
Uncertainty Quantification for Microstructure-Sensitive Fatigue1

Nucleation and Application to Titanium Alloy, Ti62422

Xiaoyu Zhang† , Yang Liu‡ , and Caglar Oskay†∗

† Department of Civil and Environmental Engineering
Department of Mechanical Engineering

Vanderbilt University
Nashville, TN 37212

‡ Department of Materials
Imperial College London

London SW7 2AZ, United Kingdom

3

Abstract4

Microstructure of polycrystalline materials has profound effects on fatigue crack initiation,5

and the inherent randomness in the material microstructure results in significant variability in6

fatigue life. This study investigates the effect of microstructural features on fatigue nucleation7

life of a polycrystalline material using an uncertainty quantification framework. Statistical vol-8

ume elements (SVE) are constructed, where features are described as probability distributions9

and sampled using the Monte Carlo method. The concept of SVE serves as the tool for captur-10

ing the variability of microstructural features and consequent uncertainty in fatigue behavior.11

The response of each SVE under fatigue loading is predicted by the sparse dislocation density12

informed eigenstrain based reduced order homogenization model with high computational effi-13

ciency, and is further linked to the fatigue nucleation life through a fatigue indicator parameter14

(FIP). The aggregated FIP and its evolution are captured using a probabilistic description,15

and evolve as a function of time. The probability of fatigue nucleation is measured as the16

probability that the predicted FIP exceeds the local critical value which represents the ability17

of material to resist the fatigue load. The proposed framework is implemented and validated18

using the fatigue response of titanium alloy, Ti-6Al-2Sn-4Zr-2Mo (Ti-6242).19
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1 Introduction22

Quantitative evaluation of fatigue failure is an important factor for material and structural23

design of aircraft components that bear cyclic loads. Fatigue failure process consists of micro-24

crack nucleation and short microstructure-sensitive crack growth (collectively referred to as25

fatigue initiation), long crack growth and final rupture. Experimental observations show that26

high cycle fatigue failure of polycrystalline materials could be dominated (up to 80-90% of27

life [35]) by crack initiation which, in turn, is significantly influenced by material microstruc-28

tural features. The microstructures exhibit significantly varying features depending on pro-29

cessing conditions, and this inherent randomness results in significant uncertainty in fatigue30

life [6, 34, 41, 68]. In the current study, we propose an uncertainty quantification framework31

to quantify the effect of microstructure on fatigue nucleation life from a probabilistic point of32

view.33

Fatigue failure of polycrystalline materials is shown to be significantly affected by material34

microstructure in both experimental and modeling investigations [14, 20, 46]. A large body35

of experimental work established aspects of the relationships between the fatigue crack for-36

mation and microstructural attributes (e.g., grain size [48], crystallographic orientation [48],37

grain interactions [1, 66], inclusion-matrix interaction [29], twin boundaries [11], surface topol-38

ogy/roughness [27], etc [44]) using imaging and characterization techniques such as electron39

backscatter diffraction, scanning electron microscopy, digital image correlation and others.40

The influence of microstructure attributes on the fatigue response of the polycrystalline mate-41

rials has also been investigated numerically using the crystal plasticity finite element (CPFE)42

method [12, 13, 18, 46, 69, 72, 74, 53]. For instance the influence of macrozones or micro-43

textured regions results in significant lifetime reduction under dwell fatigue, which are widely44

observed in α and α+ β titanium alloy. The macrozone in Ti-6Al-4V, which has aspect ratio45

larger than 4 and basal poles within 15◦ of remote loading direction, leads to much higher stress46

redistribution [40]. Microstructural heterogeneity within neighboring α/β phases with specific47

orientation relationship plays a significant role in higher local creep resistance in basketweave48

structure compared to colony or Widmanstatten structure in α+ β titanium alloys [68, 81].49

Several sources of uncertainty contribute to the variability in fatigue initiation and con-50

sequently total fatigue lifetimes. These include the morphological features in the material51

microstructure [34], residual stress [28], experimental conditions associated with the loading,52

boundary conditions and testing environment [9], measurement techniques, among others.53

Probabilistic prediction of fatigue initiation based on computational modeling and simulation54
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includes additional sources of uncertainty including digitized representation of microstructure,55

model parameters, model form, and the fatigue indicator parameter (FIP) used to assess ini-56

tiation.57

A number of recent studies focused on incorporation of statistics and uncertainty into com-58

putational fatigue initiation prediction in polycrystalline materials. About a decade earlier,59

McDowell and coworkers proposed a microstructure analysis based probabilistic prediction60

paradigm that forms the foundation for several studies [51, 55, 56, 6]. The primary means61

to quantifying uncertainty is the aggregation of spatial distributions of FIPs obtained from62

a collection of CPFE simulations on Statistical Volume Elements (SVEs). Compared with63

the representative volume element (RVE), SVE concept allows statistical variability of the64

response from one realization to another since the size of an SVE is taken to be much smaller65

than an RVE. Considering an ergodic process, the ensemble response of SVEs captures the66

RVE response. The FIP computations are often performed as a post-processing step, where67

volume averaged FIPs over grains [40, 12] or sub-grain domains [26] provide the statistical68

data. Przybyla and McDowell [55, 56] connected microstructure attributes with certain ex-69

treme value fatigue response parameters to study the driving force of fatigue nucleation in70

Ni-based superalloy IN100 [55] and Ti-6Al-4V microstructures [56]. An important compli-71

cating factor in this regard is the very high computational cost of performing simulations72

over a sufficiently large SVE ensemble, that may be on the order of thousands or more [70].73

