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Abstract

A multiscale model for compression kink band failure in fibrous
composites is presented. The computational model predicts the
progression of damage associated with the formation of kink bands,
which experiments demonstrate to involve excessive shear straining
of the matrix material and fiber fracture. The uniqueness of the study
is establishing the concurrent treatment of nonlinear deformation and
failure of the composite constituents at the scale of the material
microstructure, and the formation of kink bands at the mesoscopic
scale. The model incorporates computational homogenization of the
material response, a nonlocal gradient regularization scheme, and
a curvature-based criterion for macroscopic fiber break to predict
kink band formation. The multiscale approach resolves mesoscale
mechanisms associated with kink banding while offering computational
benefits compared to direct mesomechanical approaches. An
accessible implementation within finite element analysis software is
presented and the model is verified with analysis of a mesoscale
domain incorporating initial fiber waviness. In quasi-static simulations,
the kink band initiates due to matrix softening that results in the onset
of buckling and is completely formed when fibers break as a result
of localized curvature. Results from parametric studies confirm that
compression strength is not directly related to measures of the kink
band morphology, but it is strongly correlated with the shear strength
and initial fiber misalignment angle. The predicted effects of material
properties representing various carbon fiber reinforced polymers and
a range of fiber misalignment angles on kink band width and failure
strength corroborate analytical and experimental results presented in
the literature.
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Introduction5

Among the mechanisms contributing to compression failure of composite6

materials is the formation of kink bands. The importance of kink band7

failure is observed in experiments, where the strength under compression8

in the longitudinal direction is significantly lower than under tension1,2.9

Therefore, it should be accounted for in the modeling and designing of10

composites under compression.11

Foundational experiments reveal some key features of kink band12

failure. Soutis et al.3 report that in both notched and unnotched13

laminated plates with varying layups the compressive failure is linked14

to inelastic microbuckling of the longitudinal plies. In Kyriakides15

et al.4 and Vogler and Kyriakides5 the importance of initial fiber16

misalignment (or “imperfection”) amplitude on compressive strength is17

demonstrated. Moreover, it is observed that post-failure, deformation18

of the composite was localized into kink bands which formed at19

inclinations with respect to the longitudinal and transverse directions20

of the loading. The measurements for kink band width in carbon fiber21

reinforced plastics (CFRPs) are reported in the range of 5− 40 times the22

fiber diameter4,6,7,9,10. Moran et al.10,11 investigated the formation and23
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propagation of kink bands in more detail, and reported the process of24

band broadening as the kink band propagates in graphite-thermoplastic25

composites (e.g. PEEK matrix material). The experimental imaging26

illustrates the kink band failure process to include excessive shear27

straining of the matrix material near the imperfection zone, fiber buckling,28

and tensile failure of buckled fibers forming the boundary of the kink band.29

Further understanding of kink band formation and propagation30

has been derived from theoretical models. The general history for31

compressive strength prediction traces from Rosen’s model12 that32

considers the elastic buckling of adjacent fibers in phase with one33

another, “microbuckling”, instigating deformation of the matrix material34

in shear. Argon’s model13 incorporated the local maximum initial fiber35

misalignment angle along with the in-plane shear strength of the matrix36

to predict compressive strength. More closely considering fiber rotation,37

Budiansky14 incorporated the effect of fiber tensile failure and Budiansky38

and Fleck15 and Fleck et al.16 improved upon these theories and presented39

an elastic-perfectly plastic model where the development of a physical40

kink band is linked to the nonlinear relationship between fiber longitudinal41

modulus, matrix shear strength, and fiber diameter.42

The nonlinear analytical descriptions and sensitivities of the failure43

mechanism have been studied using mesomechanical approaches that44

resolve fiber and matrix materials and incorporate fiber waviness where45

the fiber orientation varies in a sinusoidal fashion along the composite46

longitudinal direction. Studies utilizing direct numerical simulations47

include Yerramalli and Waas17 where the positive effect of fiber diameter48

- and thus bending stiffness, on the compressive strength is confirmed49

using a 3D finite element simulation of a small cylindrical section of50

composite material comprised of purely elastic fibers and J2 theory51

of plasticity matrix behavior. Bishara et al.18 performed analyses with52

a single 3D row of composite material modeled as linear elastic53
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fibers that fail under normal tensile strain and an elastic-plastic matrix54

with isotropic hardening. Naya et al. 19 also directly simulate fibers55

surrounded by a plastically behaving matrix but arranged according to56

a statistical distribution in a column-like domain and modeled with a57

commercial continuum damage code, additionally including cohesive-58

frictional interfaces between the fibers and matrix. The contributions of59

the microstructure and initial fiber misalignment angle to the kink band60

process are simulated in detail, however parametric studies are carried61

out using a simplified single fiber model to obtain compression strength62

and elastic modulus. Other simulation results link the experimentally63

observed stages of the kink band process to matrix yielding in areas of64

imperfection and indicate the effect of initial fiber waviness locality on65

compressive strength. Bergan et al.20 present a model connecting fiber66

rotation with mesoscopic compression failure by incorporating kink band67

width predicted from a micromechanical simulation as an input parameter.68

This model requires numerical schemes such as element deletion to obtain69

a load drop indicative of material failure and accurately captures kink band70

kinematics.71

Criterion-based compression failure models that are influenced by or72

account for kink banding have also been proposed. In Pinho et al.21, where73

kink band failure in the ply occurs according to a bound of the longitudinal74

composite strength and geometry-dependent calculations of in-situ shear75

strengths. Camanho et al.22 presented an invariant-based criterion in the76

frame of localized fiber waviness which claims local transverse failure of77

the matrix as compression kink band failure. Alternatively, Wilhelmsson et78

al.23 predicted failure of the composite material in shear due to maximum79

“defect severity” utilizing observations in an experimental database.80

While criterion-based models idealize the consequences of kink bands81

in predicting failure at the macroscale, these models do not resolve the82

mesoscale mechanisms associated with kink banding.83
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In this manuscript, we present a multiscale computational model84

