
mapping functions between the deformed and undeformed configurations at two scales. Then
the two scale asymptotic analysis is performed to decompose the governing equations defined in
Section 2 to formulate the micro- and macroscale problems.

3.1. Mapping between undeformed configuration and deformed configuration
We start from a two-scale asymptotic expansion of the displacement field in the undeformed

configuration
uξi (X, t) = ui (X,Y, t) = u0

i (X, t) + ξu1
i (X,Y, t) + O

(
ξ2

)
(3.1)

where u0 is the leading order displacement, which is taken to be independent of the microscale.
The transformation from undeformed to deformed configuration is established by analyzing the
deformation mapping. In the context of a two-scale asymptotic analysis, separate mapping be-
tween macro- (X to x) and microscopic (Y to y) coordinates are derived and employed. In the
following derivations, we assume that the size of the characteristic volume is infinitesimal (i.e.,
0 < ξ � 1) compared to the deformation wavelength, and the leading order displacement field
u0(X, t) is constant over the characteristic volume domain

u0
i (X1, t) = u0

i (X2, t) if ‖X1 − X2‖ < ξ (3.2)

where, X1 and X2 ∈ Ω are two macroscopic material points close to each other. Consider the
mapping ψξ (X, t) that transforms the undeformed configuration to the deformed configuration
ψξ (X, t) = ψ (X,Y, t). Since the difference between the deformed and undeformed configurations
is the displacement field, the mapping function can also be written as

ψ
ξ
i (X, t) = Xi + uξi (X, t) (3.3)

Substituting Eq. (3.1) into Eq. (3.3) and using Eq. (2.1), we have

xi = Xi + u0
i (X, t) + ξu1

i (X,Y, t) + O
(
ξ2

)
(3.4)

At the limit ξ → 0, the macroscopic mapping is obtained as

xi = ψM
i (X, t) = Xi + u0

i (X, t) (3.5)

The mapping for the microscale coordinates (Y to y) is obtained by considering an arbitrary but
fixed point X̂ in the immediate neighborhood of X. The deformed and undeformed configurations,
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Figure 3: Mappings: (a) initial macrostructure; (b) deformed macrostructure; (c) initial microstructure and
(d) deformed microstructure

x̂ and X̂, are connected by the macroscopic mapping function as

x̂i = X̂i + u0
i

(
X̂, t

)
(3.6)

Subtracting Eq. (3.6) from Eq. (3.4), we have

xi − x̂i = Xi − X̂i + u0
i (X, t) − u0

i

(
X̂, t

)
+ ξu1

i (X,Y, t) + O
(
ξ2

)
(3.7)

Considering Eq. (3.2) and the identities x − x̂ = ξy and X − X̂ = ξY, and using asymptotic
matching of O (ξ) terms yield

yi = ψm
i (X,Y, t) = Yi + u1

i (X,Y, t) (3.8)

which is the microscopic mapping. Equation (3.8) shows that the microscale deformation is de-
scribed by the fluctuating microscopic perturbation of the displacement field, u1. Figure 3 is a
schematic illustration of the mapping, where the macrostructure undergoes some deformation due
to u0 (e.g. uniaxial tension), and microstructure undergoes microscopic periodic deformation due
to u1.
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3.2. Two-scale asymptotic analysis in the deformed configuration
Taking the time derivative of Eq. (3.1) yields the asymptotic expansion of the velocity field

v̂ξi (X, t) = v̂i (X,Y, t) = v̂0
i (X, t) + ξv̂1

i (X,Y, t) + O
(
ξ2

)
(3.9)

where v̂ = u̇ is the velocity field defined in the undeformed configuration. Utilizing the micro-
and macro- mapping functions in Eq. (3.5) and Eq. (3.8), the asymptotic expansion of the velocity
field in the deformed configuration is written as

vξi (x, t) = vi (x, y, t) = v0
i (x, t) + ξv1

i (x, y, t) + O
(
ξ2

)
(3.10)

It is important to note that the scale separated mappings allow a consistent and one-to-one cor-
respondence of the asymptotic terms of the velocity field between the undeformed and deformed
configurations

v̂0
i

((
ψM

)−1
(x) , t

)
= v0

i (x, t) (3.11)

v̂1
i

((
ψM

)−1
(x) , (ψm)−1 (y) , t

)
= v1

i (x, y, t) (3.12)

Considering the rate of deformation tensor and the spin tensor are the symmetrical and skew parts
of the velocity gradient, respectively, we can write

Dξ
i j = vξ(i, j)(x, t) :=

1
2

(
vξi, j (x, t) + vξj,i (x, t)

)
(3.13)

Wξ
i j = vξ

〈i, j〉 (x, t) :=
1
2

(
vξi, j (x, t) − vξj,i (x, t)

)
(3.14)

Substituting Eq. (3.10) into Eqs. (3.13) and (3.14) yields

Dξ
i j (x, t) = Di j (x, y, t) = D0

i j (x, y, t) + ξD1
i j (x, y, t) + O

(
ξ2

)
(3.15)

Wξ
i j (x, t) = Wi j (x, y, t) = W0

i j (x, y, t) + ξW1
i j (x, y, t) + O

(
ξ2

)
(3.16)

where

Dk
i j (x, y, t) = vk

(i,x j) + vk+1
(i,y j); k = 0, 1 (3.17)

Wk
i j (x, y, t) = vk

〈i,x j〉
+ vk+1
〈i,y j〉

; k = 0, 1 (3.18)

Considering the periodicity over the deformed microstructure, the macroscopic rate of defor-
mation tensor and the spin tensor are defined as

D̄i j (x, t) := lim
ξ→0

〈
Di j (x, y, t)

〉
Θ

= v0
(i,x j) (x, t) ;

W̄i j (x, t) := lim
ξ→0

〈
Wi j (x, y, t)

〉
Θ

= v0
〈i,x j〉

(x, t)
(3.19)
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in which 〈·〉Θ denotes spatial averaging over the deformed characteristic volume. In subsequent
derivations, we place an overbar on a field quantity to indicate spatial averaging. Consider the
asymptotic expansions for the Cauchy stress, slip system strength and the Schmid tensor

σ
ξ
i j (x, t) = σi j (x, y, t) = σ0

i j (x, y, t) + ξσ1
i j (x, y, t) + O

(
ξ2

)
(3.20)

gs,ξ (x, t) = gs (x, y, t) = gs,0 (x, y, t) + ξgs,1 (x, y, t) + O
(
ξ2

)
(3.21)

Z s,ξ
i j (x, t) = Z s

i j (x, y, t) = Z s,0
i j (x, y, t) + ξZ s,1

i j (x, y, t) + O
(
ξ2

)
(3.22)

Substituting the asymptotic expansions into Eqs. (2.13) and (2.14), and considering the first
order terms yield

