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Abstract An adaptive multiscale modeling approach1

based on the multiscale discrete damage theory (MDDT)2

is established to describe formation of arbitrarily ori-3

ented and progressively reorienting cracks at multiple4

scales in heterogenous materials. MDDT tracks the frac-5

ture process over a set of discrete cohesive failure sur-6

faces in the microstructure and consistently bridges the7

microscopic cracks to the continuum representation of8

damage at macroscale based on the reduced-order ho-9

mogenization method. In this manuscript, the adapta-10

tion to arbitrary orientation of a crack is achieved using11

the idea of effective rotation of microstructure which re-12

orients the prescribed failure path at the direction of13

crack propagation. The MDDT model representing the14

microstructure is analytically transformed given a crack15

nucleation orientation and an identification criterion. The16

performance of the proposed model is demonstrated at17

the microscale under multiaxial loading conditions. The18

predictive capabilities of the model are validated using19

four-point bending test of concrete beam and delamina-20

tion migration experiments of fiber-reinforced compos-21

ite cross-ply laminates. The qualitative and quantitative22

evaluations of crack propagation and reorientation show23

good agreement with the experimental results.24

Send offprint requests to:
? Corresponding author address: VU Station B 351831,

2301 Vanderbilt Place, Nashville, TN, USA, 37235. Email:
caglar.oskay@vanderbilt.edu

Keywords: Multiscale modeling; Reduced order mod- 25

eling; Adaptivity; Crack orientation; Heterogeneous ma- 26

terial; Delamination migration. 27

1 Introduction 28

Composite materials have been widely deployed in 29

aerospace, automotive, civil infrastructure and many other 30

industries due to their high specific strength and stiff- 31

ness, high damage tolerance and durability. A wide range 32

of sophisticated progressive damage analysis (PDA) ap- 33

proaches that rely on fracture mechanics, continuum dam- 34

age mechanics, failure criteria and multiscale principles 35

have been developed (see e.g. [1–4]) to predict the failure 36

behavoir of composite materials. Complex features such 37

as branching, merging and kinking are often observed in 38

structural components with complex geometry [5, 6] or 39

under multiaxial/time varying load conditions [7], yet 40

accurate prediction of failure in the presence of such 41

complications using PDA methods remain to be fully 42

addressed. 43

PDA approaches that leverage multiscale principles 44

offer a new paradigm for modeling complex failure pro- 45

cesses in heterogenous materials. In the context of a two 46

scale representation, multiscale PDA methods track fail- 47

ure concurrently at the microscopic scale that resolve 48

material inclusions and matrix, and at the macroscopic 49
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scale over the structural component. Methods that rely50

on fracture (i.e., discrete) representation of failure at51

both scales [8, 9], damage (i.e., continuum) representa-52

tion at both scales [10, 11], and hybrid (discrete-contiuum53

[12, 13] and continuum-discrete [14] at micro- and macro-54

scales, respectively) have been previously proposed. While55

most approaches incorporate microstructural processes56

directly into the structural simulation, they suffer from57

high computational cost, which limits their applicability.58

Reduced order modeling to approximate the microstruc-59

tural response using a coarse basis [4, 15] has been shown60

to bring down the cost, enough to facilitate large scale61

analysis (see e.g. [10, 16, 17]). More recently, the au-62

thors proposed a reduced-order, discrete-continuum mul-63

tiscale approach, Multiscale Discrete Damage Theory64

(MDDT) to study failure in composite materials [12, 13].65

MDDT approach tracks failure events in the microstruc-66

ture along a set of predefined cohesive surfaces. Accu-67

mulation of discrete microscopic cracks along these sur-68

faces leads to diffuse damage patterns at the macroscale.69

MDDT is also endowed with a regularization scheme to70

alleviate spurious mesh localization effect that may oc-71

cur due to the continuum description of damage at the72

macroscale.73

In this manuscript, we propose an efficient, MDDT-74

based multiscale strategy to model crack kinking in com-75

posite materials. The primary idea is to adaptively se-76

lect the coarse basis approximation of failure at the mi-77

croscale (i.e., as opposed to predefining the cohesive sur-78

faces), and leverage rotational invariances in the mi-79

crostructure to very efficiently calculate the reduced-80

order model during the multiscale analysis. The perfor-81

mance as well as the restrictions of the model are as-82

sessed in the context of numerical microscale specimens83

subjected to multi-axial loading by comparing model84

predictions to direct numerical simulations. The pro-85

posed approach is then employed to model re-oriented86

crack propagation in notched concrete beams under four87

point bending, and delamination migration in fiber- re-88

inforced cross-ply composite laminates. These two cases89

have been experimentally investigated in Ref. [18, 19].90

The remainder of this manuscript is organized as fol-91

lows: Section 2 provides a brief overview of MDDT, in-92

troduces the concept of and methodology for effective93

microstructure rotation and the evaluation methodology94

for microcrack nucleation. Section 3 presents the verifi- 95

cation of the proposed model in the context of unnotched 96

specimens, and analysis of crack orientation under mul- 97

tiaxial loading conditions. Sections 4 and 5 respectively 98

include the application of the adaptive MDDT model 99

to four point bending analysis of notched concrete beam 100

and delamination migration modeling with experimental 101

validation. Section 6 provides the conclusions. 102

2 Adaptive MDDT model 103

The proposed model is based on and generalizes the 104

Multiscale Discrete Damage Theory (MDDT). This sec- 105

tion begins with a brief description of MDDT and the 106

resulting system of reduced order multiscale governing 107

equations. Detailed derivation of the MDDT approach 108

is provided in [12] and omitted herein for brevity. 109

In the MDDT model, the response at the length scale 110

of microstructure is coupled to the macroscopic scale 111

based on the computational homogenization theory [20, 112

21]. As shown in Fig. 1, the failure process is mod- 113

eled by considering cohesive behavior within a set of 114

pre-defined, discrete “potential failure paths” embedded 115

in the microstructure [13, 22]. The microscopic fracture 116

events along one or multiple failure paths are consis- 117

tently bridged to continuum representation of damage 118

at the macroscale using homogenization principles. The 119

reduced-order approximation is employed to alleviate 120

the high computational cost of evaluating nested mul- 121

tiple non-linear problems defined at micro and macro- 122

scopic length scales. An important caveat is that the 123

morphologies and number of failure paths need to be de- 124

fined a-priori. For a given microstructure geometry and 125

a set of potential failure paths, the microstructural equi- 126

librium is approximated using a reduced order model 127

as a function of a series of influence functions (i.e., nu- 128

merical Green’s functions) and coefficient tensors. These 129

quantities are computed prior to a multiscale simula- 130

tion, through linear-elastic analyses performed over the 131

microstructure. 132

Consider a composite material, with its domain de- 133

noted as Ω. The macroscopic equilibrium is expressed 134

as: 135

∇ · σ̄ (x, t) = 0; x ∈ Ω (1)

where σ̄ is the homogenized (i.e., macroscopic) stress. 136

Each macroscopic position x is associated with a mi- 137
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Fig. 1: Multiscale modeling strategy for the composite material using MDDT: (a) macroscopic domain. (b) microstructure
domain with multiple failure paths S1 and S2.