for compression kink band formation in unidirectionally reinforced85

(UD) composites. The uniqueness of the study is establishing the86

concurrent treatment of nonlinear deformation and failure of the87

composite constituents at the scale of the material microstructure, and88

the formation of kink bands at the mesoscopic scale. This approach89

attempts to computationally bridge the primary mechanisms of matrix90

damage and fiber fracture and the consequent instability. The model91

incorporates computational homogenization of the material response92

and a nonlocal gradient regularization scheme to predict kink band93

formation. Verification of the model is undertaken with a mesoscale94

domain, where the effects of the initial fiber waviness and matrix95

material behavior are examined. Results from parametric studies correlate96

the composite material properties to compressive strength, and the97

relationships match theoretical investigations. By directly incorporating98

microstructural features and mesoscopic fiber waviness we link the99

microscopic state and provide physical context to compressive failure.100

Multiscale Compression Kink Band Model101

The multiscale nature of failure in long fiber composite materials by102

compression kink banding is depicted in Fig. 1. Material properties and103

morphological features at several length scales affect the nucleation and104

propagation characteristics of compression kink bands. Among them, fiber105

waviness has a pronounced effect on the overall compression strength of106

the lamina as analyzed by Fleck et al.16, Vogler et al.24 and others. The107

wavelengths associated with fiber waviness observed in CFRPs are in the108

range of 70-800 times the fiber diameter in the composite4,25. The kink109

band itself, where fiber and matrix cracking, debonding, and severe matrix110

deformation coexist, is generally restricted to a width of no greater than a111

few hundred µm (mesoscale)5,15. The kink band width is sensitive to the112
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fiber diameter, which is approximately 5-10 µm - an order of magnitude113

smaller than the kink band width (microscale). On the other hand, the size114

of the structural component or specimen is several orders of magnitude115

larger than the kink band width (macroscale).116

The significant disparity between the scales involved in the kink band117

induced failure allows the applicability of scale-separable multiscaling118

principles to this problem (e.g., computational homogenization26,27).119

The proposed modeling approach is a nonlocal generalization of the120

Eigenstrain-based reduced order computational homogenization modeling121

(EHM)27–29. In the remainder of this section, we provide an overview of122

“local” EHM, and generalize it to a nonlocal formulation. The specific123

features of the nonlocal compression kink-band model are then discussed.124

Eigenstrain-based homogenization model (EHM)125

EHM is a multiscale progressive damage analysis approach for predicting126

the failure response of composites and other heterogeneous materials30–33.127

The basis of the formulation is the computational homogenization128

theory34,35 coupled with transformation field analysis36. In EHM, certain129

information on the material microstructure such as localization operators,130

polarization tensors, influence functions and coefficient tensors28 are131

computed by solving linear elastic microscale problems defined over132

the material unit cell or representative volume prior to the multiscale133

progressive damage and failure analysis of a composite structure. The134

microstructural information is bridged to the macroscopic scale through135

a reduced order microscale model. The nonlinear analysis and history136

dependent reduced order microstructure problem is tightly coupled with137

the structural scale analysis, which are concurrently evaluated (a separate138

reduced order model is evaluated and tracked at each quadrature point of139

the macroscale discretization). The precomputed coefficient tensors along140

with internal state variables are employed to homogenize or localize the141
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UD Laminate

Macroscopic 
failure

matrix
deformation

12

3

Figure 1. Observations of macroscopic compression failure in UD specimens include kink
band formation that is linked to significant deformation and fiber curvature. (see e.g., 7–9)

stress and strain fields. The reader is referred to Refs.28,31 for details of the142

EHM formulation. The static force equilibrium at the macroscopic scale143

is expressed as:144

∇ · σ̄(x, t) = 0; x ∈ O; t ∈ [0, t0] (1)

where, σ̄ denotes the macroscopic (i.e., homogenized) Cauchy stress;
x(X, t) ∈ O(t) is the position vector that parameterizes the current
configuration of the macroscopic domain, O, with the macroscopic
reference (i.e., material) coordinates, X, as illustrated in Fig. 2. We
consider the evolution of the current configuration since kink band
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formation is driven by macroscopic instability, and a large-deformation
formulation at macroscale is necessary to capture the instability. The
macroscopic boundary conditions are expressed as

ū = û(X, t); X ∈ Γ0
u (2)

P̄ ·N = t̂(X, t); X ∈ Γ0
t (3)

in which, ū(X, t) denotes the macroscopic displacement field; t̂(X, t)145

and û(X, t) are respectively the prescribed tractions and displacements146

applied on boundaries Γ0
t and Γ0

u of the undeformed configuration, O0 :=147

O(0); N is the unit outward normal to Γt; and P̄ is the macroscopic first148

Piola-Kirchoff stress. Considering the macroscopic deformation gradient,149

F̄ = ∂ū/∂X− δ (with δ the second order identity tensor), we employ the150

logarithmic measure to track macroscopic strain, ε̄:151

ε̄ = ln V̄ (4)

O 

Θ(f)

X

Θ(m)

model

reduction

Figure 2. The multiscale modeling approach using EHM for fiber kinking employs a
reduced-order microstructural response.
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where, V̄ =
√

F̄F̄
T is the left stretch tensor. Considering the brittle152

characteristics of the constituents of the composite, the large deformations153

observed in the composite specimen are due to large rotations coupled154

with small microscopic distortions up to the onset of failure. A local155

coordinate system is attached to the microstructure that rotates with the156

macroscopic rotation such that the microstructural stresses are not affected157

by the rigid body motion of the microstructure (i.e., the co-rotational frame158

is used). Progressive damage accumulation that leads to macroscopic159

instability and failure is modeled using continuum damage mechanics160

approach. The constitutive response of the composite constituents (i.e.,161

fiber and matrix) is described by damage variables. By this representation162

and microstructural model order reduction through EHM, the Cauchy163

stress, ˆ̄σ, in the co-rotational frame is expressed as:164

ˆ̄σ =
n∑

∆=1

{[
1− ω(∆)

][
L̄(∆) : ˆ̄ε+

n∑
α=1

P̄(α∆) : µ(α)