D0
i j (x, y, t) =

N∑
s=1

sym
(
Z s,0

i j (x, y, t)
)
γ̇s,0 (x, y, t) (3.23)

W p,0
i j (x, y, t) =

N∑
s=1

skew
(
Z s,0

i j (x, y, t)
)
γ̇s,0 (x, y, t) (3.24)

in which, γ̇s,0 is the first order term of a Taylor Series approximation of the slip rate [27]

γ̇s,0 (x, y, t) = γ̇0

(
|τs,0 (x, y, t) |

gs,0

) 1
m

sgn
(
τs,0 (x, y, t)

)
(3.25)

where, τs,0 is the leading order term of the resolved shear stress obtained by substituting Eqs. (3.20)
and (3.22) into Eq. (2.16)

τs,0 (x, y, t) = σ0
i j (x, y, t) Z s,0

i j (x, y, t) (3.26)

Considering a Taylor Series expansion of Eq. (2.17) around gs,0, the first order term in the expan-
sion provides the evolution equation for the leading order slip system strength term [27]

ġs,0 = h0

gs,0
sa − gs,0

gs,0
sa − gs,0

0

 N∑
s=1

|γ̇s,0| (3.27)

in which the first order approximation of the saturation stress is

gs,0
sa = gs

sa,0

 N∑
s=1

|γ̇s,0|

γ̇s0

m

(3.28)

We proceed with deriving the governing equations for texture update. Consider the asymptotic
expansion for the rotation tensor Rξ

Rξ
i j (x, t) = R0

i j (x, y, t) + ξR1
i j (x, y, t) + O(ξ2) (3.29)
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and the first order approximations for Wξ and W p,ξ, employing Eqs. (2.9) and (2.11) we get

Ṙ0
i j = (W0

im −W p,0
im )R0

m j (3.30)

Substituting the asymptotic expansion of the stress field (Eq. (3.20)) into the equilibrium equa-
tion (Eq. (2.22)), employing the chain rule (Eq. (2.4)), and identifying equations with equal order
of ξ yield

O
(
ξ−1

)
: σ0

i j,y j
(x, y, t) = 0 (3.31)

O ( 1 ) : σ0
i j,x j

(x, y, t) + σ1
i j,y j

(x, y, t) + bi (x, y, t) = 0 (3.32)

The O
(
ξ−1

)
equilibrium equation ensures microscopic equilibrium, whereas the homogenized

macroscopic equilibrium is obtained by averaging O (1) equation over the CV domain Θ and ex-
ploiting periodicity

σ̄i j,x j (x, t) + b̄i (x, t) = 0 (3.33)

The governing equations that result from the asymptotic analysis are collected to form the
macroscopic (i.e., homogenized) problem summarized in Box I and the microscopic problem in
Box II. The general procedure described above is similar to the first-order nonlinear homogeniza-
tion discussed in [58], but expressed in the current frame and specialized for crystal plasticity.
The microscale problem constitutes a well-defined boundary value problem posed over the CV,
where the “forcing term is the homogenized rate of deformation, D̄. In the macroscopic problem,
the macroscopic Cauchy stress, σ̄ is obtained by spatial averaging of the microscopic stress field
provided by the microscale problem, tightly coupling the two scales.

Box I. Macroscale problem
Given: average body force, b̄, boundary conditions, ū, t̄ at time t ∈ [0, t0];

Find: macroscopic displacement field u0 : Ω × [0, t0]→ Rnsd which satisfies

• Equilibrium (x ∈ Ω; t ∈ [0, t0])

σ̄i j,x j (x, t) + b̄i (x, t) = 0;

• Kinematics (x ∈ Ω; t ∈ [0, t0])

D̄i j = 1
2

(
v0

i,x j
+ v0

j,xi

)
; W̄i j = 1

2

(
v0

i,x j
− v0

j,xi

)
;

• Constitutive relation (x ∈ Ω; t ∈ [0, t0])

σ̄i j (x, t) = 1
|Θ|

∫
Θ
σ0

i j (x, y, t) dy;

• Boundary conditions

u0
i (x, t) = ūi (x, t) x ∈ Γu, t ∈ [0, t0]; σ̄i j (x, t) n j = t̄i (x, t) x ∈ Γt, t ∈ [0, t0];
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Box II. Microscale problem
Given: material parameters m, γ̇0, h0, gs

0, g
s
sa,0,m and γ̇s0, macroscopic strain rate D̄ (x, t) at

a fixed but arbitrary point, x

Find: microscopic displacement field u1 : Θ × [0, t0]→ Rnsd , which satisfies:

• Equilibrium

σ0
i j,y j

(x, y, t) = 0;

• Kinematics

D0
i j (x, y, t) = v0

(i,x j) (x, t) + v1
(i,y j) (x, y, t);

W0
i j (x, y, t) = v0

〈i,x j〉
(x, t) + v1

〈i,y j〉
(x, y, t);

• Constitutive relations

D0
i j (x, y, t) =

∑N
s=1 sym

(
Z s,0

i j (x, y, t)
)
γ̇s,0 (x, y, t);

W p,0
i j (x, y, t) =

∑N
s=1 skew

(
Z s,0

i j (x, y, t)
)
γ̇s,0 (x, y, t);

Ṙ0
i j (x, y, t) =

[
W0

im (x, y, t) −WP,0
im (x, y, t)

]
R0

m j (x, y, t);

• Flow rule

γ̇s,0 (x, y, t) = γ̇0

(
|τs,0 (x, y, t) |
gs,0 (x, y, t)

) 1
m

sgn
(
τs,0 (x, y, t)

)
;

• Hardening law

ġs,0 (x, y, t) = h0

gs,0
sa (x, y, t) − gs,0 (x, y, t)
gs,0

sa (x, y, t) − gs,0
0 (x, y)

∑N
s=1|γ̇

s,0 (x, y, t) |;

gs,0
sa = gs

sa,0

(∑N
s=1
|γ̇s,0 (x, y, t) |

γ̇s0

)m

;

• Schmid law

τs,0 (x, y, t) = σ0
i j (x, y, t) Z s,0

i j (x, y, t);

• Θ-periodic boundary condition.

Remark 1. Theoretically, it is still necessary to investigate the equivalency of the kinematics
and equilibrium equations between undeformed and deformed configurations for both macro- and
micro-scale. This task is trivial once the mapping functions are known. One can obtain the relation
between the stress measures (e.g., first Piola-Kirchoff stress P and Cauchy stress σ) and the strain
measures (e.g., deformation gradient F and rate of deformation tensor D) in the two configura-
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tions, which is essentially the equivalency of kinematics, and can be further used to demonstrate
the equivalency of the equilibrium equations.