This cost could be reduced by replacing CPFE simulations with microstructurally-informed74

homogenized constitutive models [34, 52], reduced-order microstructure models [78, 79], or75

machine learning models [10, 71], by establishing scalable and efficient CPFE solvers [73], or76

by judiciously limiting uncertainty analysis to a subset of geometric features obtained based77

on sensitivity analysis [80].78

In addition to the uncertainty induced by microstructure heterogeneity, numerical dis-79

cretizations and the constitutive models used to idealize unresolved subscale behavior also80

introduce uncertainty and error into initiation predictions. Yeratapally et al. [75] focused on81

the effect of model parameter uncertainty on the variability of fatigue initiation predictions.82

The number of parameters contributing to initiation variability is reduced by global sensitivity83

analysis (also employed in [80, 81]). Local parametric sensitivity analyses also provide informa-84

tion on critical parameters that affect fatigue initiation [71]. Anahid and Ghosh [2] developed85

a probabilistic crack nucleation model which links time for macroscopic crack nucleation to86

the macroscopic stress state and microstructural characteristic parameters. Kotha et al. [34]87

quantified model form uncertainty for a parametrically homogenized constitutive model and88

took the approach of SVE ensemble simulations to track FIP variability.89

The aforementioned investigations (e.g., [5, 7]) have primarily focused on characterization90

of uncertainty in fatigue initiation parameters and their extreme value distributions since91
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fatigue is expected to initiate at regions of high FIP. We refer to this as “uncertainty in fatigue92

forces” loosely indicating that uncertainty in the microstructure is propagated to the response93

fields such as stress, strain, plastic strain, dislocation density or a combination thereof. In this94

study, borrowing from reliability analysis, we posit the existence of “uncertainty in fatigue95

resistance” and assess microstructure sensitive fatigue failure using a risk-based approach.96

Fatigue resistance refers to an inherently stochastic property that quantifies the ability of the97

material to sustain the aforementioned fatigue forces. By this approach, the probability of98

fatigue failure is computed using both the uncertainties in microstructural fatigue forces and99

resistances.100

In the current study, we devised an uncertainty quantification framework to elucidate the101

linkage between microstructure and fatigue nucleation life, and exercised this framework to102

study fatigue nucleation in titanium alloy, Ti-6Al-2Sn-4Zr-2Mo (Ti-6242). Fatigue nucleation103

is modeled using the concept of FIP. FIP distribution over an SVE is computed using a104

dislocation density informed eigenstrain based reduced order homogenization Model (DD-105

EHM) [40] combined with the Sparse EHM formulation [79]. DD-EHM is a reduced order106

microstructure modeling approach that computes microstructure response at a fraction of the107

cost of a CPFE simulation. The SVEs are generated based on the probabilistic distributions108

of features, and the responses of these SVEs under cyclic loading are assembled to obtain the109

FIP distributions as a function of load cycles. The distribution of fatigue strength, i.e. the110

critical FIP distribution is taken as a material property, which is identified using experimental111

data. The probability of failure as a function of load cycles is then computed using the112

calibrated fatigue strength distribution and the predicted FIP distribution. Probability of113

fatigue nucleation for Ti-6242 are predicted at different stress levels as a validation of the114

proposed framework.115

The remainder of this manuscript is organized as follows: Section 2 describes the proposed116

uncertainty quantification framework, including the parametric and probabilistic description117

of material microstructure, multiscale simulations and the probability of fatigue nucleation.118

Section 3 introduces the microstructure attributes of Ti-6242. Section 4 describes the DD-119

EHM formulation, the constitutive model employed in the forward simulations of the fatigue120

response, and the employed FIP. Section 5 discusses the uncertainties of microstructural at-121

tributes considered in this study. Detailed investigation and analysis for the relationship122

between microstructure and fatigue behavior are also presented in this section. Section 6123

includes the summary and conclusions.124
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2 Overview of the Uncertainty Quantification Frame-125

work126

The uncertainty quantification (UQ) framework used in this study is based on the idea that127

fatigue damage evolution at the scale of the material microstructure can be characterized by128

a fatigue indicator parameter, and that the probability of fatigue nucleation in the material129

microstructure is determined as the probability that the FIP exceeds a critical value after a130

prescribed number of load cycles. The probability of fatigue nucleation is therefore dictated131

by two distributions: (1) the spatial distribution of the FIP induced by microstructure het-132

erogeneity under the applied loadings, which evolves as a function of load cycles; and (2) a133

random variable referred to as the critical FIP that represents the ability of the material to134

resist fatigue crack initiation at a given material point. Consider that both the FIP and critical135

FIP are random variables, where the uncertainties are expressed as probability density func-136

tions (PDF). We indicate the measure of risk as the probability of fatigue nucleation (PFN).137

The expression of PFN is given by [43]:138

PFN(t) =

∫ ∞
0

[ ∫ ξ

0
fR(r)dr

]
fS(ξ, t)dξ =

∫ ∞
0

FR(ξ)fS(ξ, t)dξ (1)139

where FR(ξ) is the cumulative distribution function (CDF) of the critical FIP, fR(r) is the140

PDF of the critical FIP, and fS(ξ) is the PDF of the FIP. The time dependency of the risk141

measure stems from the fact that increasing the number of load cycles increase the values of142

FIP, thereby shifting its evolving PDF as a function of time.143

The overall structure of the UQ framework is schematically demonstrated in Fig. 1. The144

SVE concept is employed in the current study to capture the variability in the mechanical re-145

sponse and the FIP as a function of loading. The framework utilizes two types of experimental146

data: (1) microstructure morphology and material properties; and (2) fatigue nucleation life147

curves. The statistical microstructure morphology data are used to create a parameterized rep-148

resentation of the microstructural features (e.g., grain orientation and size distributions, phase149

volume function, etc. measured from EBSD scans and imaging of physical specimens [66]).150

The SVEs are generated synthetically based on parametric and probabilistic descriptions of151

microstructural features. The inherent variability in these features are captured by the experi-152

mental data, and the probability distributions for the parameters associated with each feature153

are constructed. For each feature, realizations are sampled from these distribution functions154

using the Monte Carlo technique. Sampled features serve as inputs to the polycrystal genera-155

tion software package Neper [58], which builds the SVE geometry.156

An important consideration is selecting the correlated values of SVE size (the physical157
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Figure 1: Overview of the proposed uncertainty quantification framework.