]}
(5)

in which ˆ̄ε is macroscopic strain rotated to the co-rotational frame, ω(∆)
165

denotes a part-average damage variable associated with a subdomain166

(or part) of microstructure Θ(∆) ⊂ Θ (Θ denotes the domain of the167

microstructure) and taken to be constant within Θ(∆); µ(∆) is the part-168

average inelastic strain field induced by the damage in the microstructure169

subdomain, ∆; L̄(∆) and P̄(α∆) are coefficient tensors computed using170

the influence functions and elastic properties of the constituents. The171

partitioning of the material morphology into subdomains and the spatially172

piece-wise constant approximation for damage and damage-induced173

inelastic strain fields constitute the order reduction strategy. While Fig. 2174

illustrates partitioning of the microstructure into the matrix and fiber175

phases, other partitioning strategies are also possible as explored in25,29.176

The kinematic equation that relates the inelastic strain coefficients to the177
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macroscopic strain is expressed as:178

n∑
∆=1

{[
1− ω(∆)

][
Â(α∆) : ε̄+

n∑
γ=1

B̂(α∆γ) : µ(γ)

]}
= 0, ∀α = 1, ..., n

(6)
in which Â(α∆) and B̂(α∆γ) are additional coefficient tensors. This system179

of equations for the reduced order model is closed by defining evolution180

equations of the part-average damage variable, ω(∆), which is driven181

by the local damage history variable, κ(∆). At a fixed, but arbitrary182

macroscopic material point:183

ω(∆) = Φ(κ(∆)); 0 ≤ Φ ≤ 1 (7)

The scalar damage variable 0 ≤ ω(∆) < 1 indicates the current damage184

state of the composite constituent occupying Θ(∆); the limits ω(∆) = 0185

and ω(∆) → 1 respectively indicate no damage and complete loss of load186

carrying capacity within the subdomain of the microstructure. The part187

damage variable evolves according to the monotonic damage evolution188

function:189

Φ(κ(∆)) =
arctan(a(∆)〈κ(∆) − κ(∆)

0 〉 − b(∆)) + b(∆)

π
2

+ arctan(b(∆))
(8)

in which a(∆), b(∆), κ0
(∆) are the material parameters that define the190

failure behavior of the composite constituent occupying Θ(∆) (i.e., matrix191

or fiber), and the Macaulay brackets, 〈·〉, enforce the threshold for the192

onset of inelastic evolution of damage. The part damage history variable193

is computed as:194

κ(∆) = max
0≤τ≤t

{υ(∆)(X, τ)} (9)
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taking the value of the maximum damage equivalent strain, υ(∆), in the195

loading history. The damage equivalent strain is defined as:196

υ(∆) =

√
1

2
ε̂(∆) : L̂(∆) : ε̂(∆) (10)

which is a function of the local principal strains, ε̂(∆), and the elastic197

modulus tensor, L̂(∆), rotated to the principal directions. The evolution198

equations that drive the progressive failure of the composite constituents199

defined in Eqns. (7)-(10) are macroscopically local in character. This200

means that the damage evolution within subdomain Θ(∆) at a macroscopic201

material point is driven by the state of strain and the damage history202

variable of that macroscopic material point alone. As further explained203

below, we propose a nonlocal generalization of this approach to better204

control the thickness of the compression kink band.205

EHM model for fiber kinking The EHM model as employed to206

idealize compression kink banding is illustrated in Fig. 2. Experimental207

investigations demonstrate a number of failure processes that either208

contribute to or result from compression kink bands, including nonlinear209

shear deformation and damage in the matrix concentrated in the kink210

band region, fiber fracture (particularly along the edges of the kink211

band) and fiber-matrix debonding7. The microstructure is idealized as212

a periodic and square unit cell. In view of the fact that the kink band213

zone exhibiting significant matrix deformation and failure is much larger214

than the size of the unit cell, we employ an EHM model that consists215

of 2 parts (i.e., n = 2) and considers uniform damage accumulation in216

the matrix and fiber subdomains of the unit cell. It is also possible to217

incorporate the progressive debonding mechanism27,37, along the fiber-218

matrix interface, but we exclude this effect to retain simplicity of the219

model. It is noteworthy that a majority of prior investigations considered220

elastic-plastic (see e.g.16) or elastic-viscoplastic (24) matrix behavior in221
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direct numerical simulation of compression failure. The current study222

employs a continuum damage model that exhibits a nonlinear hardening223

behavior followed by material softening. While plasticity was shown to224

be sufficient to model kink bands, we contend that the relatively brittle225

matrix response (even considering nonlinear shear effects) could be better226

captured by a model that incorporates matrix failure.227

Gradient-based regularization228

Initiating from a region of high fiber waviness, localized buckling of the229

fibers promoted by nonlinear deformation of the matrix yields a kink230

band region that is many fiber diameters wide15. This region is marked231

by significant fiber rotations, reduced stress carrying capacity, and shear232

deformation in the matrix. Early analytical studies in16,24 have shown that233

the width of the kink band is strongly affected by fiber diameter, which234

controls fiber bending rigidity. This effect has been also studied using235

direct numerical simulations17. EHM and other first order homogenization236

methods cannot directly account for fiber bending at the microscale. While237

higher order homogenization38,39 formulations could capture this effect,238

several computational complications have so far limited their use. Instead,239

we propose a nonlocal extension of the EHM model to control kink band240

width in multiscale simulations. Let ω(m)(x, t) denote the damage state of241

the matrix subdomain of the unit cell associated with a fixed but arbitrary242

position on the current configuration, x at time t. The damage variable243

is re-written as a function of a nonlocal equivalent damage variable,244

κ̄(m)(x, t) as:245

ω(m) = Φ(κ̄(m)); 0 ≤ Φ ≤ 1 (11)

In contrast with κ(m) in Eqn. 7, which is a local history variable, κ̄(m) is a246

field variable, the spatial variation of which is governed by the following247
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expression:248

κ̄(m)(x, t)− L0
2∇2

[
κ̄(m)(x, t)