4. Model order reduction of the microscale problem

The microscale problem defined in Box II can be directly evaluated numerically (e.g., using
the finite element method), however this may be computational expensive when the microstructure
is complicated and needs intensive meshing to resolve its microstructure features properly. In this
section, a reduced order model is formulated for the microscale problem. In what follows, the
superscript 0 that indicates the leading order term in asymptotic or Taylor Series expansions are
omitted from field variables for simplicity of presentation.

4.1. Linearization of the constitutive equations
Substituting the slip evolution (Eqs. (3.25)) and the Schmid law ((Eq. 3.26)) into Eq. (3.23)

and rearranging the terms yield
Di j = Mi jkl (σ)σkl (4.1)

in which the viscosity tensor M is defined as

Mi jkl (σ) = γ̇

N∑
s=1

sym
(
Z s

i j

) sym
(
Z s

kl

)
gs

(
|sym

(
Z s

mn
)
σmn|

gs

) 1
m−1

 (4.2)

Equation (4.1) expresses the constitutive behavior in the form of a nonlinear, anisotropic, stress
dependent non-Newtonian and incompressible fluid. The nonlinear stress-dependence of the vis-
cosity tensor is clear since the slip system strength is also stress-dependent. Incompressibility
emanates from the Schmid tensors, where the slip system normal and slip direction are always
orthogonal to each other (i.e., Z s

ii = 0). It is also clear from Eq. (4.2) that the viscosity tensor has
major symmetry (i.e., Mi jkl = Mkli j).

We proceed with a two-term Taylor Series approximation for M(σ) around a stress state σ̂

Mi jkl (σ) = Mi jkl (σ̂) +
dMi jkl

dσmn

∣∣∣∣∣
σ=σ̂

(σmn − σ̂mn) (4.3)

From a computational viewpoint, accuracy of the ensuing computations rely on choosing an appro-
priate stress point, σ̂, from which the Taylor Series approximation is made. The choice employed
in this study is discussed in Section 5. Substituting Eq. (4.3) into Eq. (4.1), and rearranging the
terms results in the following alternative form for the constitutive equation

σi j = Li jkl (Dkl − µkl) (4.4)

where the fluidity tensor L is defined as the inverse of viscosity tensor (M (σ̂)−1), and µ is the first
order correction to the rate of deformation predicted by the stress state, σ̂

µi j =
dMi jkl

dσmn

∣∣∣∣∣
σ=σ̂

(σmn − σ̂mn)σkl (4.5)
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Substituting Eqs. (3.17) and (3.19) to Eq. (4.4)

σi j = Li jkl

(
D̄kl + v1

(k,yl) − µkl

)
(4.6)

Combining Eq. (4.6) with Eq. (3.31), the microscopic equilibrium equation Eq. (3.31) is written
as [

Li jkl

(
D̄kl + v1

(k,yl) − µkl

)]
,y j = 0 (4.7)

Remark 2. One novelty of the present formulation is the linearization of the constitutive equation
with a two-term Taylor Series expansion to provide higher order accuracy to the approximation of
viscosity tensor M. When the rate sensitivity parameter m is small (or 1

m is large), the extra term
can stabilize the formulation and reduce the computational effort by keeping a relatively coarse
time discretization. One may resort to even higher order expansions when the material is highly
rate-sensitive, where m is a very small number.

4.2. Reduced-basis representation
The microscopic equilibrium equation derived above is similar in form to that used in the

small-strain EHM theory [19, 27]. This similarity allows us to employ the principles of EHM to
reduce the order of the microscale problem. The form of the microscale equation in small-strain
EHM is due to the additive split of the strain tensor, and µ corresponds to inelastic strains. The
current formulation does not employ additive split, and µ corresponds to the first order correc-
tion to the deformation rate tensor. Despite the difference in its physical meaning, the proposed
formulation considers µ as an eigen-field, similar to the eigenstrain treatment of µ in small-strain
EHM. Three additional differences set apart the current formulation from previous formulations:
(1) the microscale equilibrium equation is defined at the current frame; (2) the macroscale “force
function”, D̄ and µ are rate quantities; and (3) the fluidity tensor, L is a function of stress state, and
hence not constant (unlike small-strain EHM, where the corresponding moduli tensor is constant).

We proceed with the following decomposition for the microscopic velocity field

v1
i (x, y, t) = Hikl (x, y, t) D̄kl (x, t) +

∫
Θ

hikl (x, y, ŷ, t) µkl (x, ŷ, t) d ŷ (4.8)

where H and h denote influence functions. The first term on the right hand side of Eq. (4.8)
is an extension of the separation of variables principle employed in the classical linear elastic
computational homogenization method [59]. The second term is obtained by the Green’s function
approach, where the term µ is viewed as the spatially varying “force” acting on the deformed
frame of the microstructure domain.

Substituting Eq. (4.8) into the microscopic equilibrium equation (Eq. (4.7)) yields{
Li jkl (x, y, t)

[
Aklmn (x, y, t) D̄mn (x, t) +

∫
Θ

aklmn (x, y, ŷ, t) µmn (x, ŷ, t) d ŷ
]}
,y j = 0 (4.9)
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where,

Aklmn (x, y, t) = Gklmn (x, y, t) + Iklmn (4.10)
aklmn (x, y, ŷ, t) = gklmn (x, y, ŷ, t) − Iklmnδ (y − ŷ) (4.11)

with I as the fourth order identity tensor and δ is the Dirac delta function. The polarization func-
tions are defined as

Gklmn (x, y, t) = H(k,yl)mn (x, y, t) (4.12)
gklmn (x, y, ŷ, t) = h(k,yl)mn (x, y, ŷ, t) (4.13)

We proceed by introducing the following discretizations for µ and σ

µi j (x, y, t) =

n∑
α=1

N(α) (y) µ(α)
i j (x, t) (4.14)

σi j (x, y, t) =

n∑
α=1

N(α) (y)σ(α)
i j (x, t) (4.15)

where n ≥ ngrain is an integer that indicates the order of the resulting reduced order model, ngrain is
the number of grains within the CV, N(α) is the reduced order shape function, µ(α) and σ(α) are the
nonlocal eigen-deformation rate and stress coefficients, respectively. The nonlocal coefficients are
expressed in terms of nonlocal weight functions as

µ(α)
i j (x, t) =

∫
Θ

ψ(α) (y) µi j (x, y, t) dy (4.16)

σ(α)
i j (x, t) =

∫
Θ

ψ(α) (y)σi j (x, y, t) dy (4.17)

where the nonlocal weight functions satisfy[27]

ψ(α) (y) ≥ 0;
∫

Θ

ψ(α) (y) dy = 1;
∫

Θ

ψ(α) (y) N(β) (y) dy = δ(αβ) (4.18)

in which δ(αβ) is the Kronecker delta.
Substituting Eq. (4.9) into Eq. (3.17) with k = 0, we have