crostructure domain Θ that includes m failure paths138

within which progressive evolution of microscale fracture139

process is tracked. Using the MDDT formulation, the mi-140

crostructural equilibrium is expressed as the relationship141

between the homogenized strain ε̄ and the cohesive state142

variables:143

t(α) (x, t)−C(α) : ε̄ (x, t)+

m∑
β=1

D(αβ) ·δ(β) (x, t) = 0 (2)

where δ(α) and t(α) respectively denote the separation144

vector (i.e., displacement jump) and traction vector that145

are spatially averaged over the failure path, Sα, α =146

1, 2 . . .m. (·) and (:) respectively denote inner and dou-147

ble inner product operators. C(α), D(αβ) are respectively148

third-order and second order coefficient tensors, which149

are computed by integrating the influence functions over150

the microstructure domain and failure paths. They are151

computed based on linear elastic computations defined152

over the microstructure domain prior to multiscale anal-153

ysis, and therefore can be viewed as constitutive param-154

eters that embed microstructural morphology informa-155

tion to the reduced order model. The spatial variation of156

crack opening displacement and traction along a given157

failure path are expressed as a function of reduced order158

basis functions. δ(α) and t(α) are the unknown multipli-159

ers of the basis functions that fully define spatial vari-160

ation of crack opening displacement and traction state.161

It is possible to use different forms of basis functions. In162

this study, we use piecewise consttant functions, follow-163

ing Ref. [12, 13].164

The macroscopic stress σ̄ (x, t) is expressed as: 165

σ̄ (x, t) = L̄ : ε̄ (x, t) +

m∑
α=1

Z(α) · δ(α) (x, t) (3)

where L̄ is the tensor of homogenized elastic moduli, Z(α)
166

is a third order coefficient tensor that determines the 167

stress contribution due to the separations on the failure 168

path, Sα. The governing equations of the reduced order 169

multiscale system is closed by introducing the macro- 170

scopic boundary conditions and a cohesive law that de- 171

scribes the traction-separation relationship along the fail- 172

ure paths. The traction-separation relationship relates 173

the spatially averaged traction and separation fields. We 174

further note that unlike reduced order methods such as 175

non-uniform transformation field analysis [23] which re- 176

quire nonlinear response of the microstructure to build 177

the reduced order model, MDDT only uses the elastic 178

properties of the constituents, the morphology of the 179

microstructure and the failure paths. The form of the 180

traction-separation relationship (e.g., bilinear, exponen- 181

tial, etc.) does not alter the reduced order formulations 182

(i.e. Eq. 1 and 2) and any form can be used to close to 183

the reduced order model. 184

In the current formulation, the macroscopic consti- 185

tutive response deviates from linearity due to the onset 186

of fracture process within one or multiple failure paths 187

(i.e. δ(α) > 0 for any subset of {1, 2 . . . ,m}). The behav- 188

ior of the matrix and the fiber is otherwise considered 189

elastic. While it is possible to consider additional non- 190

linear processes (e.g., shear nonlinearity within the ma- 191

trix), inclusion of these effects is beyond the scope of the 192

current study, and requires extension of the MDDT for- 193
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mulation to incorporate phase eigenstrains as described194

in Ref. [24].195

2.1 Cohesive model196

The general MDDT formulation admits any form of197

cohesive constitutive laws and the cohesive law operates198

on the failure-path averaged tractions and separations.199

This work adopts the classical bilinear law [25], wherein200

the traction-separation relationship is expressed as:201

t(α) = (1− ω(α))K(α) · δ(α) (4)

where K(α) is cohesive stiffness. While the proposed for-202

mulation admits anistropic cohesive stiffness, we assume203

the stiffness to be isotropic in this study (see e.g., [25–204

27]): K(α) = K(α)I, and I is the second order iden-205

tity tensor. ω(α) ∈ [0, 1] is the scalar damage variable.206

ω(α) = 0 and ω(α) = 1 respectively denote the state207

of no damage and a cohesionless crack along the failure208

path. The index for failure path is omitted for brevity209

in the equations below for simplicity. The expression of210

the damage variable is:211

ω(κ) =


0 κ ≤ νc
νu (κ− νc)
κ (νu − νc)

νc < κ ≤ νu

1 κ > νu

(5)

where κ(t) = max
τ∈[0,t]

{ν(τ)} is the history variable of the212

equivalent separation, ν =
√
δ2N + δ2S1 + δ2S2. δN , δS1213

and δS2 are respectively normal and two tangential com-214

ponents of the separation vector. The normal separation215

is constrained to be positive δN (δN ≥ 0) to avoid inter-216

penetration using a high penalty stiffness in compression217

loading. νc and νu in Eq. 5 are respectively the equivalent218

separation at crack nucleation (i.e. softening onset) and219

ultimate failure. νc is computed based on the following220

quadratic-form failure initiation criterion [25]:221

g =

(
〈tN 〉
tuI

)2

+

(
tS1
tuII

)2

+

(
tS2
tuII

)2

− 1 = 0 (6)

where tN , tS1 and tS2 are respectively normal and two222

tangential components of the traction vector. tuI
and223

tuII
are peak strengths at crack nucleation under pure224

mode-I and mode-II conditions. 〈·〉 stands for Macaulay225

brackets to avoid the contribution of negative normal226

traction to failure criterion. Let the onset separations at 227

peak strength δcI , δcII satisfy tuI
= KδcI , tuII

= KδcII , 228

then νc (i.e. the equivalent separation at g = 0) is given 229

as: 230

νc = δcIδcII

√
1 + βm

2

(δcII)
2 + (βmδcI)

2 (7)

where βm stands for ratio between the tangential and 231

normal components of separation: βm =
√
δ2S1 + δ2S2/δN . 232

Ultimate separation νu is defined using the B-K cri- 233

terion [28]: 234

νu =
2

Kνc

[
GIc + (GIIc −GIc)