]
= κ̂(m)(x, t); (12)

in which L0 is a length scale parameter, and ∇2 denotes the Laplacian249

operator. κ̂(m) is defined as:250

κ̂(m)(x, t) = min{κ(m), κc} (13)

where κc denotes the value of the local history variable when full251

damage is reached (i.e., Φ(κ = κc) = 1). Since Φ defined in Eqn. 8252

only asymptotes to unity, a value slightly less than unity is used to253

define κc (i.e., Φ(κc) = 1− ε) in the numerical implementation. Neumann254

boundary conditions are enforced to evaluate the nonlocal equation:255

∇κ̄(m) · n = 0 (14)

where n is the unit outward normal to the domain boundaries.256

The numerical evaluation of the proposed nonlocal EHM model solves257

for two cardinal unknown variables at the macroscopic scale, which258

are the macroscopic displacements, ū, and the nonlocal damage history259

field, κ̄. The primary idea behind the use of the nonlocal equation is to260

spatially distribute the effect of κ(m) localized at a position coordinate,261

x, to a neighborhood around x. The size of this neighborhood is262

dictated by the length scale parameter, L0, which is therefore directly263

correlated with, but not necessarily equal to, the kink band width. The264

dissipative effect of the nonlocal equation is illustrated in Fig. 3. The265

figure illustrates the analytical solution of the one-dimensional version266

of Eqn. 12 (u(x)− L2
0d

2u(x)/dx2 = δ(x)), for which the right hand side267

(i.e., local variable) is set to the Dirac delta distribution centered at x = 0.268

The figure illustrates how the source (i.e., right hand side) is spatially269

smoothened out with increasing value of the length scale parameter.270
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Figure 3. The effect of the length scale parameter on the unknown field, u(x), for 3 values of
L0.

In order to give a physical meaning to the length scale parameter, L0,271

we turn to the work of Fleck et al.16. For a kink band with a kink band272

angle, β = 0, Fleck et al.16 analytically computed the band width as:273

w

d
=
π

4

(
E

2τY

) 1
3

(15)

where d denotes the fiber diameter, E is the modulus of the composite274

along the fiber direction, and τy is the composite shear strength. Our275

numerical simulations described below suggest a linear relationship276

between the length scale parameter in the nonlocal equation and the kink277

band width as follows:278

L0 = aw + b =
adπ

4

(
E

2τY

) 1
3

+ b (16)

where, a and b are model parameters, the calibration of which is presented279

below. Extension of the analytical expression of kink band width with non-280

zero band angles is provided in Refs.6,15. A relationship could be obtained281

for the aforementioned and other analytical relationships in a similar way.282
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After the onset of full damage in the matrix (i.e., ω(m) ≈ 1) and283

consequently the kink band formation, the value of the local history284

variable, which is a measure of local deformation, could increase285

substantially in the band. This results in a very large local source term286

in the nonlocal equation and leads to convergence issues in its numerical287

evaluation. In order to alleviate these issues, the source term is not allowed288

to increase beyond the critical value, κc as indicated by Eqn. 13.289

The classical nonlocal damage formulations with gradient type290

regularization are known to exhibit an expansion of the damage region291

even after complete failure is observed40. Under tensile loading, growth292

of the damage region is spurious. In the current compression case, this293

effect results in a steady state broadening of the kink band after the294

onset of instability. Interestingly, experimental observations do point to a295

physical band broadening phenomena as observed in Refs.5,10,11. However296

the experimental observations refer to an increase of kink band width of a297

propagating band, and at a fixed spatial position does not grow. We adopt298

a technique presented by Poh et al.40 to control the growth of the kink299

band after it is formed. It is expected that fully damaged matrix material300

no longer carries load, and the nonlocal influence of a critically damaged301

material point on its neighborhood should diminish. Spread of the kink302

band is controlled by dynamically setting the length scale parameter to303

reduce as matrix damage evolves (referred herein as the Variable Length304

Scale formulation or VLS).305

L(x, t) = g
(
ω(m)(x, t)

)
L0 (17)

306

g =

√
(1−R) exp (−ηω(m)) +R− exp (−η)

1− exp (−η)
(18)

where, R and η are numerical constants that control the evolution of the307

length scale parameter as a function of matrix damage. The constant L0308
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in Eqn. 12 is replaced by L. Figure 4 illustrates the variation of the length309

scale parameter as a function of the history and damage variables. The310

length scale parameter decreases sharply only when the damage parameter311

becomes close to unity, whereas it is approximately constant for low states312

of damage.

(a) (b)

0
0 0

0.5

1

0 0.5 1
0

max

0 0

Figure 4. (a) Degradation of the length scale parameter and accumulation of damage; (b)
relationship between the length scale parameter and damage.

313

Fiber Breakage314

Fibers in the kink band region undergo bending and ultimately break in315

tension during unstable localized buckling. In this study, we propose a316

simple curvature-based criterion to describe fiber break at the macroscopic317

scale. Let θ′(x, t) denote the orientation of the fiber at the reference318

macroscopic coordinate, x.319

Fiber curvature is then described as ρ = dθ
′
/dz, where z is the direction320

along the fiber. The fiber damage model is described as follows:321

ω(f) =

0 if ρ < ρcrit

1 if ρ ≥ ρcrit
(19)

where, ρcrit is a critical curvature value.322
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It is important to note that the curvature is also a nonlocal value323

as it requires the spatial gradient of fiber orientation. Details of the324

computational implementation is discussed below.325

Numerical implementation326

The nonlocal damage formulation presented above was implemented327

along with the EHM model to predict the compression failure behavior328

of a unidirectional composite. The model solves the additional partial329

differential equation (Eq. (12)) for the nonlocal equivalent damage scalar330

variable, κ, fully coupled with the macroscopic stress equilibrium problem331

(Eq. (1)). Conveniently, this coupled system of equations is analogous to332

that of a coupled thermo-mechanical problem since Eq. (12) can be recast333

in the form of the steady-state heat equation with a temperature-dependent334

and nonlinear source term: r.335

∇2
[
L2κ̄(x, t)

]
= r(x, t) (20)

where, r denotes the source term, which is a function of the damage336

history variable.337

r(x, t) = κ̂(x, t)− κ̄(x, t) (21)