Di j (x, y, t) = Ai jkl (x, y, t) D̄kl (x, t) +

∫
θ

gi jkl (x, y, ŷ, t) µkl (x, ŷ) d ŷ (4.19)

Substituting Eq. (4.14) into Eq. (4.19), premultiplying the resulting equation with ψ(α) and inte-
grating over the CV domain yield

D(β)
i j (x, t) −

n∑
α=1

P(βα)
i jkl (x, t) µ(α)

kl (x, t) = A(β)
i jkl (x, t) D̄kl (x, t) (4.20)
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in which P(βα) and A(β) are the coefficient tensors expressed as functions of the polarization tensors
as

P(βα)
i jkl (x, t) =

∫
Θ

∫
Θ

ψ(β) (y) N(α) (ŷ) gi jkl (x, y, ŷ, t) dyd ŷ (4.21)

A(β)
i jkl (x, t) =

∫
Θ

ψ(β) (y) Ai jkl (x, y, t) dy (4.22)

and,

D(β)
i j (x, t) :=

∫
Θ

ψ(β) (y) D0
i j (x, y, t) dy (4.23)

Applying the same operation for the spin tensor, we obtain

W (β)
i j (x, t) = W̄i j (x, t) + S (β)

i jkl (x, t) D̄kl (x, t) +

n∑
α=1

T (βα)
i jkl (x, t) µ(α)

kl (x, t) (4.24)

where T(βα) and S(β) are two additional coefficient tensors that emanate from the skew part of the
influence function gradient over the microscopic domain.

T (βα)
i jkl (x, t) =

∫
Θ

ψ(β) (y) h(α)

〈i,y j〉kl
(x, y, t) dy (4.25)

S (β)
i jkl (x, t) =

∫
Θ

ψ(β) (y) H〈i,y j〉kl (x, y, t) dy (4.26)

We turn our attention to expressing the constitutive law as a function of the reduced order
model variables. We begin by rewriting Eq. (4.4) as

Di j (x, y, t) − µi j(x, y, t) = Mi jkl

∣∣∣
σ=σ̂

σkl(x, y, t) (4.27)

Substituting Eq. (4.17) into Eq. (4.27), premultiplying it with ψ(α), and integrating over the RVE
domain yield

D(β)
i j (x, t) = µ

(β)
i j (x, t) +

n∑
α=1

M(βα)
i jkl

∣∣∣∣
σ(α)=σ̂(α)

σ(α)
kl (x, t) (4.28)

where σ̂(α) denotes the approximated stress for part α from the Taylor Series expansion, and M(βα)

is
M(βα)

i jkl (x, t) =

∫
θ

ψ(β) (y) Mi jkl (x, y, t) N(α) (y) dy (4.29)

Combining Eq. (4.20) and Eq. (4.28) results in the expression of the constitutive equation in terms
of the reduced order model unknowns (i.e., σ(α) and µ(α))

n∑
α=1

M(βα)
i jkl

∣∣∣∣
σ(α)=σ̂(α)

σ(α)
kl (x, t) −

n∑
α=1

[
P(βα)

i jkl (x, t)− δ(αβ)Ii jkl

]
µ(α)

kl (x, t) = A(β)
i jkl (x, t) D̄kl (x, t) (4.30)
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The coefficient tensors M(βα), P(βα) and A(β) provide the microstructural information to the resulting
model.

The choice of shape functions N(α) directly affect the efficiency and accuracy of the resulting
reduced order model [29]. In this manuscript, we employ piecewise constant functions as the
shape functions [60]

N(α) (y) =

1 y ∈ Θ(α)

0 y /∈ Θ(α) (4.31)

ψ(α) (y) =
1
|Θ(α)|

N(α) (y) (4.32)

where Θ(α) denotes a part of the CV. The domain partitioning is performed such that the parts are

non-overlapping i.e., Θ =
n⋃
α=1

Θ(α) and Θ(α) ∩ Θ(β) = ∅ for α 6= β, and each part contains a uniform

piece of material (e.g., a grain or a part of a grain with constant orientation). As a result, the
coarsest basis for a polycrystalline material is a one-part-per-grain reduced order model. In view
of this selection, the material parameters and grain orientation associated with each part Θ(α) is
spatially constant (e.g., Z s (x, y, t) = Z s(α) (x, t) when y ∈ Θ(α)). The shape and weight function
selection strategy used in this work is further explained in [27, 29].

Premultiplying Eq. (3.26) with ψ(α) and integrating over the CV domain yield:

τs(α) (x, t) = σ(α)
i j (x, t) Z s(α)

i j (x, t) (4.33)

where τs(α) is the part-average resolved shear stress of the sth slip system, and Z s(α) denotes the
Schmid tensor associated with part α.

Noting that the resolved shear stress in the reduced order model is piecewise uniform by the
above argument, the slip and hardening evolve in a piecewise uniform fashion as well. The hard-
ening evolution equations are therefore expressed in terms of part-average quantities

γ̇s(α) (x, t) = γ̇0

( |τs(α) (x, t) |
gs(α) (x, t)

) 1
m

sgn(τs(α) (x, t)

 (4.34)

ġs(α) (x, t) = h0

gs(α)
sa (x, t) − gs(α) (x, t)
gs(α)

sa (x, t) − gs(α)
0 (x)

 N∑
s=1

∣∣∣γ̇s(α) (x, t)
∣∣∣ (4.35)

where γ̇s(α), gs(α) and gs(α)
sa are the part-average slip rate, slip system strength and saturation shear

stress of the sth slip system, respectively.
Premultiplying Eq. (3.24) with ψ(α), integrating over the CV domain, and since both Schmid

tensor and slip rate are piecewise uniform, the part-average plastic spin is obtained as

WP(α)
i j (x, t) = γ̇0

N∑
s=1

skew
(
Z s(α)

i j

) 
∣∣∣τs(α) (x, t)

∣∣∣
gs(α) (x, t)


1
m

sgn
(
τs(α) (x, t)

)
(4.36)

Employing the same operation for Eq. (3.30), the evolution of the rotation tensor is written in a
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part-wise fashion as
Ṙ(α)

i j =
(
W (α)

im −W p(α)
im

)
R(α)

m j (4.37)

where R(α) =
∫

Θ
ψ(α)R0dy.