dimension of the SVE) and the ensemble size (the number of SVEs simulated). When the158

computational cost of the model that predicts the mechanical response of an SVE is high,159

selection of the SVE size and the ensemble size may be limited by the practical consideration160

of computation and time resources. In the current study, the ensemble size is determined161

by the convergence of the statistics of the mechanical response for a prescribed SVE size.162

The convergence metric we employed in this study ensures that the discrepancy between FIP163

distributions computed using separately sampled SVE ensembles of the same size are within164

a prescribed tolerance.165

The numerical simulations of the mechanical behavior of SVEs serve as the bridge between166

microstructure morphology and fatigue nucleation prediction under cyclic loading. While di-167

rect CPFE simulations of the SVEs provide highly accurate predictions of the local fields and168

stress risers within microstructures, computational costs of these simulations are typically too169

high to directly simulate the evolution of the response as a function of loading under high cycle170

regime and perform sufficient number of SVEs needed for probabilistic analysis. Instead we em-171

ploy a sparse implementation [79] of the eigenstrain based homogenization method (EHM) [78].172

EHM is a reduced basis approximation of a CPFE simulation that allows accurate estimation173

of local and global response fields at a fraction of the cost of CPFE simulations [40]. In EHM,174

the response fields are represented as a function of a series of influence functions, obtained by175
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linear elastic analyses of the SVE. Coupled with a reduced basis approximation of inelastic176

strains and stresses, the equilibrium is approximated using a small system of nonlinear alge-177

braic equations. This system is solved for a set of stress and inelastic strain fields averaged178

over SVE subdomains (or parts) in terms of coefficient tensors that retain the morphological179

information of the material. This approach has been shown to accurately describe small strain180

as well as large deformation response of polycrystals. A summary of the governing equations181

are provided in Section 4. For each SVE in the ensemble, the geometry is discretized, and the182

influence functions and coefficient tensors are computed to construct the reduced order model183

(ROM).184

The ROMs are then exercised to simulate the spatio-temporal evolution of the response185

field within the SVEs. In view of the viscoplastic deformations within the microstructure,186

the microstructural response fields and hence FIPs continue to evolve as a function of load187

cycles. While the EHM approach allows for direct evaluation of several hundreds to thousands188

of cycles, evaluation of the high cycle fatigue response is computationally prohibitive in the189

context of a probabilistic framework. A time acceleration methodology [16, 17] is necessary to190

predict the long term evolution of the material response. In this study, the long term behavior is191

estimated in a statistical sense based on extrapolation of early (i.e., first few thousand cycles)192

evolution of the FIP probability densities. The FIP distribution computed from the SVE193

ensemble under the cyclic loading is fitted with an extreme value distribution (two parameter194

Weibull) and its evolution is extrapolated to predict the state of the distribution as a function195

of load cycles.196

The critical FIP distribution refers to the uncertainty in the resistance of the material197

to fatigue nucleation. Direct experimental measurement of this critical distribution is not a198

trivial task. Instead, we identify this property based on experimental fatigue life measure-199

ments. The critical FIP distribution is obtained through numerical optimization, where the200

experimentally-observed and numerically simulated probability of fatigue nucleation is mini-201

mized for a prescribed load amplitude. The calibrated distribution along with the numerical202

simulation framework are exercised to predict nucleation life under different load conditions.203

3 Titanium Alloy, Ti-6242204

Ti-6242 is a near-α titanium alloy that has been widely used in aerospace and other engineer-205

ing applications for its high specific strength, fracture toughness, high temperature capability206

and creep resistance. Fatigue life of near-α and α−β titanium alloys are well known to exhibit207

significant sensitivity to microstructural features [37]. Depending on the thermo-mechanical208

processing route, various types of microstructures are achieved, such as Widmanstatten, fully209

lamellar, bi-modal or duplex, and equiaxed α-dominated microstructures [41, 25]. Colony210
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Figure 2: Schematic example of microstructure features.

grains consist of α-phase lamellae within large β-phase grains of several hundred microns in211

diameter. Increase in cooling rate leads to the reduction of colony grain size, α lamellae thick-212

ness, and the nucleation of new colonies, which produces the formation of “basket weave” or213

Widmanstatten microstructure [63]. In the current investigations, we incorporated both lamel-214

lar and pure α grains in the microstructure to model a wide range of morphology variations,215

and their effect on the probability of fatigue nucleation.216

3.1 Microstructural features217

The effects of Ti-6242 microstructure have been investigated with respect to features (pure218

α grain size, colony grain, lamellae structure, micro-texture etc.) through experiments (e.g.,219

[15, 41, 60]) and numerical simulations (e.g., [4, 19, 83, 84]). A schematic illustration of bi-220

modal Ti-6242 microstructure is shown in Fig. 2. Two types of grains are considered: pure221

α grain and colony grain. A colony grain is made of a collection of fine laths of alternating222

α phase and β phase. Each pure α grain is idealized as a single crystal, while each colony223

grain contains multiple α variants with prescribed thickness (dα) and β lath with prescribed224

thickness (dβ). Particularly, four feature parameters of Ti-6242 are taken into account in this225

study: crystal orientation of prior β grain, colony grain volume fraction, α lath thickness and226

β lath thickness.227

Orientation of α phase at room temperature depends on the metallurgical high temperature228

state, i.e., the parent β phase. After a heat treatment in the parent β phase, the resulting α229

texture does not contain variant selection, i.e., all variations have equal chances to be generated.230

However, with a mechanical deformation in the parent β phase, the volumes of α phases at231

room temperature are unbalanced. Therefore, the mechanical deformation and orientation232

of the prior β grain influence the crystal orientations of the α phases in the microstructure.233