By leveraging this form for the nonlocal equation, the multiscale338

reduced order system was implemented in the commercial finite-element339

software Abaqus. The proposed implementation algorithm is adapted340

from the work of Seupel et al.41 and summarized in Fig. 5. Given the341

unit cell geometry and 2-part reduced order model partitioning shown342

in Fig. 2, the coefficient tensors are computed at the preprocessing stage343

(see Crouch and Oskay27 for details of coefficient tensor computations).344

The coefficient tensors along with the model parameters that describe345

damage evolution within the composite constituents are inputs to the346

multiscale nonlocal reduced order system. The multiscale system is347
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evaluated by the thermomechanical analysis capability in Abaqus, which348

solves the macroscale equilibrium and the nonlocal equations in a tightly349

coupled manner. The evolution of the reduced order microscale problem is350

treated as stress update and implemented using the user supplied material351

behavior capability (UMAT). This incremental-iterative update procedure352

returns the macroscopic Cauchy stress, the tangent stiffness, and the353

local history variable. The local history variable κ̂, which forms part354

of the source term of the nonlocal equation, is passed to the HETVAL355

subroutine, where the total source term, r, is calculated and returned along356

with the gradient terms for Jacobian computation. Incremental evaluation

In-House Code
Computes the 
coefficient tensors:

HETVAL
Generates the 'heat
source' term:

UMAT
Solves reduced order
microscale system:

Abaqus
non-linear

solver

Evaluates
coupled system
of macroscale

equations

Figure 5. Computational procedure for nonlocal damage model.

357

by the nonlinear solver updates the displacement and nonlocal history358

variable (i.e., temperature) fields. To complete the thermal analogy, the359

nonlocal variable changes in the case that the heat source solution is360

nonzero. The ”conductivity” of the material (according to the thermal361

analogy) corresponds to the length scale parameter. The VLS model,362

where a solution dependent length scale parameter is considered, is363

implemented by tabulating the temperature-dependent isotropic thermal364

conductivity property of the material definition (tabulating L dependency365

on κ̄ according to Eqn. 17). An alternate form to tabular data entry is366
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the use of user supplied material behavior for the thermal problem (using367

UMATHT).368

Fiber Break Routine Fiber break is incorporated as an online procedure
in the user supplied subroutine by updating global variable arrays of the
material point orientations during the simulation. For each element of
the macroscopic discretization, the neighboring elements along the fiber
direction, and distances to neighboring element centroids are calculated
at the beginning of the analysis. The orientation of an element centroid
during an increment is calculated as the average of the orientations at
the material points belonging to that element. The orientation values are
extracted by performing polar decomposition on the current deformation
gradient in the local frame (a tutorial for obtaining the relevant information
from Abaqus is provided by42). The curvature is approximated using a
first order finite difference scheme based on the element-wise information
at the end of every increment. The primary equations implemented in this
routine are as follows:

ρ(x̃, t) =

∣∣∣∣∣θ
′
(x̃, t)− θ′(x̃neighbor, t)

z(x̃, 0)− z(x̃neighbor, 0)

∣∣∣∣∣ (22)

θ
′
(x̃, t) = cos−1

(
tr(R(x̃, t))− 1

2

)
(23)

F̄ = V̄ ·R (24)

θ
′ is a calculation for absolute orientation relative to the initial369

configuration (see e.g.,43), and the definition for z is the same as in the370

section, Fiber Breakage. The neighboring centroid position with respect371

to an element centroid x̃ is denoted x̃neighbor. R is the rotation matrix372

which relates the orientation of the current configuration to the initial local373

frame. F̄ and V̄ are the deformation gradient and the left stretch tensor374

in the current configuration as defined in the section, Eigenstrain-based375
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homogenization model. Once critical curvature is reached for an element,376

the fiber stiffness is set to zero, i.e. ω(f) = 1.377

Mesoscale Investigations378

Problem setup379

Verification of the proposed multiscale model for modeling kink band380

formation is performed using a mesoscale configuration of a uni-381

directional composite shown in Fig. 6. The mesostructure is subjected382

to displacement-controlled loading at one end along the z-direction. The383

lateral faces of the structure are assigned periodic boundary conditions.384

The geometry and boundary conditions allow the investigations to focus385

particularly on the onset of kink banding (i.e., initiation). The dimensions386

of the mesostructure domain are indicated in Fig. 6. Analyses are387

undertaken with the discretized column geometry made of C3D8T linear388

hexahedral solid elements. The solution proceeds with automatic time389

stepping and constant stabilization throughout the loading. Both force390

and heat flux equilibrium states are solved at the macroscopic domain391

according to the coupled thermo-mechanical analysis scheme described392

in Section 2.3.393

The unit cell idealizing the microstructure of a generic graphite394

fiber/toughened epoxy material system shown in Fig. 2 with a 65 percent395

fiber volume fraction is employed to construct the EHM model. The elastic396

properties of the transversely isotropic fiber and the elastic and damage397

properties of the isotropic matrix are adopted from Ref.31 and summarized398

in Table 1. The fibers are taken to behave elastically unless broken. The399

damage evolution parameters were set in such a way that the resulting400

composite properties under shear and tensile loading are in reasonable401

agreement with the corresponding strengths reported from v-notch shear402

and three-point bend tests outlined in Clay and Knoth 1 . κ(m)
0 is selected403

to be zero so that damage evolution occurs for κ̄(m) > 0. The remaining404
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parameters, η and R, are numerical constants and the values were set to405

control the nonlocal damage effect and result in the relationships shown406

in Fig. 4.

Table 1. Elastic and damage parameters of the material constituents
Elastic Parameters Damage Parameters

Parameter Unit Value Parameter Unit Value

E
(f)
1 GPa 12.45 a(m) MPa−1/2 1.5

E
(f)
3 GPa 257.4 b(m) N/A 2.5

G
(f)
13 GPa 146.0 κ

(m)
0

√
MPa 0.0

ν
(f)
12 N/A 0.291 η N/A -2
ν
(f)
31 N/A 0.206 R N/A -0.006

E(m) GPa 3.70
ν(m) N/A 0.377

407

In order to introduce fiber waviness, a general fiber misalignment angle408

expression based on the material coordinate in the fiber layup direction is409

used. The element orientation function, ψ, is expressed in a trigonometric410

form similar to that found in other kink band analyses18 24:411

ψ (x, y, z) = tan−1
(

tan(ψ0) sin
(πz
l

))
(25)

ψ
0

z

x

y

500 μm

100 μm

100 μm

Figure 6. Mesoscale problem domain configuration (the gold line is a schematic of the fiber
orientation).