The non-overlapping and piecewise constant choice for the shape and weight functions, when
applied to Eq. (4.29) leads to

M(αβ)
i jkl = 0 if α 6= β (4.38)

Substituting Eq. (4.2) into Eq. (4.29), noting that the Schmid tensor, slip system strength and
Cauchy stress are spatially constant within each part Θ(α)

M(αα)
i jkl = γ̇0

N∑
s=1

sym
(
Z s(α)

i j

) sym
(
Z s(α)

kl

)
gs(α)


∣∣∣∣sym

(
Z s(α)

mn

)
σ(α)

mn

∣∣∣∣
gs(α)


1
m−1 (4.39)

Considering Eq. (4.5) and expanding the total derivative, the eigen-deformation rate µ is writ-
ten as

µi j =
∂Mi jkl

∂σmn

∣∣∣∣∣∣
σ=σ̂

(σkl − σ̂kl)σmn +

(
∂Mi jkl

∂gs

∂gs

∂σmn

)∣∣∣∣∣∣
σ=σ̂

(σkl − σ̂kl)σmn (4.40)

where the contribution of the Schmid tensor is not included. The reason is that the texture evo-
lution is relatively slow compared to stress and slip system strength, of which the influence is
negligible especially when the second order term of Taylor Series expansion is considered. In
order to eliminate the complexity induced by the term ∂gs/∂σ, we use a two-term Taylor Series
expansion for gs(σ) around σ̂ as

gs (σ) = gs (σ̂) +
∂gs

∂σi j

∣∣∣∣∣∣
σ=σ̂

(
σi j − σ̂i j

)
(4.41)

Substituting Eq. (4.41) into Eq. (4.40) yields

µi j =
∂Mi jkl

∂σmn

∣∣∣∣∣∣
σ=σ̂

(σkl − σ̂kl)σmn +
∂Mi jkl

∂gs

∣∣∣∣∣∣
σ=σ̂

(gs − ĝs)σkl (4.42)

in which ĝs = gs(σ̂).
Using Eq. (4.42), it is straightforward to see that the part-average eigen-deformation rate for

part α is

µ(α)
i j =

∂M(αα)
i jkl

∂σ(α)
mn

∣∣∣∣∣∣∣
σ(α)=σ̂(α)

(
σ(α)

kl − σ̂
(α)
kl

)
σ(α)

mn +
∂M(αα)

i jkl

∂gs,(α)

∣∣∣∣∣∣∣
σ(α)=σ̂(α)

(gs(α)
− ĝs(α))σ(α)

kl (4.43)

Box III summarizes the reduced order microscale problem. Provided that n is small, the re-
duced order model is significantly more efficient compared with the evolution of the original mi-
croscale BVP described in Box II. The unknowns of the reduced order model are the part-average
stress, slip system strength and textures.
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Box III. Reconstructed microscale problem
Given: part-wise parameters ns(α), ms(α), gs(α)

sa , γ̇s(α)
0 , h(α)

0 , gs(α)
s0 , γ̇(α)

s0 , the macroscale
rate of deformation tensor D̄ computed from deformation gradient F̄ and its increment ∆F̄
within time increment ∆t. Compute coefficient tensors M(αβ), P(βα), A(β), T(βα) and S(β) at time t.

Find: macroscale stress σ̄ by solving

• Stress update

∑n
α=1 M(αβ)

i jkl

∣∣∣∣
σ(α)=σ̂(α)

σ(α)
kl (x, t) −

∑n
α=1

[
P(αβ)

i jkl (x, t) − δ(αβ)Ii jkl

]
µ(α)

kl (x, t) =

A(β)
i jkl (x, t) D̄kl (x, t);

µ(α)
i j =

∂M(αα)
i jkl

∂σ(α)
mn

∣∣∣∣∣∣∣
σ(α)=σ̂(α)

(
σ(α)

kl − σ̂
(α)
kl

)
σ(α)

mn +
∂M(αα)

i jkl

∂gs(α)

∣∣∣∣∣∣∣
σ(α)=σ̂(α)

(gs(α) − ĝs(α))σ(α)
kl ;

σ̄i j (x, t) = 1
|Θ|

∫
Θ
σ0

i j (x, y, t) dΘ; σ0
i j (x, y, t) =

∑n
α=1 N(α) (y)σ(α)

i j (x, t).

• Slip system strength update

γ̇s(α) (x, t) = γ̇0

(
|τs(α) (x, t) |
gs(α) (x, t)

) 1
m

sgn
(
τs(α) (x, t)

)
;

ġs(α) (x, t) = h0

gs(α)
sa (x, t) − gs(α) (x, t)
gs(α)

sa (x, t) − gs(α)
0 (x)

∑N
s=1|γ̇

s(α) (x, t) |;

τs(α) (x, t) = σ(α)
i j (x, t) Z s(α)

i j (x, t).

• Texture update

W (β)
i j (x, t) = W̄i j (x, t) + S (β)

i jkl (x, t) D̄kl (x, t) +
∑n
α=1 T (βα)

i jkl (x, t) µ(α)
kl (x, t);

WP(α)
i j (x, t) = γ̇0

∑N
s=1 skew

(
Z s(α)

i j

) ( |τs(α) (x, t) |
gs(α) (x, t)

) 1
m

sgn
(
τs(α) (x, t)

)
.

4.3. Influence function problems
The influence functions associated with the macroscopic deformation gradient, D̄ and µ vary

as a function of time and both spatial scales. Time and macroscale position dependence of the
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influence functions are because the microscale problem is posed on the deformed configuration,
and the stress-dependence of the fluidity tensor. This is in contrast with the small-strain EHM for-
mulation, where the influence functions are time invariant, and does not depend on the macroscale
coordinates provided that the entire structural domain is defined by the same CV.

The governing equation for the influence function, H is obtained from Eq. (4.9) considering
the case when the eigendeformation rate (i.e., the second order effects) are negligible{

Li jmn (x, y, t)
[
H(m,yn)kl (x, y, t) + Imnkl

]}
,y j = 0 (4.44)

Equation (4.44) along with periodic boundary conditions form the first order influence function
problem.

Substituting the eigen-deformation rate discretization (Eq. (4.16)) and Eq. (4.44) into Eq. (4.9),
we obtain {

Li jmn (x, y, t)
[
h(α)

(m,yn)kl (x, y, t) − ImnklN(α) (y)
]}
,y j = 0 (4.45)

where h(α) is defined as

h(α)
ikl (x, y, t) =

∫
Θ

N(α) (y) hikl (x, y, ŷ, t) d ŷ (4.46)

Equation (4.45) along with periodic boundary conditions form the second order influence function
problem. Equations (4.44) and (4.45) are well-posed linear influence function problems that are
evaluated using the finite element method (see for small deformation analogs [27, 59]).