Notwithstanding various potential mechanical deformations [41], in the current manuscript,234

we consider the rolling induced mechanical deformation. In this study, we consider that a SVE235
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domain is occupied by a single prior β grain , and the orientation of the β grain is random.236

The prior β orientation is represented using three Euler angles {Θβ
1 ,Θ

β
2 ,Θ

β
3}. The ori-237

entation relationship between the room temperature α phase and high temperature β phase238

is defined by Burgers Orientation Relationships (BOR): (1) (110)β //(0001)α and (2) [111]β //239

[2110]α [65]. Therefore, orientation of an α grain or an α lath is selected out of 12 possible240

orientations relative to the orientation of the prior β grain. In fact, only a small subset of241

the variants are probable under different thermo-mechanical conditions. In the current study,242

variant selection is performed using the approach proposed by Gey et al. [23]. Denoting the243

orientation of ith α variant as gαi and the orientation of the prior β grain as gβ, then244

gαi = {bigβ}i=1,2,...,12 (2)245

where bi is the BOR for the ith variant. The volume of the ith α phase related to the volume246

of the prior β grain fβ(gβ) by247

fβi = vi · fβ(gβ) (3)248

and vi is the variant selection function defined by249

vi =
|γi|∑γmax
γ0
|γ|

(4)250

where γi is the resolved shear strain for the ith variant, γ0 = X%γmax is the minimum resolved251

shear strain amplitude that corresponding α variant is possible to form, and γmax is the max-252

imum resolved shear strain amplitude among all slip systems under given thermo-mechanical253

loading. The denominator sums the slip rates for which the amplitudes are larger than γ0.254

This equation is based on the assumption that the orientations of α grains are distributed255

according to the shear strains in the corresponding slip systems, and γ0 is the threshold shear256

strain. Following [23], X is selected as 50.257

3.2 Uncertainty in microstructure258

The sources of the uncertainties in the parameters are two fold. First is the variability observed259

in microstructures built using identical thermo-mechanical processing (TMP) conditions. The260

second is the variability in samples built by different TMP conditions. While the latter source261

of uncertainty is reducible, access to precise TMP conditions of the experimental samples are262

not often readily available and well-documented. We therefore consider the presence of both263

sources of uncertainties.264

Table 1 shows the summary of measured values and values used in numerical studies for265

the microstructure geometry parameters that were used to bound the uncertainties. Deka266
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Table 1: Measured values of the microstructure geometry parameter for Ti-6242 available in the literature.

Reference [19] [30] [57] [60] [31] [4] [83] [84] [68]
Vα 0.7 0.9 0.9

dα ( µm) 0.7, 2.0, 5.9 2.0 , 3.7 1,2,5 2.5
dβ ( µm) 0.2 0.5 , 0.8 0.5 0.6, 1.5, 2.5 1.6, 3.2

Table 2: Morphology parameters.

Variable Lower bound Upper bound
Vα 0.65 0.95
dα 2.0 µm 6.0 µm
dβ 0.5 µm 2.0 µm

θβ1 , θ
β
2 , θ

β
3 0◦ 90◦

et al. [19] measured the volume fraction of the transformed β phase and primary α grain in267

the overall Ti-6242 microstructure to be 30 percent and 70 percent, respectively. Within the268

colony grains, α and β lamellae were experimentally observed to have volume fractions of269

approximately 88% and 12%, respectively. However, measured values for the volume fraction270

of α and β phases of Ti-6242 are 90 percent and 10 percent in the experiments by Jun et al.271

[30] using secondary electron micrographs. Similarly, the volume fraction of α grains in the272

Ti-6242 specimens is approximately 90 percent in the experiments conducted by Qiu et al.273

[57]. The grain size of α grains is approximately 13.6µm. Sansoz and Ghonem [60] performed274

scanning electron microscope examinations on the fracture surface of three microstructures275

in order to identify the relevant crack growth mechanisms with respect to the microstructure276

details. In these three microstructures, the average thicknesses of α laths are quite different277

(0.7, 2.0 and 5.9 mm), while the average thickness of the β lath is found to be similar in all278

produced microstructures (0.2 mm). Jun et al. [31] studied local deformation mechanisms in279

Ti-6242 by performing in-situ micropillar compression tests on nine different pillars, and they280

concluded that, for the colony structures, the presence and morphology of the β phase can281

significantly alter the apparent yielding point and work hardening response. The widths of282

α and β lath in their specimens were approximately 2 mm and 0.5 mm, while the averaged283

thicknesses in the nine processed specimens were around 3.7 mm and 0.8 mm for α and β lath,284

respectively.285

The range of values observed in the aforementioned experimental observations are used286

herein to bound the ranges of microstructure geometry model parameters. Table 2 summa-287

rizes the bounds used for all parameters. Since no distributional information is available, the288

parameters are considered to be uniformly distributed within these bounds.289
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Table 3: Parameters of the FCG model.

Parameter x0 x1 x2 x3 α1

Value ln 3.5 ln 5.0 ln 25 ln 47.1(1−R) -0.0808
Parameter β1 C m α3 β3

Value 0.0023 7× 10−9 3.3 1.8938 3.3

3.3 Uncertainty in fatigue life290

To estimate the fatigue nucleation life based on total fatigue lives reported in experimental291

samples, the fatigue crack growth (FCG) model developed by Shen et al. [62] is used. Three292

stages of fatigue failure (crack initiation, crack propagation and final rupture) are all taken293

into account in the employed FCG equations. The fundamental idea is to solve for the cycle294

number of fatigue nucleation given the experimentally observed fatigue failure life, i.e., the295

inverse of problem of FCG. The initial crack length at fatigue nucleation is taken to be 0.1296

mm following [45]. In the current manuscript, Paris’ parameters (C and m) and fracture297

toughness are the taken to be same as in Ref. [62], while the other model parameters are298

re-computed based on the values and continuity conditions provided in the reference. The299

model parameters used in this study are summarized in Table. 3. x0, x1, x2 and x3 are the300

transition points between fatigue regimes. x3 is computed from to the fracture toughness (47.1301