(
βm

2

1 + βm
2

)η
BK

]
(8)

whereGIc andGIIc are respectively the mode-I and mode- 235

II critical fracture energies. 236

Evaluation of Eqs. 1 to 8 describes the full macro- 237

scopic response of a composite that undergoes fracture 238

processes emanating from the material microstructure. 239

This reduced representation approximates the microstruc- 240

tural response using a nonlinear system of equations 241

with 3m cardinal unknowns (i.e., spatially averaged sep- 242

aration vectors). The size of the basis is therefore de- 243

fined by the number of failure paths placed in the mi- 244

crostructure. A key aspect of MDDT is that it is also 245

endowed with a regularization methodology, which al- 246

leviates mesh-size sensitivity in the macroscopic failure 247

analysis. The mesh size sensitivity is due to the spurious 248

localization of damage that results in element size depen- 249

dent fracture energy within the failure localization band. 250

The regularization scheme achieves the energetic consis- 251

tency by adjusting the size of microstructure domain in 252

an effective manner by applying a scaling transformation 253

to the coefficient tensors in the reduced-order model as 254

a function of the macroscopic element size. Govindjee’s 255

expression [29] is adopted to determine the character- 256

istic macroscopic element length which is characterized 257

along the normal direction of a failure path. 258

As further explained in Ref. [12], the crack regulariza- 259

tion approach in MDDT bears resemblance to the crack 260

band model (CBM), in that damage at the macroscopic 261

scale is allowed to localize, and the energy dissipated at 262

the element level is adjusted based on the macroscopic 263

element size (albeit in CBM this is achieved in a differ- 264

ent way, by adjusting the damage evolution parameters) 265

to achieve energy consistency. It is therefore reasonable 266



Title Suppressed Due to Excessive Length 5

to consider that the structural size effect that can be267

captured using CBM [30] can also be captured using268

MDDT. Structural size effect is not investigated in the269

current study.270

2.2 Strategies for selection of failure paths271

The idea of predefining and embedding failure paths272

with fixed orientations in the microstructure was shown273

to be effective for modeling failure mechanisms, where274

the crack directions are known a-priori such as split-275

ting crack or transverse matrix cracking in laminated276

composites structures [12, 13]. The orientations of such277

cracks are dictated by the direction of the lamination.278

However, such a strategy is not ideal for modeling cracks,279

for which the propagation direction is determined by the280

local stress state and the relative microstructure con-281

figuration. A straightforward approach is to pre-define282

a large number of potential failure paths with different283

orientations to cover possible cracking scenarios. The di-284

rection of crack propagation then naturally arises during285

the multiscale analysis as the direction of the failure path286

that fails first from among the finite choices of failure287

path orientations. This approach requires a high num-288

ber of failure paths to be deployed to capture the fail-289

ure behavior accurately (i.e., m � 1). Since the result-290

ing nonlinear system is dense, the computational cost of291

evaluating it is O
(
m3
)

[31], reducing the potential bene-292

fits of model order reduction. Another possible approach293

is to dynamically construct reduced order models on the294

fly during the multiscale analysis, where a failure path295

is embedded in the microstructure model when a failure296

criterion is met. While this idea results in ROMs with297

small m, it requires a separate ROM construction (i.e.,298

computation of influence functions and coefficient ten-299

sors) for each material point in the macroscopic domain,300

which is also computationally expensive.301

2.3 Effective rotation of microstructure302

In this manuscript, we propose an alternative method-303

ology for a specific subset of microcracks that are most304

prone to the effects of load orientation. This methology305

is schematically illustrated in Fig. 2. Consider a reduced306

order model <Θ,S = {C,D,Z} of a microstructure, Θ,307

that induces a failure path, S with known orientation, n 308

as shown in Fig. 2a. We consider that the failure path 309

is aligned with a plane of statistical isotropy (i.e., the 310

probability distributions describing the geometry are ro- 311

tationally invariant, and that the microstructure is peri- 312

odic, such as a hexagonal close-packed microstructure). 313

It is then trivial to show that another ROM defined 314

over the same microstructure but with a different failure 315

path, <̂Θ,Ŝ = {Ĉ, D̂, Ẑ} shown in Fig. 2b is identical 316

to the original model that undergoes a rigid body rota- 317

tion, <̂Θ̂,Ŝ = {Ĉ, D̂, Ẑ} shown in Fig. 2c. The periodic 318

boundary conditions are not affected by this rigid body 319

rotation. The result implies that provided that a “ref- 320

erence” model with a known crack orientation is avail- 321

able, the reduced order model with any orientation with 322

respect to the invariant plane could be constructed by 323

simple tensor rotation operations. The transformation 324

relationships are expressed as: 325

Ĉijk = RmiRnjRrkCmnr

D̂ij = RmiRnjDmn Ẑijk = RmiRnjRrkZmnr
(9)

where R represents the transformation tensor under ro- 326

tation. In random heterogeneous materials, such as isotropic327

concrete or particulate composites, the transformation 328

tensor requires three Euler angles to describe the rota- 329

tion. Since this manuscript focuses on long continuous 330

fiber-reinforced composites, such a strategy is applica- 331

ble to the matrix failure path whose crack plane is pre- 332

sumed to be parallel to the fiber direction (z-direction 333

in Fig. 2). The transformation tensor can be then ex- 334

pressed as the angle of microstructural rotation θ in the 335

transverse plane: 336

[R(θ)] =

[cos(θ),− sin(θ), 0; sin(θ), cos(θ), 0; 0, 0, 1]
(10)

2.4 Identification of crack orientation 337

In this study, we propose an identification criterion 338

based on cohesive states in the failure path embedded in 339

the microstructure after rotation. Before nucleation (i.e. 340

κ < νc), the traction variable t in the potential failure 341

path is expressed as a function of the rotation angle θ 342
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(a)

(b)

Ω Θ
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Fig. 2: Schematic illustration of different multiscale modeling strategies: (a) The microstructure and a predefined failure
path; (b) the same microstructure with rotated failure path orientation; and (c) the rotated microstructure and the failure

path adopted in this manuscript.

based on Eqs. 2 and 5:343

t(θ) = K · [K + D̂(θ)]−1 · Ĉ(θ) : ε̄ (11)

As shown in Fig. 3a, the traction state for different fail-344

ure path orientations form an ellipsoid in the traction345

(tN -tT ) space, where tT represents the magnitude of the346

tangential traction: tT =
√
t2S1 + t2S2. The quadratic fail-347

ure initiation criterion shown in Eq. 6 defines an initi-348

ation envelop (g = 0) in the traction space which rep-349

resents the peak strength as a function of mode-mixity.350

The intercept with horizontal and vertical axis respec-351

tively indicates pure mode-I condition: tN = tuI
and352

pure mode-II condition: tT = tuII
. The encompassed re-353

gion within the failure envelop defines the admissible354

traction states. The crack nucleates when the traction355

variable satisfies the failure criterion, denoted by the356

contact point between the traction curve and the initia-357

tion envelop. The failure path orientation at the contact358

point yields the nucleation direction θc, which satisfies:359 t(θc) = K · [K + D̂(θc)]
−1 · Ĉ(θc) : ε̄

g
(
tN (θc), tT (θc)