Prepared using sagej.cls



Faupel et al. 23

where z is the material coordinate in the fiber direction and l is the412

half-wavelength of the function (l = 0.5 mm in this example). The413

misalignment angle stated in this work refers specifically to the maximum414

initial misalignment angle ψ0, which is prescribed at mid-height of the415

specimen. The local material orientation at each quadrature point in the416

initial frame is perturbed by the angle determined in Eq. 25 and introduced417

using the user subroutine, ORIENT, in Abaqus, where we supply the array418

of direction cosines for the desired material directions with respect to the419

global coordinate system.420

Mesh sensitivity analysis421

In this section, we investigate the mesh size sensitivity of the regularized422

and unregularized EHM formulations for capturing kink band initiation.423

The unregularized formulation refers to the evaluation where damage424

evolution is driven by the local history variable and the nonlocal equation425

is not included in the implementation. The mesoscale sample is discretized426

using three different mesh densities. For efficiency, mesh refinements are427

considered particularly at mid-height, where the highest misalignment and428

hence the kink band is expected to originate. The coarse mesh has uniform429

element lengths of 10 µm from end-to-end and the fine mesh has element430

lengths tapering from 10 µm at the ends to 3 µm across the entire middle431

150 µm long section of the domain. The maximum misalignment angle,432

ψ0, is set to 2◦.433

Figure 7a shows the damage contours at the onset of kink band434

formation as predicted by the unregularized formulation using the fine and435

coarse meshes. The contours indicate that the predicted kink band width is436

dependent on the mesh size (a single layer of elements fails). Fiber break437

occurs at the failed element which forms the kink band with both meshes.438

The stress-strain behavior is shown in Fig. 8a and is identical between439

meshes. Introducing gradient-based regularization to capture nonlocal440
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damage in the material results in a thicker kink band as shown in Fig. 7b-441

c. Fiber breaks occur simultaneously in two equal thickness regions to442

form the kink band. The coarse mesh and fine mesh simulations predict443

the kink band width w ≈ 80 µm (or 10 times the fiber diameter), with a444

1 µm difference due to the resolution limitation of the coarse mesh (width445

predictions can be made in multiples of element size). The stress-strain446

behavior predicted using the regularized model is nearly identical for both447

meshes as shown in Fig. 8b.448

f
1.0

0.0

Figure 7. Sensitivity of damage development to mesh size with the (a) local and (b) nonlocal
damage model formulation (L0 = 31.7 µm); (c) sensitivity of fiber-break prediction to mesh
size (nonlocal damage model).

Kink Band Morphology449

Kink Band Width Control A parametric study is undertaken to investigate450

the effect of the length scale parameter on controlling the width of the451

kink band. As explained in the section, Fiber Breakage, the kink band452

width is dictated by the distance between locations that experience the453

critical tensile strain for fiber breakage, which are determined based454

on fiber curvature. The evolution of curvature during the load history455

along the length of the mesoscale domain is demonstrated in Fig. 9. The456

material segment exhibits a slight gradient in curvature at lower loads,457

but localized peaks develop at two locations as the load increases. The458
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Figure 8. Sensitivity of the structural response to mesh size with the (a) local, and (b)
nonlocal damage model formulations.

critical curvature is reached in the vicinity of the maximum load, the459

fibers break at peak curvature locations, and the kink band width stays460

constant thereafter. In the current study, the kink band width is defined as461

the distance between the element centroids that experience fiber breaks.462

Simultaneously, we observe the stress fields and matrix material behavior.463

The contour plots in Fig. 10a-b display the shear stress of the homogenized464

material and matrix damage state during the softening stage (macroscopic465

stress = 1959 MPa). In the region of matrix softening, the in-plane shear466

stress, τ̄xz, has reached the strength of the homogenized material when467

loaded in simple shear (approximately 90 MPa). The deformed and initial468

states of the highlighted elements near and inside the kink band are469

displayed in Fig. 10c, where the deformed elements are translated and470

clearly have lateral surface normals oriented at an angle compared to471

horizontal. In fact, periodicity causes the elements to have a form which472

resembles that of simple or pure shear state in the xz-plane. The greatest473

shear deformation is experienced in the element near mid-height with474

a ratio of shear to longitudinal strain: γ̄xz/ε̄zz ≈ 1.92. The outermost475

highlighted elements are also experiencing a shear-dominated deformation476
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Figure 9. (a) Mesoscale curvature at select load levels. (b) Stress-strain response and select
load levels. (L0 = 20 µm)

but the ratio of straining is smaller, γ̄xz/ε̄zz ≈ 1.48. The other normal477

and shear strain components are much smaller in all elements. Shear-478

dominated deformation in the kink band is consistent in all subsequent479

simulations and agrees with experimental observations like those of24
480

where a softened external shear response signals the existence of a kink481

band. The value of the critical curvature is important since compressive482

strength is determined by the interplay between fiber breakage, matrix483

deformation and the buckling instability. As shown in Fig. 9, curvature484

peaks form prior to reaching the macroscopic strength, and quickly grow485

with localized deformation following the onset of buckling. If critical486

curvature occurs after the onset of buckling, matrix strength dictates the487

compressive strength of the composite. If critical curvature is reached488

prior to reaching the matrix deformation controlled buckling strength,489
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Figure 10. (a) Shear stress and (b) matrix damage during softening. (c) Parallel view of
highlighted elements in deformed and initial state, including surface normal directions. (L0 =
20 µm, deformation 4x).