Substitute Eq. (4.46) into Eq. (4.21), it is possible to directly evaluate P(βα) using the part-wise
eigen-deformation rate influence function as [27]

P(βα)
i jkl (x, t) =

∫
Θ

ψ(β) (y) h(α)

(i,y j)kl
(x, y, t) dy (4.47)

5. Numerical implementation

The macroscale problem summarized in Box I combined with the reduced order microscale
problem summarized in Box III constitute the multiscale reduced order system. At a given macro-
scopic material point, the evolution of the reduced order microscale problem serves as the con-
stitutive update to compute the macroscopic stress tensor. One important consideration in the
straightforward implementation of the coupled multiscale system is that the influence functions,
H and h(α), and hence the coefficient tensors, A(α), P(βα), S(α) and T(βα) are state-dependent and re-
quire recomputation at each macroscopic material point and each macroscopic increment. While
the evolution of the reduced order microscale problem (with low n) is efficient, the computation of
the coefficient tensors is not. As demonstrated by the numerical verification example below, the
coefficient tensors exhibit a mild evolution as a function of deformation, where the macroscopic
deformation rate is relatively constant. The coefficient tensors are primarily dictated by the loading
rate. In view of this observation, we employ a computationally efficient implementation scheme
that does not rely on frequent coefficient tenors recomputations.
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Figure 4: Overview of the implementation strategy

Figure 4 illustrates the overview of the proposed implementation strategy. The present strategy
only requires computing the coefficient tensors once at each macroscopic point. The multiscale
system is evaluated in two stages: (1) preprocessing stage and (2) multiscale analysis stage.

5.1. Preprocessing stage
The preprocessing stage is performed in two steps: (1a) perturbation analysis and (1b) coeffi-

cient tensor computation. The purpose of the perturbation analysis step is to compute a reasonable
and non-zero initial guess for the macroscopic stress state to compute the coefficient tensors and
initiate the reduced order model. A zero initial guess results in a trivial viscosity tensor and
hence trivial coefficient tensors (see Eq. 5.1). In this step, the macroscopic domain is subjected to
the same loading condition that would be applied in the multiscale analysis stage but with much
smaller magnitude (i.e., 0 < ε � 1). The problem is evaluated using the Taylor model, where
each grain within the microstructure domain is subjected to the same macroscopic deformation
rate [16]. While it is possible to obtain the coefficient tensors directly using the reduced order
model, our investigations indicated occasional convergence difficulty for poor choices of initial
guess of stress states, and require multiple coefficient tensor computations during the iterations.
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The Taylor model provides a computational efficient way to estimate the viscosity tensor with a
microstructure without resorting to complex computations. At the end of the perturbation step, the
perturbation stress field σp(α)(X) is obtained.

In the coefficient tensor computation step, firstly, the microstructure is constructed and meshed.
At each quadrature point, the viscosity tensor is computed as

Mi jkl(σp(α)) = γ̇0

N∑
s=1

sym
(
Z s(α)

i j

) sym
(
Z s(α)

kl

)
gs(α)

 |sym
(
Z s(α)

mn

)
σ

p(α)
mn |

gs(α)


1
m−1 + κδi jδkl (5.1)

where κ is a very small positive number served as the penalty term, which is taken to be 1E-08 in
our study, and δ is the Kronecker delta. Compared with Eq. (4.39), Eq. (5.1) includes a penalty
term to account for the near rigid hydrostatic behavior. In the absence of the hydrostatic term, the
viscosity tensor (i.e., Eq. (4.39)) is rank deficient and not invertible since it is a deviatoric tensor.
Next, the influence function problems are solved (Eqs. (4.44) and (4.45)). The implementation
details of solving the influence function problem can be found in [27]. The coefficient tensors are
obtained through the integration of the influence functions over the microstructure domain.

Remark 3. In microstructures that are subjected to time varying strain rates, the effect of coeffi-
cient tensor evolution could be significant and consideration of time invariant coefficient tensors
may not be valid. In such cases, the computational burden due to coefficient tensor recomputations
could be decreased by considering an adaptive update procedure, where the frequency of coeffi-
cient tensor updates is dictated by the change in the strain rate. Such cases and optimal update
strategies are out of the scope of the current study.

5.2. Multiscale analysis stage
In the multiscale analysis stage, the macroscale problem and the reduced order microscale

problems are evaluated in a coupled fashion. The reduced order microscale problem is imple-
mented as a local stress update procedure within the macroscale problem. The macroscale prob-
lem is evaluated using the nonlinear finite element approach with the Newton-Raphson scheme.
The macroscopic stress update procedure is implemented as follows (Fig. 4). At each quadrature
point, the driving force is the macroscopic strain rate D̄ (computed from deformation gradient
F̄). At the beginning of each time increment, the first order approximation of the stress tensor in
the Taylor series expansion is taken to be the stress field from last increment (i.e., σ̂(α)

n+1 = σ(α)
n ) ,

and the approximation of viscosity tensor M(αα)
∣∣∣
σ(α)=σ̂(α) is updated from the old state accordingly

(Taylor model is used for the first increment to compute the initial state). Next, the microscale
reduced order system of equations are solved for the part-wise stress, strength and crystal orien-
tations using the coefficient tensors computed at the preprocessing stage. The macroscopic stress
and tangent moduli then are updated and passed to the macroscale solver.

The reduced order system of microscale equations in Box III are three sets of coupled non-
linear equations with part-wise stresses σ(α), strengths gs(α) and orientations Ψ(α) as unknowns. A
staggered scheme is adopted to solve this system, in which the part-wise stress and part-wise slip
system strengths are evaluated in a coupled but iterative manner. The orientations are updated once

23



the stresses and strengths are converged. The details of the evaluation of stress and slip system
strength are similar to the procedure provided in [27]. In this section, we discuss the details of the
texture update.

Expressing the orientation of part α using Euler angles (ψ(α)
1 , φ(α), ψ(α)

2 ), C(α) indicates ma-
trix representation of the rotation tensor in Kock’s convention [11]. Superscript α is omitted in
Eq. (5.2) for simplicity.

[
C(α)

]
=

cosψ1 cosψ2 − sinψ1 cos φ sinψ2 − cosψ1 sinψ2 − sinψ1 cos φ cosψ2 sinψ1 sin φ
sinψ1 cosψ2 + cosψ1 cos φ sinψ2 − sinψ1 sinψ2 + cosψ1 cos φ cosψ2 − cosψ1 sin φ

sinψ2 sin φ cosψ2 sin φ cos φ

 (5.2)

Considering Eqs. (2.19)-(2.21) in a part-wise fashion, the Schmid tensor for part α to its initial
value is

Z s(α) = C(α)Z s(α)
0

(
C(α)

)T
(5.3)

C(α) = R(α)C(α)
0 (5.4)

where Z s(α)
0 = ns(α)

0 ⊗ ms(α)
0 and C(α)

0 is the initial orientation for part α. We adopt an exponential
mapping suggested by Simo and Hughes [61] to update R(α) by

R(α)
n+1 = exp

(
∆W(α)

n+1

)
R(α)

n (5.5)

where
∆W(α)

n+1 = ∆tn+1

(
Ṙ(α)R(α)T

)
n+1 = ∆tn+1

(
W(α)

n+1 −WP(α)
n+1

)
(5.6)

6. Numerical verification

This section focuses on the verification of the proposed large deformation reduced order model
(LROM) by comparison with CPFE simulations (i.e., the reference model), in which the mi-
crostructure is fully resolved. Two sets of examples are studied to characterize the accuracy and
efficiency of LROM. The first set of examples are single crystal simulations, in which a voided
microstructure is employed. The second set of examples are on synthetic polycrystalline mi-
crostructures and enable the assessment of LROM capabilities in more complex morphologies.
In both sets of examples, accuracy in terms of the overall stress-strain behavior, anisotropy, and
texture evolution are investigated. For polycrystalline microstructures, the localized behaviors are
also investigated.