)
= 0

(12)

while g
(
tN (θ), tT (θ)

)
< 0 if θ 6= θc.360

In the numerical implementation of this methodology361

using an incremental scheme, identification of the exact362

contact point is not always possible. Consider that the363

microstructure is subjected to the macroscopic strain ε̄n 364

at time tn within a discretized loading history {ε̄0, ε̄1, . . . 365

ε̄n . . .}. At tn, we define a trial traction curve that crosses 366

into the initiation envelop, indicating that the softening 367

stage is reached for a certain range of failure path orien- 368

tations (indicated by the dashed portion of the curve in 369

Fig. 3b). Since the traction curve in the previous incre- 370

ment remains within the initiation envelop, the failure 371

path orientation needs to be identified at the current 372

increment. Here, we consider that the nucleation direc- 373

tion is approximated by the failure path orientation that 374

maximizes the criterion function g, which is computed 375

by the elastic trial traction t̂. The trial traction is eval- 376

uated based on Eq. 11, assuming that the cohesive state 377

is in hardening stage. The expression of the nucleation 378

direction is: 379

θc = arg max
θ

g
(
t̂(θ)

)
(13)

2.5 Numerical implementation 380

The overall implementation of the proposed multi- 381

scale approach consists of a preprocessing stage, where 382

the reference reduced order model is constructed, and 383

the multiscale analysis stage, where the multiscale re- 384

duced order system of equations are evaluated. The ref- 385

erence reduced order model is typically chosen to be 386

the smallest representative volume or the unit cell that 387
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Fig. 3: Schematic illustration of identification criterion for nucleation direction in the normal-tangential traction space: (a)
Nucleation direction θc denoted by the contact point between the traction state (black curve) and failure envelop g = 0 (light
grey curve); (b) Nucleation direction defined in the trial state (black dash curve) which maximizes the criterion function g

under discretized loading.

describes the microstructural geometry as discussed in388

Ref. [13]. Given the rotational invariance, the orientation389

of the reference failure path is arbitrary. The preprocess-390

ing stage consists of computing the coefficient tensors for391

the given microscopic geometry and the reference poten-392

tial failure path. The preprocessing stage has been im-393

plemented using an in-house code [12]. The multiscale394

reduced order system of equations are evaluated in mul-395

tiscale analysis stage, where the reference failure path is396

adaptively rotated at each macroscopic material point397

at the point of damage onset. Its implementation is per-398

formed using the commercially available finite element399

software, Abaqus. The evaluation of the reduced order400

microscale problem is performed using the user supplied401

subroutine functionality (i.e., UMAT).402

The procedure for evaluation of the reduced order403

microscale problem consists of the following steps:404

At initialization, assign the indicator NUCLEATED←405

0 at each quadrature point indicating that the crack is406

not initiated. Assign the reduced order model at each407

quadrature point to be the reference reduced order model:408

<curr ← <Θ,S .409

During the multiscale simulation at a given incre-410

ment, n at an arbitrary quadrature point, the macro-411

scopic update procedure is as follows:412

1. Update the homogenized strain: ε̄n = ε̄n−1 +∆ε̄.413

2. If NUCLEATED = 0:414

2a. Solve the optimization problem: 415

min
θ
−g
(
t̂(θ)

)
, θ ∈ [0, π] (14)

where the trial traction variable is: 416

t̂(θ) = K · [K + D̂(θ)]−1 · Ĉ(θ) : ε̄n (15)

The trial failure path orientation is computed as 417

the outcome of the optimization problem: 418

θ̂ = arg max
θ

g
(
t̂(θ)

)
(16)

2b. If g
(
t̂(θ̂)

)
≥ 0, the crack is initiated. 419

2b.1 Assign the indicator NUCLEATED← 1 and 420

the nucleation orientation θc ← θ̂. 421

2b.2 Compute trial rotation matrix R̂ using Eq. 10 422

with the nucleation orientation θc. 423

2b.3 Compute rotated reduced order model <̂Θ̂,Ŝ = 424

{Ĉ, D̂, Ẑ} using the rotation transformation 425

defined in Eq. 9. 426

2b.4 Assign <curr ← <̂Θ̂,Ŝ 427

3. Compute reduced order traction variables t
(α)
n , sep- 428

aration variables δ
(α)
n and current damage state ω

(α)
n 429

by simultaneously solving Eqs. 2,4 and 5 using <curr. 430

4. Update the macroscopic stress σ̄n using Eq. 3. 431

At step 2a, the optimization problem in Eq. 14 is 432

solved using the golden section search approach [32]. It is 433

a robust gradient-free numerical method for finding the 434

minimum of an one-dimensional convex function on the 435
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specified interval by successively narrowing the range of436

the parameter (i.e., θ) using the golden ratio. At step 3,437

the governing system of equations in the reduced-order438

model (Eqs. 2,4 and 5) is evaluated using the Newton-439

Raphson method.440

3 Unit cell analysis441

A series of unit cell analyses is performed to verify442

the adaptive MDDT model in capturing the failure be-443

havior at the microscopic scale under multiaxial loading444

conditions. The microstructure configuration is shown445

in Fig. 4a. The fiber volume fraction is 28 %, and the446

fiber is aligned with the z direction. The hexagonal fiber447

arrangement ensures that the microstructure is rotation-448

ally invariant in the transverse (x-y) plane. The reference449

failure path for matrix cracking resides within the matrix450

constituent and wraps around the fiber. The average unit451

normal n of the failure path is parallel to the y-axis in452

the global coordinates. Elastic properties of the isotropic453

matrix and transversely isotropic fiber, and the fracture454

properties of matrix cracking failure path are listed in455

Table 1.456

The macroscopic specimen and its boundary con-457

ditions are displayed in Fig. 4c. The specimen is re-458

strained in fiber (z) direction in order to approximate459

plane strain conditions. In the following examples, three460

different monotonic strain-controlled loadings are applied461

in the transverse plane x-y.462

Case 1. Combined tensile and simple shear loading:463

γ̄xy = 2ε̄yy > 0.464

Case 2. Simple shear loading: γ̄xy > 0.465

Case 3. Combined biaxial tensile and simple shear load-466

ing: γ̄xy = ε̄yy = 0.625ε̄xx > 0.467

The accuracy characteristics of the proposed model468

are compared with the reference direct numerical sim-469

ulations (DNS) which resolve the microstructure and470

employ cohesive zone modeling (CZM) to track nucle-471

ation and propagation of the cracks. Because modeling472

3D CZM is computationally expensive, the specimen for473

DNS is considered to be two-dimensional under plane474

strain condition. Two hexagonal unit cells form the do-475

main for visual clarity of crack formation. The periodic476

boundary conditions are respectively applied to the DNS477

specimen for the three loading cases as shown in the fol- 478

lowing equations: 479

u(x, Ly, z)− u(x, 0, z) = (γ̄xyi + ε̄yyj)Ly

u(0, y, z)− u(Lx, y, z) = γ̄xyLxj
(17)