MPa
√

m) and R ratio, where x0, x1 and x2 are estimated from experiments. α1 and β1 are302

material constants and obtained through the continuity conditions of crack growth rate and303

its first order derivative at x1. α3 and β3 describe material behavior at high ∆K regime, and304

are calculated from the continuity conditions at x2.305

Several studies report experimentally measured number of cycles to failure Nf for Ti-6242306

at various stress levels. Fujishiro and Eylon [21] investigated the effect of Pt ion plating307

on the high cycle axial fatigue life of Ti-6242 specimens at room temperature and 455◦C.308

Measured number of cycles to failure at room temperature without Pt coat are employed in309

this study. Yuan et al. [76] studied the effects of surface roughness and residual stress induced310

by the mechanical polishing treatments (cold rolling polishing (CRP), sandpaper polishing311

(SP) andnylon cloth polishing (NCP)) on fatigue life. Sinha et al. [64] presented the results of312

a study of the response of an β-forged Ti-6242 during static, normal-fatigue, and dwell-fatigue313

loading. Results under pure fatigue loading is employed in the current study. Ghosh et al. [24]314

conducted pure fatigue and dwell fatigue tests with different test conditions (load ratio, dwell315

time and peak stress to yield strength ratio) for the three α/β-forged and one β-forged Ti-316

6242. Ref. [49] provided the fatigue properties of duplex annealed sheet at room temperature317

and smooth rotating beam made of Ti-6242. However, available data points are limited to318

relative low stress level (< 90% yield stress). Pilchak et al. [54] performed fatigue test on both319
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Figure 3: (a) Experimental fatigue failure data available in the open literature; and (b) nu-
cleation life estimated based on the experimental life data and the FCG model. The dashed
lines represent three stress levels investigated in the numerical analysis.

as-received samples and exposed samples at 80% yield strength. Kassner et al. [32] determined320

the low cycle fatigue properties and dwell low cycle fatigue properties for Ti-6242. Garcia and321

Morgeneyer [22] measured the fatigue life for the parent material (PM) and linear friction322

welds (LFW) of Ti-6242, and number of cycle to failure is observed mainly with stress less323

than 800 MPa. Lefranc et al. [36] focused the dwell effect on β-forged Ti-6242, but they also324

measured fatigue life for comparison. The experimental data collected in the aforementioned325

studies have been compiled and plotted in Fig. 3a. We note that the experimental conditions326

in these studies (e.g., stress ratio, air/vacuum exposure, testing equipment) are not necessarily327

identical. The fatigue nucleation data that is generated by subtracting the long crack growth328

and rupture lives by using the FCG model from the experimental data are shown in Fig. 3b.329

4 Methodology330

4.1 DD-EHM formulation331

The domain of an SVE is denoted as Θ. This polycrystalline microstructure is decomposed into332

non-overlapping n sub-domains (or reduced order “parts”), where Θ(A) denotes the domain333

of part A. In the current study, the domain of each pure α grain as well as each lath within334
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the colony grains constitute a part. We denote σ̇(A) and µ̇(A) the part average (i.e., over335

Θ(A)) stress rate and plastic deformation rate, respectively. The EHM formulation expresses336

equilibrium using the following relationship:337

MB
ijklσ̇

(B)
kl (x, t)−

n∑
α=1

[
P

(BA)
ijkl − δ

(AB)Iijkl

]
µ̇
(A)
kl (x, t) = A

(B)
ijklε̇kl(x, t) (5)338

in which, ε̇ is the SVE-averaged strain rate, M (B) is the elastic compliance tensor of the consti-339

tutive occupying Θ(B), P (BA) and A(B) are interaction and concentration tensors, respectively.340

P (BA) and A(B), collectively named coefficient tensors, are computed from elastic influence341

functions associated with the SVE. ε̇ constitute the forcing function and prescribed to apply342

the cyclic loading.343

Equation 5 is evaluated alongside crystal plasticity models (detailed below) that describe344

the evolution of part-averaged plastic deformations. The constitutive laws are therefore ex-345

pressed in terms of part-averaged quantities. Since the constitutive equations are nonlinear,346

the EHM formulation results in a nonlinear algebraic system of 6n equations to describe the347

SVE response. Since all P (BA) are non-zero, the resulting system is dense and scale badly for348

large n. In order to reduce cost for problems with large n, we employ a sparse formulation349

where long range grain interactions are ignored [79].350

In simulations below, fatigue loading is defined in terms of stress rather than strain. In order351

to ensure that proper load amplitude is applied at each cycle, a stress-controlled incrementation352

scheme is implemented, where the strain rate is kept until a peak SVE-average stress is reached353

and then reversed to begin unloading. The SVE-averaged stress is computed as354

σij =

n∑
B=1

v(B)σ
(B)
ij (6)355

where v(B) is the volume fraction of part B.356

4.2 Constitutive model357

A dislocation-mediated crystal plasticity model [39] has been adopted to describe the evolution358

of viscoplastic deformation within each subdomain, Θ(β). To simplify notation, we do not use359

part designation in the geometry equations below. The slip rate at the sth system is derived360

from the Orowan’s equation:361

γ̇s =
ρsmv

s
id(bs)2

2
sign(τ s) exp

{
(
−∆F s

kθ
)

}
exp

{
(
(τ s − ss)∆V s

kθ
)