The verification examples consider microstructures that consist of face centered cubic (FCC)
crystals. All 12 {111} 〈111〉 slip systems are considered to be active in the simulations. The
parameters of the constitutive model for the crystal used in the simulations are summarized in
Table 1.

Table 1: Viscoplasticity parameters.

m γ̇0(s−1) h0(Mpa) gs
0(Mpa) gs

sa,0(Mpa) m’ γ̇s0(s−1)
0.25 1.0 20.4 3.7 30.8 0.0 5.0 × 1010
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Figure 5: (a) macroscale discretization, (b) microscale geometry and discretization of a voided single crystal
microstructure.
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Figure 6: Schematic illustration of three boundary conditions: (a) uniaxial tension, (b) simple shear and (c)
biaxial tension

Table 2: Orientations used in single crystal simulation, ψ1, φ andψ2 are Euler angles.

orientation 1 orientation 2 orientation 3 orientation 4 orientation 5
ψ1(◦) 88.98 13.58 101.9 132.81 238.51
φ(◦) 124.12 153.68 145.03 105.72 61.10
ψ2(◦) 115.16 314.4 249.44 180.69 158.50

6.1. Voided single crystal simulations
Figure 5 (b) shows the geometry and discretization of the microstructure used in this example.

A spherical void is included within the material microstructure. The finite element discretization
of the reference CPFE simulation consists of 5,707 tetrahedron elements. The LROM consists of
a single part (i.e., n=1), where a single basis function is used to discretize the microstructure. A
single trilinear eight-noded hexahedron element is used for the macroscopic discretization of the
multiscale model (Fig. 5 (a)).

25 separate microstructures were tested by varying the void diameter and the crystal orienta-
tion: the void diameter varies from 0.5µm to 0.9µm (the edge length of the microstructure is 1µm).
5 crystal orientations investigated are shown in Table 2. As shown in Fig. 6, three loading condi-
tions are considered to evaluate the performance of the reduced order model for each simulation
case: uniaxial tension, simple shear and biaxial tension (the 2D representation is for simplicity
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Figure 7: Overall stress-strain curves for voided RVE of diameter = 0.9 µm with orientation 1 subjected to
(a) uniaxial tension, (b) simple shear and (c) biaxial tension.
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Figure 8: Overall stress approximation error of all simulations for voided single crystals

since no loading is applied in the third direction). The loading is strain controlled. 50% strain is
applied at constant strain rate of 0.5/s for the uniaxial tension and the simple shear cases. In the
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Figure 9: Euler angle evolution for voided RVE with diameter = 0.9 µm, orientation 5 under simple shear
loading: (a) (b) and (c) correspond to ψ1, φ and ψ2, respectively.

biaxial tension case, 50% strain is applied at constant strain rate of 0.5/s in the x direction and 30%
strain is applied at constant strain rate of 0.3/s in the y direction.

Figure 7 shows the comparison of the overall stress-strain curves under the three loading condi-
tions for a single crystal with 0.9 µm diameter void and crystal orientation 1 (Table 2). In addition
to the reference CPFE simulation, the results of the LROM model are also compared with the
Eigendeformation-based reduced order homogenization (EHM) model outlined in [27]. The EHM
model relies on small strain assumption at the microscale and does not consider texture evolution.
In the EHM simulations, large macroscopic strains are considered with corotational formulation.
Under small deformations (e.g., when strain is less than 0.05), all three models yield similar stress-
strain response. When the deformation becomes larger, EHM deviates from the reference CPFE
simulation, while LROM continues to be reasonably accurate under all three loading configura-
tions. The stress approximation error of the proposed LROM approach over all 25 cases (with 5
void fractions and 5 orientations) under the 3 loading conditions (i.e., a total of 75 simulations)
are shown in Fig. 8. The stress approximation error is defined as follows

error =

∫ ε

0

|σLROM − σCPFE|

|σCPFE|
dε (6.1)
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The errors shown in Fig. 8 are averaged over the five orientations for each loading condition
and geometry. The figure shows that the errors across different geometries, orientations and load-
ing conditions remain under 2%.

Figure 9 shows the evolution of the three Euler angles as a function of macroscopic strain in
the simple shear loading case as computed using the proposed and the reference CPFE model. The
reduced order model tracks a single crystal average orientation since model order is n=1. The void
diameter is 0.9 µm and the initial crystal orientation is orientation 5. The values reported for CPFE
are also the volume averaged quantities over the microstructure. The plots indicate a significant
deviation of the average crystal orientation of up to 11◦ at 50% strain level. The figures indicate
a close match between the results of the LROM and CPFE simulations. The orientation evolution
within the crystal in CPFE simulation shows stable distribution with maximum variation of 1◦ for
the example shown above, indicating the volume averaged quantity is a good representation of the
orientation in CPFE model.

Figure 10 shows the results of two LROM simulations. These simulations consider void diam-
eter of 0.9 µm and initial crystal orientation 1 with uniaxial tension loading condition. In the first
case, coefficient tensors A(α), M(βα), P(βα), S(α) and T(βα) are updated at the end of every increment.
The update entails recomputing the influence functions with updated texture and performing the
corresponding integrations to obtain the coefficient tensors. In the second case, the coefficient
tensors are pre-computed at the preprocessing stage and kept constant throughout the simulation.
In the present case, Figure 10 demonstrates that evolution of the coefficient tensors does not affect
the computed stress-strain response within 50% strain range.

6.2. Synthetic polycrystalline simulations
The capabilities of the proposed reduced order approach is further verified on polycrystalline

configurations. Three polycrystalline microstructures as shown in Fig. 11 are employed. The
microstructures consist of 57, 91 and 134 randomly oriented and equiaxed FCC grains. The grain
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Figure 11: Three microstructures with different sizes: (a) 57-grain, (b) 91-grain and (c) 134-grain.
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Figure 12: Grain size distribution of the 57-grain RVE with actual grain size.

sizes are sampled from a normal distribution shown in Fig. 12. The figure also shows the sampled
distribution for the 57-grain microstructure. The orientation of the grains are randomly sampled
from a uniformed distribution, and the microstructures do not exhibit significant elastic anisotropy.
The microstructure are subjected to uniaxial, shear and biaxial loading conditions as described for
the single crystal example.