480

u(x, Ly, z)− u(x, 0, z) = γ̄xyLyi

u(0, y, z)− u(Lx, y, z) = γ̄xyLxj
(18)

481

u(x, Ly, z)− u(x, 0, z) = (γ̄xyi + ε̄yyj)Ly

u(0, y, z)− u(Lx, y, z) = (ε̄xx + γ̄xyj)Lx
(19)

where Lx, Ly, Lz respectively stand for the edge length 482

at x, y, z directions, 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ 483

Lz, i, j are unit vectors consistent with global coordinate 484

directions. The DNS domain is discretized with 4-noded 485

bilinear quadrilateral elements (Fig. 4d). COH2D4 ele- 486

ments from ABAQUS cohesive element library are in- 487

serted to each face of every element within the matrix 488

phase and the matrix-fiber interface. As the results be- 489

low indicate, we do not observe a significant artificial 490

compliance effect in the response due to the presence 491

of cohesive elements along all solid element edges. The 492

cohesive stiffness is set to 6× 104 GPa/mm. 493

The simulations are run on an Intel Xeon Gold 6130 494

workstation with 16 cores, 2.10 GHz and 192 GB RAM. 495

The proposed model uses single core for the simulations 496

and the wallclock time for computation is 3s, orders of 497

magnitude faster compared to DNS, which spends re- 498

spectively 13,901s, 99,729s, 10,387s for the three cases 499

using 16 cores with parallel computing. 500

The orientation of the reference failure path is set as 501

θ = 0. Positive θ represents counter-clockwise rotation 502

of the microstructure. Figure 5 shows the comparison of 503

the simulation results as computed using the DNS and 504

the proposed multiscale simulations. The crack orienta- 505

tions (i.e. nucleation direction) obtained by the adaptive 506

MDDT model are respectively 150◦, 135◦, 120◦ under the 507

three loading cases. The first column of the figure shows 508

the crack patterns predicted by DNS. In each case, a dis- 509

tinct crack forms within the microstructure, along with 510

some additional damage that occurs prior to the onset of 511

the dominant microcrack. The second column of the fig- 512

ure shows the traces of the dominant microcrack as the 513

cohesive elements that has undergone full decohesion. 514

The overall crack orientations observed in DNS show 515

good agreement with the MDDT model predictions. Fig- 516
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Table 1: Material properties of the composite constituents

Elastic properties of matrix(m) and fiber(f)

E(m) ν(m) E
(f)
1 E

(f)
2 G

(f)
12 G

(f)
13 ν

(f)
31

[GPa] [GPa] [GPa] [GPa] [GPa]

4.67 0.34 280 17 5.67 30 0.3

Fracture parameters of matrix cracking for unit cell analysis

GIc GIIc tuI tuII K η

[MPa mm] [MPa mm] [MPa] [MPa] [MPa mm−1]

0.006 0.06 60 90 6 × 107 2.1

ure 5 also displays the comparison of overall stress-strain517

responses between adaptive MDDT and DNS. A rea-518

sonable overall agreement is observed between the pro-519

posed reduced order model and the DNS from the as-520

pects of peak strength and the trends of stress evolu-521

tion after the peak strength. The overall shear stress-522

strain curves for Case 2 predicted by both the multi-523

scale and the DNS simulations do not show a softening524

behavior due to the imposed boundary conditions. The525

boundary effects associated with periodicity constraints 526

also cause some stress oscillations in the DNS simula- 527

tions. Crack propagation is slightly disrupted when the 528

dominant crack reaches the domain boundaries. An in- 529

crease in tangent stiffness accompanied by a slight shift 530

of the crack (circled in Fig. 5) as it propagates across the 531

domain boundary. Furthermore, the proximity to fiber 532

along the path of the microcrack results in some fluc- 533

tuation of the slope of the overall stress-strain behavior 534
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Fig. 5: Damage contours and crack paths in direct micro-mechanical numerical simulations, and comparison of stress-strain
responses between MDDT model and direct numerical simulation under the strain loading conditions of case (1):

γ̄xy = 2ε̄yy = 3%, case (2): γ̄xy = 6%, and case (3) γ̄xy = ε̄yy = 0.625ε̄xx = 0.7%.

in the DNS. These effects are not resolved in the mul-535

tiscale model, as the MDDT model presumes uniform536

damage evolution within the failure path. A higher or-537

der MDDT model that resolves the crack growth within538

the microstructure could provide a more accurate match539

with the DNS. This could be achieved by considering540

multiple reduced order basis functions per failure path.541

This extension is nontrivial since separation field con-542

tinuity along the failure path may need to be satisfied,543

and hence beyond the scope of this study.544

3.1 Crack orientation and failure mode analysis545

This section presents the effect of multiaxial strain-546

controlled loading on the orientation of the crack and547

the associated fracture mode. Here, we adopt the def-548

inition of crack nucleation orientation based on Eq. 12549

(See Fig. 3a). Figure 6a,b shows the initiation condi-550

tions under three load configurations, Cases 1 to 3 as551

described above. In Fig. 6a, the critical traction states552

as a function of microcrack orientation at the point of553

failure initiation are shown by the elliptic curves in the554

traction space. Under pure shear or shear-tensile loading, 555

the traction curves reach the initiation envelop (shown 556

as the g = 0 isocontour) at the horizontal axis, indicating 557

that the interface is in pure mode-I condition. Figure 6b 558

shows the criterion function as a function of traction 559

states at a given orientation. For a given loading condi- 560

tion, the critical orientation at which microcrack forms 561

corresponds to the orientation where the criterion func- 562

tion reaches 0. In Cases 1 to 3, the critical orientation is 563

unique and equals to 150◦, 135◦, 120◦, respectively. 564

Next, we further investigate the mode of failure and 565

microcrack orientation under more general loading con- 566

ditions. Figure 6c displays the overall crack orientation 567

pattern as a function of multiaxial loading in the trans- 568

verse plane (x-y plane). The x-axis of the contour stands 569

for the ratio between shear and tensile strain component 570

γ̄xy/ε̄yy, while y-axis stands for the ratio between the two 571

normal strain components ε̄xx/ε̄yy (with ε̄yy > 0). The 572

contours in the figure are the isolines of crack orienta- 573

tion in γ̄xy/ε̄yy - ε̄xx/ε̄yy space, satisfying ε̄xx − ε̄yy + 574

2 cot 2θc γ̄xy = 0. The isolines set out from the point 575
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ε̄xx = ε̄yy, representing the pure hydrostatic state where576