sudden fiber breakage determines the composite strength. As a first order490

approximation, we use a simple bending formula to compute ρcrit =491

2σfmax/E
fd (σfmax = 4.25 GPa is the fiber tensile strength, Ef = 280 GPa492

is the fiber longitudinal modulus, d = 8 µm is the fiber diameter) that493

results in a fiber reaching its tensile strength at 3.8 ◦/mm. Using this494

criterion value, the relationship between the length scale parameter,L0 and495

the resulting kink band width is shown in Fig. 11. The linear correlation496

already indicated in Eq. (16) is confirmed by the figure.497

This linear relationship between the nonlocal length scale parameter498

and material properties allows us to control of the kink band width by499

adjusting the length scale parameter and using the linear relationship500

(a = 1.21, b = 41.74). The y-intercept in the figure indicates the predicted501

kink band width at the local limit, where the nonlocal model degenerates502
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to the local model. The relative insensitivity of the linear relationship to503

the constituent and composite parameters is shown in Fig. 12. The kink504

band width predictions for four composite materials using the length scale505

parameter selection via Eq. (16) are shown to agree with the results of the506

theoretical relationship Eq. (15) in Fig. 12.507

0 20 40 60 80 100
0

40

80

120

160
Simulations
Linear Data Fit

‘
Figure 11. Relationship between nonlocal length scale parameter and kink band width.

Misalignment Effects The mesoscale investigations discussed thus far508

have included a misalignment form as expressed in Eqn. 25. With this509

waviness definition we are able to observe formation of a kink band. To510

account for uncertainty of the misalignment fields found in composites,511

the behavior of the model is investigated for variations of this damage512

localization feature. The effect of misalignment angle on strength is513

plotted in Fig. 13 for a range of misalignment angles corresponding to514

the magnitude of imperfections introduced during the composite specimen515

manufacturing process45. In the case of very small misalignment angle in516

the fibers, the response of the model is expected to be nearly elastic and517

consequently results in the highest strength prediction. The reduction in518
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Figure 12. Kink band width predictions from simulations compared to analytical results,
using calculated length scale value (material system properties referenced from 5,18,31,44).

strength is attributed to the effect of the misalignment angle magnitude on519

instability initiation – a result that is consistent with the micromechanical520

analysis in19. We additionally compare our predictions to the relationship521

provided by15, where the kinking stress is a function of the composite522

shear properties and misalignment angle alone. The multiscale model523

predicts a similar but shallower slope for low misalignment angles.524

The relationship between kink band failure strength and misalignment525

angle reinforces the notion of instability due to matrix material failure.526

Larger initial misalignment implies that the composite material is rotated527

compared to the external compression and more susceptible to undergoing528

shear-dominated deformation.529

In addition to studying the effects of magnitude of misalignment angle530

with the sinusoidal fiber misalignment angle form we also explore how531

changing the shape of misalignment affects the compression strength.532

Initial fiber misalignment in the form of a Gaussian distribution is533
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Figure 13. The effect of fiber misalignment angle on strength predictions, compared to 15.

also considered: N (µ, σ) = 1
σ
√

2π
exp
(
− 1

2

(
z−µ
σ

))
. The general forms of534

fiber misalignment investigated are illustrated in Fig. 14a. Decreasing535

the standard deviation value shrinks the region of initial maximum536

misalignment, and the effect of this misalignment localization on537

compression strength is shown in Figure 14b. There is a significant538

decrease in compression strength as the region of misalignment539

is localized (Fig. 14b reports strengths relative to the sinusoidal540

misalignment case). This conclusion is consistent with trends observed in541

direct numerical simulations18. Interestingly, the analysis of24 considers542

a similar sinusoidal misalignment field and concludes that additional543

spatially localized imperfections have negligible effect on kink band544

width and failure strength. The somewhat gradually distributed fiber545

misalignment form described by a maximum misalignment angle used546

in this study has proved sufficient to initiate kink band formation within547

the bulk material and therefore model predictions can be taken as548

conservative.549
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(a) (b)

Figure 14. (a) Varied forms of initial fiber misalignment distribution. (b) Change in
compression predictions with respect to sinusoidal fiber misalignment field.

Shear nonlinearity effects As presented in the model formulation550

section, the matrix material constituent of this EHM implementation has551

been modelled with degradeable properties according to an arctangent552

function for the damage potential. This material behavior neglects553

nonlinear shear effects that are found in plastic behavior of polymers,554

including cured epoxy resins. Examples of modified matrix behavior555

under shear are used in order to vary the nonlinearity of the microstructural556

model and are plotted in Fig. 15. As Fig. 15 shows, the initial shear557

modulus and ultimate strength values are constant in these cases,558

but the response shape through the ultimate strength varies from559

sharp (weak nonlinearity: a(m) = 190, b(m) = 210) to gradual (strong560

nonlinearity: a(m) = 0.58, b(m) = 0.55) softening and hardening behavior.561

The moderate case matches what has been used in the simulations562

presented thus far.563

Simulations using the mesoscale problem setup are performed with564

all properties and parameters held constant while varying the shear565
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Figure 15. Example matrix shear behaviors (L0 = 31.7 µm)

nonlinearity behavior. The kink band results for the three cases are shown566

in Fig. 16. Since matrix damage of nearly 50% causes the instability567

leading to kink band formation, the material state corresponding to that568

value was examined. The weak nonlinear matrix behavior leads to a fairly569

concentrated damage field prior to failure, wide bands of broken fibers,570

and w ≈ 51 µm. Conversely, applying strong shear nonlinearity results a571

broader damage field prior to kink band failure, concentrated locations of572

fiber break, and w ≈ 126 µm; recall that the moderate nonlinearity results573

in w ≈ 80 µm. In the strong nonlinearity case there are larger strains at574

locations further from the maximum initial misalignment, and the material575

in this relatively wide region rotates to be subject to shear-dominant576

strain under the compressive load. The trend of these results align with577

observations of composites with more ductile thermoplastic materials,578

which exhibit larger kink band widths (approximately 20 times the fiber579

diamater)5,10 compared to more brittle toughened epoxy matrix materials580

(approximately 10 times the fiber diameter)18,44. Several experiments581

have been conducted on UD carbon fiber/epoxy composite configurations582

which produce high quality in situ and post mortem images of kink band583

morphology at the microscopic scale. The kink band forms displayed in584
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Fig. 16 agree with experimental results in in Wang et al.7 and Sun et al.9
585