}
(7)362
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where ρsm is the average mobile dislocation density, vsid the vibration frequency of the disloca-363

tion segment, bs the magnitude of the Burgers vector, k the Boltzmann constant and θ the364

temperature in Kelvin, ∆V s the thermal activation volume, and ∆F the activation energy. ss365

is the critical resolved shear strength, and the strength hardening is expressed as366

ss(γ̇s) = ss0 + ssfor(γ̇
s) + ssdeb(γ̇s) (8)367

where ss0 is the initial slip resistance, γ̇s is the slip rate at sth slip system, ssdeb and ssfor368

denote the contributions to strength evolution by dislocation debris and forest dislocations,369

respectively. In the current manuscript, the evolution of the debris dislocation is related to370

the recovery process induced by dislocation climb or cross-slip, and the hardening is affected371

by debris dislocation on all slip systems. The evolution of the forest dislocation is controlled372

by the competing mechanisms of generation and annihilation associated with recovery.373

The contributions by dislocation debris and forest dislocations to strength evolution are374

denoted as ssdeb and ssfor respectively.375

ssfor(γ̇
s) = µχbs

√
ρsfor (9)376

ssdeb(γ̇s) = µbskdeb
√
ρfor ln

( 1

bs
√
ρdeb

)
(10)377

378

where µ is the shear modulus, χ is the dislocation interaction parameter, bs is the Burgers379

vector. ρsfor and ρsdeb represent the forest and debris dislocation density, respectively. kdeb is380

the material independent factor associated with low substructure dislocation density.381

The total forest dislocation density is expressed as:382

ρsfor = ρsfwd + ρs+rev + ρs−rev (11)383

where ρsfwd is the forward dislocation density and ρs±rev denote the reversible terms corresponding384

to loading and unloading paths along the sth slip system. Back stress was previously intro-385

duced to describe dislocation interactions [61], which is inversely proportional to the dislocation386

density. The incorporation of back-stress component can capture Bauschinger effect. In this387

study, the dislocation-dislocation interaction, specifically dislocation annihilation, was directly388

incorporated through dislocation evolution, i.e. reversible dislocation. The reversible disloca-389

tion density decreased during reversal of resolved shear stress and this has been demonstrated390

to capture Bauschinger effect in Refs. [33, 40]. The evolution of the forward dislocation density391

includes both athermal storage and temperature dependent recovery of classical Kock-Mecking392

law, as given below:393

∂ρsfwd

∂γs
= (1− p)ks1

√
ρsfor − k

s
2(γ̇, θ)ρ

s
for (12)394
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where p is a reversibility parameter. ks1 controls the generation of forest dislocations, and the395

recovery coefficient ks2 is taken to be:396

ks2(γ̇, θ) = ks1
bsχ

gs
(1− kθ

D̂sbs3
ln
γ̇s

γ̇0
) (13)397

where γ̇0, g
s and D̂s are the reference shearing rate, effective activation enthalpy and drag398

stress, respectively. The evolution of the remaining two components, ρs+rev and ρs−rev are expressed399

as functions of loading direction in the slip system:400

∂ρs+rev
∂γs

= H
(
sign(τ s)

)(
pks1
√
ρsfor − k

s
2(γ̇

s, θ)ρs+rev

)
+ H

(
sign(−τ s)

)[
− ks1

√
ρsfor(

ρs+rev
ρs0

)m̂
]

(14)401

∂ρs−rev
∂γs

= H
(
sign(τ s)

)(
− ks1

√
ρsfor(

ρs−rev
ρs0

)m̂
)

+ H
(
sign(−τ s)

)[
pks1
√
ρsfor − k

s
2(γ̇

s, θ)ρs−rev

]
(15)402

403

where H is the heaviside function, ρs0 the total dislocation density at the point of load reversal,404

m̂ the dislocation density recombination coefficient.405

The evolution of the debris dislocation density is expressed as:406

dρdeb =
∑
s

∂ρsdeb
∂γs

dγs, and
∂ρsdeb
∂γs

= qbs
√
ρdebk

s
2(γ̇

s, θ)ρsfor (16)407

where q is the recovery rate coefficient.408

4.3 Fatigue indicator parameter409

The mechanical behavior of the Ti-6242 microstructure under repeated cyclic loading is pre-410

dicted by the Sparse DD-EHM, while the onset of fatigue is indicated by the FIP which is a411

function of microscale information (plastic strain, energy etc). A number of FIPs have been412

previously proposed to predict fatigue initiation life of polycrystalline materials. Przybyla413

and McDowell [56] employed the maximum plastic shear strain range (MPSS) and Fatemi-414

Socie (FS) damage parameter to investigate driving forces for fatigue crack formation at the415

scale of microstructure. Li et al. [38] developed a fatigue parameter based on accumulated416

plastic strain accounting for triaxiality and temperature effects to predict thermo-mechanical417

fatigue. Sangid et al. [59] proposed an energy-based failure criterion to link the variability in418

the microstructure to fatigue response.419

In the context of titanium alloys, the nucleation process results in facet formation in a hard420

grain generally oriented along a direction near the basal plane. Liu et al. [40] proposed maxi-421

mum relative dislocation density discrepancy (MD3) as a FIP for titanium alloys, considering422

that dislocation pile-ups at grain boundaries induce crack nucleation. The amount of pile-ups423

and the inability of the dislocations cross the grain boundary are collectively quantified by424
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Table 4: Elastic constants for HCP and BCC crystals.