the failure initiates at all directions at once. It is easy to577

verify that the isoline of crack orientation overlaps with578

the direction of maximum macroscopic principal stress,579

consistent with the classical failure criterion for brittle580

or quasi-brittle materials (see e.g. [33, 34]). In addition,581

all cracks represented in Fig. 6c initiate under mode-I582

conditions.583

Next, we investigate failure initiation when the load-584

ing is not within the transverse plane. Figure 7a displays585

the traction state (denoted by solid line) for the failure586

initiation within the failure path parallel to the fiber (de-587

noted as in-plane failure path) under the in-plane shear588

loading (case 4: γ̄yz > 0). The traction reaches the ini-589

tiation envelop under pure mode-II at the orientation of590

θc = 0◦ (denoted by circle mark). Another traction state591

(denoted by star mark) is shown in Fig. 7a under the592

same loading but within the failure path which is 45◦593

across the fiber (denoted as out-of-plane failure path),594

consistent with direction of maximum macroscopic prin-595

cipal stress. The traction is outside the initiation en-596

velope under approximate mode-I condition, indicating597

that the mode-I crack initiates prior to the in-plane fail-598

ure path which initiates under mode-II condition. We599

further note that mode-I out-of-plane fracture occurs600

only slightly before a possible mode-II in-plane fracture.601

This indicates that both of the failure states are possi-602

ble depending on the microscopic geometry and failure603

properties associated with mode-I and mode-II fracture.604

These two mechanisms have been experimentally ob-605

served and well known. The crack parallel to the fiber is606

a splitting crack which is commonly seen in the notched607

laminates subjected to tensile loading [35]. The crack 608

crossed by the fiber indicates shear matrix cracks, which 609

have been observed in the off-axis laminates under ten- 610

sion [36]. The cross-fiber fracture plane associated with 611

the mode-I failure (star mark in Fig. 7) is not rotation- 612

ally invariant, and therefore the adaptive strategy can 613

only accurately capture the mode II in plane fracture 614

case. A hybrid strategy is necessary to track both fail- 615

ure modes, where the adaptive strategy is used to track 616

in-plane failure modes, whereas additional paths are a- 617

priori inserted to capture behavior in non-invariant ori- 618

entations. 619

Figure 7b displays the traction states within a in- 620

plane failure path under the loadings of Cases 4-6. In 621

Case 5, the combination of ε̄yy and γ̄yz results in mixed- 622

mode failure but the same nucleation direction as Case 623

4, θc = 0◦. Case 6 represents a more complex situation 624

as γ̄xy is involved, in which the crack nucleates at tilted 625

direction (θc = 158◦) under mixed-mode condition. 626

4 Four-point bending beam analysis 627

The proposed model is further verified by predicting 628

the crack propagation in notched concrete beam speci- 629

mens with four-point constraints. The numerical results 630

are compared with the experiments described in Ref. [18]. 631

Figure 8a shows the particle microstructure configura- 632

tion employed for concrete. Statistical isotropy is en- 633

sured for the rotational plane within the microstructure 634

in the three dimensional space. The volume fraction of 635

aggregate particles is 32% and the radius of spherical 636

idealized particles is 5 mm. The modulus of the ag- 637
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gregate and the cement are respectively 50 GPa and638

34 GPa, and their Poisson’s ratio are 0.2. The result-639

ing homogenized modulus (38 GPa) and Poisson’s ra-640

tio (0.2) are consistent with the concrete properties in641

Ref. [18]. The tensile strength and fracture energy of642

the cement cracking failure path are respectively 0.4643

MPa and 0.06 MPa·mm for both mode-I and mode-II.644

Figure 8b shows the specimen geometry and boundary645

conditions. The thickness of the specimen in z-direction646

is 50 mm. A displacement-controlled loading is applied647

at the top (Fig. 8b). The numerical specimens are re-648

spectively restrained by two types of boundary condi-649

tions (named type-1 and type-2) which result in differ- 650

ent crack trajectories. The vertical spring stiffness im- 651

posed at top left position is respectively set to be k = 0 652

(free boundary) and k = ∞ (vertical displacement re- 653

strained) for type-1 and type-2 boundary conditions. 654

The rest of boundary conditions are the same in the two 655

cases. Because no external loading is added along the 656

out-of-plane direction (z direction), the particulate mi- 657

crostructure is considered to perform effective rotation 658

only in x-y plane. Figure 8c displays the mesh discretiza- 659

tion, wherein 8-noded tri-linear hexahedral elements are 660
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employed for discretization with reduced integration and661

hourglass control.662

The numerical results of both type-1 and type-2 bound-663

ary conditions are shown in Fig. 9, wherein Fig. 9a dis-664

plays the completely cracked elements (with damage vari-665

able ω = 1) in the domain obtained by the proposed666

model. The macrocrack propagations in type-1 and 2667

cases respectively reveal the direction towards 67◦ and668

36◦ with respect to horizontal and overlap with experi-669

mental crack path envelop. Figure 9b displays the cor-670

responding element-wise microscopic crack orientation,671

denoted by direction of red lines within the mesh dis-672

cretization. There is clearly an overall consistency of mi-673

crocrack orientation with the trend of macrocrack prop-674

agation direction. Some deviations occur for type-2 case675

as crack growth approaches the top edge, wherein the676

mesh alignment obstructs macrocrack from following the677

microcrack orientation in a smaller angle (10◦ - 20◦) with678

respect to horizontal. Figure 9c,d respectively show the679

responses of CMOD (i.e. crack mouth opening displace- 680

ment) vs. reaction force at loading position for type- 681

1 and type-2 case. Type-1 displays a very reasonable 682

match with experiment results until a sudden drop of 683

force response, which indicates the crack propagation 684

near the top edge of the specimen. There is an over- 685

all agreement between type-2 case and experiments as 686

well, also with a force drop as crack approaches the top 687

of the specimen. 688

5 Delamination migration modeling 689

Delamination migration is a typical kind of re-orienting 690

crack in fiber reinforced composites. It is associated with 691

local micro crack accumulation at the delamination front, 692

which results in kinking failure when the crack reorien- 693

tation is energetically favorable to delamination propa- 694

gation [34]. The propagation of the kinked crack typi- 695

cally reverts to delamination growth at another ply in- 696

terface if arrested by the fibers. Numerical modeling 697
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Table 2: Homogenized elastic moduli of the composite and fracture properties used in the delamination migration
model