The reference CPFE simulations and influence function computations are performed using
microstructure discretizations that contain 125,557, 138,600 and 157,926 elements for the three
microstructures with respectively increasing number of grains. For the proposed approach, a single
trilinear hexahedron is employed in the discretization of the macroscale domain, identical to the
single crystal example. A part-per-grain scheme is adopted for the LROM representation of the
microstructure.

The overall stress-strain curves computed by the proposed and reference models on the 57-
grain microstructure under three load cases are shown in Fig. 13. Within the range of applied
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Figure 13: Overall stress-strain behavior of the 57-grain microstructure subjected to: (a) uniaxial tension;
(b) simple shear; and (c) biaxial tension.

strains (50% engineering strain) the results exhibit a reasonable match between the CPFE and
LROM simulations. The deformed configurations under the three loadings are shown in Fig. 14 to
provide visual illustration of the extent of deformation that the microstructure undergo (from the
CPFE simulations).

In order to ensure the consistency of model accuracy, 60 separate uniaxial tension simulations
are performed for each of the three microstructural configurations for a total of 180 simulations.
In each simulation, the grain orientations are resampled from the uniform distribution. Figure 15
displays the errors for the stress-strain behavior for all 180 cases as a histogram chart. The ap-
proximation error is computed using Eq. (6.1). For all cases, the LROM simulations exhibit errors
less than 5%. As the microstructure size grows and hence gets closer to a size that is statistically
representative with respect to the overall behavior, the variance and the mean error accordingly
reduce.

To demonstrate the efficiency of the proposed model, the run time and speedup are also
recorded for all 180 simulations of three RVEs. The averaged results for each of the three mi-
crostructures are shown in Table 3. The proposed LROM model exhibits a significant speedup
compared with the CPFE simulations. For the 57-grain microstructure, the speedup is approxi-
mately 830, whereas for the 134-grain microstructure, the speedup drops to approximately 217.
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Figure 14: Deformed configurations of the 57-grain microstructure subjected to: (a) uniaxial tension; (b)
simple shear; and (c) biaxial tension.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Error (%)

0

5

10

15

20

25

N
um

be
r 

of
 s

im
ul

at
io

ns

57-grain RVE
91-grain RVE
134-grain RVE

Figure 15: Overall stress approximation error distributions for synthetic RVEs.

Table 3: Average run time for three RVEs.

LROM CPFE Speedup
57-grain 5.169 s 4289.041 s 829.762
91-grain 15.056 s 5062.775 s 336.263

134-grain 26.860 s 5825.240 s 216.874

The reduction of efficiency as a function of microstructure complexity is due to the fact that the
reduced order system of equations result in dense Jacobian matrices. As reduced order system
size gets larger, the efficiency gain compared to a sparse CPFE solver is reduced. In the context
of small deformations, Zhang and Oskay [28] proposed a sparse reduced order model based on
neglecting some long range interactions within the microstructure. A similar approach could re-
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Figure 16: Local Mises stress (top row) and principal strain (bottom row) for the polycrystal microstructure
subjected to: (a) uniaxial tension; (b) simple shear; and (c) biaxial tension loadings.

sult in higher efficiencies for larger microstructures, and will be investigated in the future for large
deformation.

In addition to the overall stress responses, we also tested the ability of the proposed reduced
order model to capture local stresses within the microstructures. Figure 16 shows the comparison
of the grain-averaged Mises stress and principal strain distributions within the microstructures as
computed by the proposed approach and the CPFE simulations for all three loading conditions ap-
plied to the 57-grain microstructure. The bin plots represent the CPFE model whereas the circles
plotted at the mid-point of each bin refer to the results of the proposed model. The magnitudes
of the local stresses match reasonably well with those of the CPFE simulations with slight over-
estimation. This slight overestimation is consistent with the stiffer overall stress-strain curves in
Fig. 13 due to constrained kinematics associated with the reduced basis. The grain-average prin-
cipal strains are also in reasonable agreement with each other, particularly for uniaxial and biaxial
conditions. The results of the shear case indicated that the LROM predictions are concentrated
slightly closer to the average compared with the CPFE model. Figure 17 shows the Mises stress
contours within the microstructure as predicted by the LROM and CPFE simulations. The con-
tour plots are from simple shear loading. The largest error of grain-average stresses across all is
around 10%. Due to the “one-part-per-grain” partitioning scheme used in LROM, no intra-grain
stress variation is captured with the model, whereas the CPFE simulation exhibits spatial variation
within the grains.

Figure 18 compares the stress-strain curves for 5 randomly selected grains within the polycrys-
talline microstructure subjected to uniaxial tension loading. In addition to peak stress distribution
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Figure 17: Local Mises stress contours for the 57-grain RVE: (a) CPFE simulation; (b) LROM simulation.
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Figure 18: Stress-strain curve comparison of 5 randomly selected grains under uniaxial tension loading.

shown in Fig 7, the results indicate that the LROM captures the evolution of the local stresses in
a reasonable fashion even when the microstructure deformation is extensive and individual grains
undergo significant shape change (see Fig. 14(a)).

The texture evolution plays a very important role in the context of large deformation. Figure 19
shows the {111} pole figures of the initial and final textures as computed using the LROM and
CPFE simulations for the 134-grain microstructure under uniaxial tension. The initial texture
shown in Fig. 19 (a) is generated from a uniform distribution and thus exhibits a scattered pattern.
Figure 19 (b) and (c) both show oriented texture along the out of plane direction (i.e., along the
direction of the applied load in the Z direction; {111} pole figure represents XY plane). The LROM
computation of the final texture matches reasonably well with that of the CPFE simulation.
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Figure 19: {111} pole figure of the (a) initial texture; (b) final texture from LROM; and (c) final texture from
CPFE.

7. Conclusion

This manuscript presented a novel reduced order multiscale approach for large deformation
response of polycrystalline materials generalizing the ideas of EHM. The proposed approach is
verified against crystal plasticity finite element simulations for single- and polycrystal characteris-
tic volumes. Both overall and local mechanical responses, and texture evolution show reasonable
accuracy compared with CPFE simulations, but at a fraction of the computational cost.

Two challenges still remain for the current framework. First, the proposed formulation is
based on rigid-viscoplastic behavior. The generalization of the present formulation to accom-
modate elastic-viscoplastic constitutive behavior could provide more accurate response in large
structural scenarios, where different parts of a structure undergo different levels of inelastic mate-
rial deformation. Second, problems that impose time varying strain rates may result in significant
changes in the coefficient tensors as a function of deformation. As mentioned in the manuscript,
frequent coefficient tensor update could lead to prohibitive computational cost. Possible strategies
such as selectively updating the coefficient tensors or employing surrogate modeling (e.g., ma-
chine learning) for the coefficient tensor computation may result in efficient and accurate reduced
order models in such scenarios.
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