Parameter C11 C12 C13 C33 C44

BCC (GPa) 108.2 61.3 61.3 108.2 28.5
HCP (GPa) 164.66 82.5 61.7 175.1 48.5

the relative dislocation density discrepancy (D3) across a grain boundary. MD3 indicates the425

maximum value of D3 across all grain boundaries within the SVE. Instead of focusing on a426

single extreme value (i.e., MD3) over entire microstructure and history, we aggregate the spa-427

tial distribution of D3 within each SVE of an SVE ensemble. The D3 distribution at peak load428

amplitude is tracked.429

The D3 for grain i, (∆ρtot)
i, is defined as the relative dislocation density discrepancy430

between grain i and all its neighbors.431

(∆ρtot)
i = max

j∈{1,...,mi}

{∣∣(ρtot)i − (ρtot)
k(j)
∣∣} (17)432

where (ρtot)
i is the maximum dislocation density for grain i over all slip systems, k(j) is433

the grain ID for the jth neighbor of grain i, ρtot is the total dislocation density defined as434

ρtot = ρfor + ρdeb.435

5 Fatigue Nucleation Prediction436

5.1 Constitutive model parameters437

The microstructure of Ti-6242 is modeled using two types of crystals: BCC β phase and438

HCP α phase. To ensure that the constitutive formulation captures the response of the al-439

loy accurately, the constitutive parameters calibrated by Liu et al. [40] are employed. The440

constitutive model parameters are considered to be deterministic that are calibrated using a441

representative volume (i.e., representative for the purposes of viscoplastic response). Specimen442

to specimen variability in the static stress-strain response, which influences fatigue nucleation443

uncertainty (especially in low cycle fatigue), has been partially explained by the uncertainty444

in the model parameters [59, 80, 81, 82]. Under high cycle fatigue conditions considered in445

this study, the effect of parameter uncertainty for elastic and viscoplastic properties is not446

explicitly incorporated.447

The HCP model includes 30 slip systems including the basal, pyramidal and prismatic448

systems, and the BCC model includes 48 slip systems. All slips systems used in the model449

are summarized in Table. 5. The elastic parameters are listed in Table 4, and the flow and450

hardening parameters for both the HCP and BCC lattices are summarized in Table 6.451
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Table 5: Slip system of HCP and BCC.

Lattice Type Slip system Number

HCP

Basal 〈a〉
Prismatic 〈a〉
Pyramidal 〈a〉

1st Order Pyramidal 〈c+a〉
2nd Order Pyramidal 〈c+a〉

{0001}〈1120〉
{1010}〈1120〉
{1011}〈1120〉
{1011}〈1123〉
{1122}〈1123〉

3
3
6
12
6

BCC
{110}〈111〉
{112}〈121〉
{123}〈111〉

12
12
24

Table 6: Flow rule parameters for HCP and BCC crystals.

Parameter Unit
Basal
〈a〉

Prismatic
〈a〉

Pyramidal
〈a〉

Pyramidal
〈c+a〉 {110}(111)

∆F s ×10−19J 2.58 2.93 3.21 3.44 2.27
∆V s ×10−29m3 1.94 2.84 2.96 3.17 479
ρsm ×1012m−2 5 5 5 5 5
vsid ×1012Hz 1 1 1 1 1
bs ×10−4µm 3.54 3.58 3.59 6.83 2.86
ss0 MPa 11.6 47.2 143.69 158.87 94
ks1 ×106m−1 6.32 107 103 174 52
Ds MPa 100 150 185 225 230

The strength hardening evolution in HCP dominated crystals is controlled by initial slip452

resistance, forest dislocation and debris dislocation, and corresponding parameters are sum-453

marized in Table 7. The dislocation interaction parameter χ is set as 0.9 to satisfy the Taylor454

relationship [8]. The material independent factor kdeb is set as 0.086 [42]. A small value of455

initial forest dislocation density is adopted, ρfor,0 = 1 × 1012 m−2, according to experimental456

observations [67, 50, 47]. The reversibility parameter p is chosen as 0.8 [33]. The reference457

shear strain rate γ̇0 is defined as 107 s−1. The dislocation density recombination coefficient458

m̂ is taken to be 0.4 for HCP and BCC [77]. The initial debris dislocation density in all slip459

systems are defined as 1× 1010 m−2 [3]. With these constitutive parameters, the tensile yield460

stress (σy) of the material is computed as 875 MPa at a strain rate of 0.1/s.461

5.2 SVE ensemble462

The mechanical response of Ti-6242 SVEs under cyclic loading is obtained using the EHM463

approach. In order to facilitate uncertainty computations (i.e., reduce computational cost),464

SVEs are modeled as quasi 2D. The edge length of an SVE is set to 39 µm. Grain sizes465

are sampled from a bi-modal distribution function (lognormal distribution (sigma, mu) =466
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Table 7: Hardening parameters.

Parameter χ kdeb ρfor,0 p γ̇0 m̂ ρsdeb,0
Unit m−2 s−1 m−2

Value 0.9 0.086 1× 1012 0.8 107 0.4 1× 1010

(10.21, 0.16) and normal distribution with cutoff (sigma, mu) = (0.43, 1.74)) [40]. Morphology467

parameters shown in Table 2 are randomly sampled, SVEs generated and discretized, and468

coefficient tensors are computed to build a ROM for each SVE.469

The SVEs were subjected to stress controlled tensile loads with an R-ratio of 0.1 and load470

frequency of 1 Hz Viguier et al. [67]. For each SVE within the ensemble, the fatigue indicator471

parameter (i.e., D3) at every grain interface was computed as a function of load cycles. The472

D3 values were then aggregated across the ensemble to obtain the D3 distribution and its time473

evolution.474

The effect of SVE ensemble size and the SVE size on predicted D3 distribution are deter-475

mined through a numerical convergence study. In order to quantify the effect of ensemble size,476

we performed a pool of 10,258 SVE simulations. The size of the pool is selected large enough so477

that the D3 distribution for the entire pool could be considered representative and converged.478

All ensembles were then generated by random sampling from the SVE pool. All simulations479

were performed using NASA’s Pleiades supercomputer. Each SVE simulation in the pool was480

subjected to 10 cycles of loading with load amplitude of X%σy. D3 values were extracted481

from the end of the load cycle. The PDFs and CDFs of D3 distributions for ensemble sizes482

of 100, 250, 500, 750, 1,000 and 2,000 are shown in Fig. 4. For each ensemble size s, s SVEs483

are randomly selected out of the simulation pool, and this process was repeated for 50 times.484