E11 = E22 E33 G12 = G13 G23 ν12 = ν13 ν23

[GPa] [GPa] [GPa] [GPa]

9 156 2.99 5.08 0.49 0.32

Fracture parameters of matrix cracking for unit cell analysis

GIc GIIc tuI tuII K η

[MPa mm] [MPa mm] [MPa] [MPa] [MPa mm−1]

0.2 1 60 90 6 × 107 2.1

of delamination are typically performed using virtual698

crack closure technique (VCCT) or cohesive zone model-699

ing (CZM) [37]. For modeling re-oriented kinking crack,700

such approaches have been combined with continuum701

damage modeling (CDM) (e.g. [33]) or element enrich-702

ment strategies such as extended finite element method703

(xFEM) (e.g. [38]) or floating node method (FNM)704

(e.g. [34]). In this section, the proposed reduced or-705

der multiscale model is employed for delamination mi-706

gration modeling using cross-ply laminates configuration707

and validated with a series of delamination migration ex-708

periments [19].709

5.1 Numerical model 710

The cross-ply specimens employed in this section were 711

experimentally investigated in Ref. [19]. All constituent 712

properties are identical to those used in the previous sec- 713

tion and listed in Table 1. Hexgonal packed microstruc- 714

ture with fiber volume fraction of 55% is employed in 715

this section. The corresponding homogenized stiffness is 716

consistent with IM7/8552 carbon fiber-epoxy compos- 717

ite [33, 39] and shown in Table 2, along with the frac- 718

ture properties employed for both intralaminar matrix 719

cracking and delamination. Depending on the process- 720

ing conditions, lamina interfaces could be more resin- 721
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rich and exhibit homogenized fracture properties that722

differ from intralaminar matrix cracking [40]. In this723

study, we assume that the fracture properties within724

the lamina and at the interfaces are taken to be the725

same [41]. Figure 10a displays the test configuration and726

the ply layup. The span length, width and thickness of727

the specimen are 115mm, 12.7mm, 5.25mm, respectively.728

A precrack (denoted by T for teflon in the layup shown729

in Fig. 10) is inserted between 904/0 interface and its730

length a is 49mm. The specimens are subjected to ver-731

tical displacement-controlled loading applied at four dif-732

ferent positions at the top surface, represented by the733

load offsets L/a = 1, 1.1, 1.2, 1.3, where L is the distance734

from the loading position to the left tip. The specimen735

is clamped to the fixture at both ends.736

Figure 10b shows the finite element mesh of the spec-737

imen (i.e., the macroscopic domain) and the fixture. 8-738

noded tri-linear hexahedral elements with reduced in-739

tegration and hourglass control are employed for the740

discretization. The plies with different orientations are741

modeled as separate layers of elements. In the z-direction742

(through the plane), the ply is discretized with one layer743

of elements. The delamination growth and potential mi-744

gration region (. . . 904/T/0 . . .) is discretized by a struc-745

tured mesh. The precrack is embedded in 90◦4 ply, as746

shown in Fig. 10b. The thickness of the pre-crack is set747

to 6 µm, which is the same as the teflon insert thickness.748

A row of elements of the same width as the precrack749

are placed ahead of the precrack to ensure that delami-750

nation propagation would proceed without mesh effects.751

Within the rest of the central 90◦ ply block, element752

edges are oriented 60◦ to the horizontal (x) direction to753

minimize mesh bias effect as the migration is expected754

to occur approximately at this angle [19]. The effect of755

mesh orientation is further discussed below. The numer-756

ical modeling of the fixture is the same in Ref. [34]. Con-757

straints are applied to the two ends of the specimen via758

rigid contact condition with friction between clamp fix-759

ture, base plate and the specimen. A clamping force of760

1,700N is added on the fixture via two reference nodes761

whose displacements are coupled with the top nodes on762

the fixture. The clamping force is applied in the initial763

step before adding the vertical load at the load offset764

positions. The stiffness of the fixture is 6.8 GPa and its765

Poisson’s ratio is 0.34. The friction coefficient is set to766

0.2. The displacement at the bottom of the base plate is 767

fixed at all directions. 768

5.2 The results for different load offsets 769

Figure 11a-d show the force-displacement responses 770

predicted for different load offsets and compared with 771

experimental observations. The beginning of the first un- 772

stable event (denoted by circle 0) represents the onset of 773

delamination propagation, which continues as the spec- 774

imen unloads. The stiffness and the peak strength have 775

overall reasonable agreements with the experimental re- 776

sults. The second loading stage is associated with the 777

migration event. Figure 12 shows the damage contours 778

at the end of the simulations for each load case. A thin 779

yellow line in an element indicates that the failure path 780

within the microstructure has been set (i.e., initiation 781

criterion has been met), and the failure path has un- 782

dergone partial damage (0 < ω < 1). Elements with a 783

red line indicates that complete debonding has occurred 784

(ω = 1). The line orientation indicates microcrack direc- 785

tion. Figure 12 also displays the corresponding position 786

of the crack tip for the beginning (circle 1) and end- 787

ing point (circle 3) of the second loading stage in the 788

load-displacement curve. During the unstable propaga- 789

tion stage associated with the first load drop (between 790

circle 0 and 1), the delamination propagates along the 791

90◦/0◦ ply interface without change in the microcrack 792

orientation. The second loading stage (between circles 793

1 and 2) is associated with the formation of a process 794

zone around the crack tip, as evidenced by the pres- 795

ence of partially damaged microcracks. At this stage, 796

the dominant crack also progressively changes direction 797

and respectively aligns with approximately 50 degree an- 798

gle for the cases of L/a = 1, 1.2, 1.3 and 45 degree angle 799

for L/a = 1.1 at the location of circle 2. The model pre- 800

dicts a rather sudden migration event with insignificant 801

change in load (from circle 2 to 3), which is followed by 802

the second unstable event. Delamination propagation at 803

the upper 90◦/0◦ ply interface occurs during the second 804

load drop. As shown in Fig. 12, the microcracks reorient 805

to align with the ply interface prior to the propagation of 806

the migrated delamination. The analysis of the initiation 807

as well as the traction-separation conditions that form 808

the dominant crack indicates that the fracture process 809

is largely mode I. 810
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Fig. 11: Force displacement curves for different load offsets (a) L/a = 1, (b) L/a = 1.1, (c) L/a = 1.2, (d) L/a = 1.3. (e)
Migration distance vs. load offset. (f) Equivalent traction (solid lines) and mode mixity (dash lines) as a function of

equivalent separation extracted from the elements in interface crack and kinking crack for L/a = 1.1. The location of the
elements are indicated in the inset damage contour.