from composites containing standard modulus carbon fibers, and Gutkin586

et al.8 from a composite containing intermediate modulus carbon fibers.587

The composite properties considered in this investigation most closely588

match those of Gutkin et al.8, and the kink band width is shown to be589

less than 100 µm. The test procedures, equipment, and materials in these590

experiments are all different but fall under the category of UD carbon591

fiber/epoxy specimens under longitudinal compression. Briefly described,592

these are conducted with (a) a (standard) Combined Loading Compression593

(CLC) test fixture and single edge notched (SEN) plates9; (b) a Scanning594

Electron Microscopy (SEM) screw-driven test jig and SEN plates8; (c)595

uniaxial compression on waisted rods7.596

Conclusions597

In this manuscript, we presented a multiscale model to predict the598

progression of damage in a fibrous composite under compression.599

Kink band formation is predicted with a nonlocal damage gradient600

regularization scheme coupled to a computational homogenization601

method in solving the macrostructural response. We are able to employ602

quasi-static analyses to investigate the instability-driven kink band failure603

mechanism. The kink band initiates due to matrix softening that results604

in the onset of buckling and is completely formed when fibers break605

as a result of localized curvature. Overall, the predicted effects of606

material properties and fiber misalignment angle on kink band width607

and failure strength corroborate analytical and experimental results in608

the literature. The effects of nonlinear shear behavior of the matrix609

material were also shown to contribute significantly to the kink band610

width and should be taken into account when calibrating the model to611

a specific matrix constituent material. Additional features of the presented612

multiscale approach are: (1) the homogenized model is able to capture613
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Figure 16. Matrix damage at kink band initiation, and fiber break fields corresponding to (a)
weak, (b) moderate, and (c) strong nonlinear shear matrix response.

various kink band widths without geometric representation of the fibers;614

and (2) only a small amount of mesh sensitivity is observed and the615

model also exhibits convergent predictions with an implicit FE analysis616

procedure, thereby allowing application of the model for simulation of617

experimental configurations. The proposed model holds the potential to be618

used in analysis of larger scale laminated structures as well. The multiscale619

approach allows discernment and efficiency in exploring the aspects that620

make up the kink band problem.621
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Future Work622

The kink band problem is not unique to the unidirectional, or prepreg tape,623

composite with CFRP material properties investigated here. Future work624

to facilitate design of materials could include validating the model against625

different material systems. Experimental results of a unidirectionally626

reinforced metal matrix composites (MMC) also present kink band failure627

(see e.g.,46) and the authors are not aware of mesoscale investigations628

with MMC material properties. Additionally, the proposed methodology629

is applicable to other long fiber reinforced composites including 2D/3D630

fiber preform reinforced composites where kink band failure occurs (see631

e.g.,47) by appropriately defining the local fiber orientation in the part.632

Woven preforms can also be investigated by the proposed approach, but633

that requires a change in the microstructure and the associated reduced634

order model.635
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39. Idiart M, Moulinec H, Ponte Castañeda P et al. Macroscopic behavior and field fluctuations799

in viscoplastic composites: Second-order estimates versus full-field simulations. Journal800

of the Mechanics and Physics of Solids 2006; 54(5): 1029–1063. DOI:https://doi.org/801

10.1016/j.jmps.2005.11.004. URL https://www.sciencedirect.com/science/802

article/pii/S0022509605002188.803

40. Poh LH and Sun G. Localizing gradient damage model with decreasing interactions.804

International Journal for Numerical Methods in Engineering 2017; 110(6): 503–522.805

41. Seupel A, Hütter G and Kuna M. An efficient fe-implementation of implicit gradient-806

enhanced damage models to simulate ductile failure. Engineering Fracture Mechanics807

2018; 199: 41 – 60. DOI:https://doi.org/10.1016/j.engfracmech.2018.01.022. URL http:808

//www.sciencedirect.com/science/article/pii/S0013794417311669.809

42. Nolan D, Lally C and McGarry J. Understanding the deformation gradient in abaqus and810

key guidelines for anisotropic hyperelastic user material subroutines (umats). Journal of the811

Mechanical Behavior of Biomedical Materials 2022; 126: 104940. DOI:https://doi.org/10.812

1016/j.jmbbm.2021.104940. URL https://www.sciencedirect.com/science/813

article/pii/S1751616121005713.814

43. Robotic systems, chapter 4. 3d rotations, 2020. URL http://motion.cs.illinois.815

edu/RoboticSystems/.816

44. Lee J and Soutis C. A study on the compressive strength of thick carbon fibre–epoxy817

laminates. Composites Science and Technology 2007; 67(10): 2015–2026. DOI:https://doi.818

org/10.1016/j.compscitech.2006.12.001. URL https://www.sciencedirect.com/819

science/article/pii/S0266353806004520.820

45. Sutcliffe M, Lemanski S and Scott A. Measurement of fibre waviness in industrial composite821

components. Composites Science and Technology 2012; 72(16): 2016 – 2023. DOI:https://doi.822

org/10.1016/j.compscitech.2012.09.001. URL http://www.sciencedirect.com/823

science/article/pii/S0266353812003235.824

Prepared using sagej.cls



Faupel et al. 41

46. H Zhang, K Cho, C. F Yen, and K Ravi-Chandar. Dynamic crushing of unidirectionally825

reinforced metal matrix composite. Strain, 50(6):517–526, 2014. ISSN 0039-2103. DOI:826

https://doi.org/10.1111/str.12103.827

47. Roberts Joffe, David Mattsson, Janis Modniks, and Janis Varna. Compressive828

failure analysis of non-crimp fabric composites with large out-of-plane misalignment829

of fiber bundles. Composites Part A: Applied Science and Manufacturing, 36(8):830

1030–1046, 2005. ISSN 1359-835X. DOI:https://doi.org/10.1016/j.compositesa.2004.831

10.028. URL https://www.sciencedirect.com/science/article/pii/832

S1359835X04002726. ACMC/SAMPE Conference on Marine Composites (MarComp)833

2003.834

Prepared using sagej.cls