The features of the predicted force-displacement curve811

are in agreement with experimental observations in the812

case of L/a = 1 (See Fig. 11a and [19]). The larger813

load offset cases do not show a second loading stage,814

where the entire process occurs under unstable condi-815

tions. The simulations also show a progressively smaller816

stable reload region, which nearly disappears when L/a =817

1.3. A possible explanation of this discrepancy is that fix-818

ing the crack orientation at the onset of interface failure819

overconstrains the material at the fracture process zone. 820

While the subscale (i.e., unresolved) damage events at 821

the fracture process zone are more aligned with the pro- 822

posed criterion, load redistribution may result in a fur- 823

ther realignment prior to percolation. Some theories ad- 824

just crack orientation even after nucleation [33, 42, 43], 825

but enhancement of the current methodology to account 826

for such an effect is nontrivial and outside the scope of 827

this study. 828
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Fig. 12: Damage contours of delamination and kinking failure around the migration location for the load offset (a) L/a = 1,
(b) L/a = 1.1, (c) L/a = 1.2, (d) L/a = 1.3. The crack orientation is marked by lines within the elements, wherein thin

yellow ones stands for micro crack (0 < ω < 1) and thick red ones for complete crack (ω = 1).

Figure 11e shows the distance from the precrack tip829

to the onset of migration crack (i.e. migration distance)830

as a function of load offsets. The increasing trend of mi-831

gration distance with normalized load offset agrees well832

with the experiments. The shifting of the migration dis-833

tance as a function of load offset (or more specifically,834

L) has been explained by the shift in the location in the835

specimen, where the shear stress ahead of the crack tip836

changes sign [19, 34]. During the delamination propaga-837

tion stage, the shear stress is positive and the microc-838

racks tend to form with a downward trend. This action839

is resisted by the 0◦ ply below the crack, and the delam-840

ination pre-crack extends horizontally. The magnitude841

of the shear stress reduces with the crack growth. As842

shown in Fig. 6c, the microcracks turn progressively in843

the clockwise direction with a reduction in shear stress844

and kink upwards when the shear stress becomes nega-845

tive. The simulations confirm the change in sign of shear846

stress at onset of the migration process, which agrees847

well with observations made in Ref. [19, 44]. Experi-848

ments also indicate a gradual kinking of the macrocrack849

(a smooth transition to the migration crack) before the850

migration event. In the current numerical simulations,851

mesh bias effects do not permit a gradual crack reori-852

entation, but this propensity manifests itself as the for- 853

mation of the fracture process zone near the migration 854

location. While the extent of the process zone is exac- 855

erbated by the numerical effects of mesh bias and due 856

to setting of the microcrack orientation at failure onset, 857

presence of a fracture process zone has been observed 858

experimentally in Ref. [44] as well. Those delamination 859

tests show multiple migration attempts that fail to crack 860

through the lamina before the migration event. 861

Figure 11f extracts the equivalent traction (denoted 862

as ‖t‖ =
√
t2N + t2S1 + t2S2) and mixed-mode ratio (de- 863

noted by |δT /ν|) resolved in the softening stage as a 864

function of equivalent separation (ν) from the elements 865

respectively within the interface crack and the kinking 866

crack near the migration location in the L/a = 1.1 case. 867

The curves of mixed mode ratio show that the inter- 868

face crack (denoted by dash line) nucleates under mode-I 869

condition but gradually involves mode-II fracture in the 870

softening stage, while there is not much shear deforma- 871

tion in the kinking crack (denoted by dash line). The 872

feature is consistent with fractography observations in 873

Ref. [19]. 874
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5.3 The effect of mesh discretization875

The influence of mesh alignment on the migration be-876

havior is also investigated. Figure 13a shows the result877

of L/a = 1.1 using a fully structured mesh with verti-878

cal mesh alignment. We observe that there is initiated879

damage with reorientation (denoted by yellow lines) in880

the 90◦ ply but the mesh alignment prevents the migra-881

tion event and the delamination continuously propagates882

along the initial interface. Another simulation case em-883

ploys the mesh edge orientation of 45◦ with respect to884

the x direction. The damage pattern, microcrack orienta-885

tions and the force-displacement response (See Fig. 13g)886

are similar to those obtained with the 60◦ mesh. The887

dominant crack reorients at 45◦ before complete migra-888

tion crack occurs. The migration distance is 15.05mm,889

very close to the 15.19mm predicted by the mesh with890

60◦ alignment.891

A mesh size convergence study for kinking failure892

is also performed. Additional simulations with element893

sizes of 4mm, 3mm, 2mm in both x and y directions are894

performed with the load offset L/a = 1.1. The mesh edge895

orientation is set to 60◦ with respect to the x direction.896

Mesh size regularization is performed using the proce-897

dure explained in Ref [12]. Figures 13c-f show the dam-898

age contours and the crack orientation for different mesh899

densities. Displaying the same part of the specimen, the900

contours show that the migration locations have almost901

no change with the mesh size. The orientation of the902

complete kinking failure is around 60◦ near the initial903

interface and gradually becomes near horizontal when it904

approaches the second interface. It is more clearly shown905

in Fig. 13f that the orientation converges around 20◦ to906

30◦ as the mesh size decreases. Figure 13g displays the907

force-displacement responses for different mesh densities,908

which shows good agreement with each other except for909

the slight discrepancies of the peak points for the second910

unstable event.911

6 Conclusion912

This paper introduced an adaptation of MDDT to913

model the multiscale evolution of fracture in composite914

materials, when the cracks tend to kink under evolving915

loading and geometric conditions. The idea of rotating916

the microstructure to capture correct microcrack orien- 917

tation drastically reduces the number of potential fail- 918

ure paths and consequently increases the computation 919

efficiency. With this approach, we were able to investi- 920

gate microscopic and macroscopic fracture conditions of 921

reorienting crack. It is important to note that the effi- 922

ciency gains are in modeling fracture paths in rotation- 923

ally invariant microstructures, or along planes within mi- 924

crostructure that exhibits rotational invariance. In gen- 925

eralized microstructures, establishing a hybrid strategy, 926

where multiple failure paths are introduced along planes 927

that do not exhibit rotational invariance, and the mi- 928

crostructure rotation idea is used in rotationally invari- 929

ant planes could accurately characterize fracture under 930

multiaxial loading. 931

Another important observation made is that under 932

identical loading conditions, multiple failure paths may 933

exist with similar critical conditions. Under pure shear, 934

mode II splitting cracks and mode I matrix cracks ex- 935

hibit very similar initiation strength. Given this similar- 936

ity, microstructural features may dictate which of these 937

mechanisms prevail, highlighting the multiscale nature 938

of the problem. 939
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