These 50 separate ensembles (referred to as ensemble samples) were used to quantify the vari-485

ation in D3 distributions. The results demonstrate a clear narrowing trend in the variations486

with increasing ensemble size, which confirms the expectation that increased ensemble size487

allows a more thorough sampling leading to less ensemble-to-ensemble variation. We further488

contend that large ensemble sizes are necessary to achieve sufficient sampling of the extreme489

value statistics. It is possible to reduce the demand on the ensemble size by increasing the490

size of the SVE instead. However, larger ensembles of smaller SVEs are computationally less491

costly as SVE simulations in the ensemble can be performed in parallel with linear scalability,492

whereas evaluation of a single SVE simulation in parallel typically scales sublinearly with size.493

In the current manuscript, the SVE size with 150 grains is applied for each microstructure,494

and we aggregate the responses in the analyses.495

The ensemble-to-ensemble variability as a function of ensemble size is quantified using496

the Kolmogorov–Smirnov (KS) test. The Kolmogorov–Smirnov measure D? for two arbitrary497
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2,000 SVEs.

sample cumulative distribution functions, F1(x) and F2(x), is defined as498

D? = max
x
|F1(x)− F2(x)| (18)499

D? is the largest absolute difference between two CDFs. For a given ensemble size, we com-500

puted the KS measure of every pair of CDF ensemble samples, resulting in 1,225 D? values.501

Figure 5a shows the PDFs of the KS statistics at different ensemble sizes and Figure 5b shows502

the histograms of maximum KS statistics as a function of ensemble size.503

It is clear that increasing ensemble size monotonically reduces both the variance of D? and504

mean of D? distribution, confirming the converging trend of D3 distribution with ensemble505

size. The maximum values of D?, which correspond to the largest difference among all 50506

ensemble samples for a given size, are extracted and plotted as a function of ensemble size in507

Fig. 5b. Increasing the ensemble size from 100 to 2,000 significantly reduces the discrepancy508

between the aggregated D3 distribution (∼ 2% for 2,000 SVEs). For an ensemble size of 500,509

the maximum D? is less than 5%.510
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Figure 5: Distributions of D? with increasing number of SVEs, and convergence of max D?

with increasing number of SVEs.

5.3 Long term evolution of FIP distributions511

Tracking the evolution of the FIP distribution as a function of load cycles based on cycle-by-512

cycle simulation of an ensemble of SVEs is computationally prohibitive for high cycle fatigue.513

For instance, evaluation of a single SVE response over 1,000 load cycles using the sparse DD-514

EHM approach require approximately 1 CPU-day. Therefore, an extrapolation technique is515

employed to predict the long term evolution of FIP distribution. For the first 1,000-2,000 cycles,516

the distribution of FIP is predicted by the sparse DD-EHM approach for SVE ensembles. The517

particular number of cycles to simulate at a given load amplitude is chosen such that the rate518

of change of the FIP distribution is at a steady state. For response at larger cycle numbers,519

the FIP distributions are fitted to parameterized extreme value distributions with parameters520

extrapolated from the sparse DD-EHM predictions.521

In the current study, five hundred SVEs are selected to represent the 10,258 SVE pool522

based on the selection criterion that the difference between maximum D? of the 500 SVE523

ensemble and maximum D? of the 10,258 SVE pool is smaller than the critical value (1.36/
√
n524

for n > 40) in the KS test table at significance level of 0.05. Cyclic loading is applied to these525

500 SVEs up to 2,000 cycles. The FIP (D3) is represented using a Weibull distribution at any526

given time instance, and its evolution is tracked by the evolution of the Weibull parameters527

(shape parameter and scale parameter). The Weibull distribution was selected due to the528

better capture of tail of probability plot, as shown in Fig. 6.529
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lognormal and (f) extreme value models.

The probability distribution for a Weibull random variable is expressed as:530

f(x;λ, k) =


k
λ(xλ)k−1 exp

{
[−(xλ)k]

}
x ≥ 0

0 x < 0
(19)531

where k > 0 is the shape parameter, and λ > 0 is the scale parameter.532

At 91.5% yield stress, the distributions at 100 cycles, 200 cycles, 500 cycles and 1000533

cycles are shown in Figure 7. The Weibull distribution captures the tail of D3 distribution for534

D3 > 10−5 reasonably well for all time instances. The D3 distributions shift towards higher D3
535

with increasing number of load cycles. It may also be possible to obtain reasonable fits with536

other distributions such as Gumbel or Frechet distributions, which were suggested in some537

previous studies [55].538

To estimate the evolution of D3 distribution between 1,000 cycles to 100,000 cycles or539

higher, the parameters of Weibull distribution are expressed in a function form that varies540

with the number of load cycles. The temporal evolution of the shape and scale parameters541

within the first 1,000 or 2,000 cycles as computed directly by the SVE simulations, and as fitted542

to a bilinear curve are shown in Fig. 8. Figure 8a and b respectively shows the evolution of scale543
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and shape parameters at three stress levels (85.8%, 91.5% and 95.5% yield stress) as a function544

of cycle number. The time evolution of the scale and shape parameters obtained from SVE545

simulations are indicated by circle, triangle and diamond symbols. In these plots we observe,546

(i) the initial quick increase of local dislocation density mismatch, due to rapid dislocation547

density accumulation at the onset of plastic deformation followed by (ii) stable dislocation548

accumulation due to strain hardening in CRSS, leading to a stable slip accumulation and549

dislocation density accumulation. Capturing the second stage (i.e., the slope of the curves in550

the second stage) is particularly important as it is projected to continue for a large number551

of cycles. A bilinear curve is the simplest curve that is able to fit the observed behavior.552

The bilinear fits capture the SVE data well particularly at large number of cycles, where553

the evolutions of the parameters stabilize. A change in the scale parameter affects on the554

distribution as a change of the abscissa scale. The reduction in the value of the scale parameter555

while keeping the shape parameter constant results in the narrowing of the distribution. As556

indicated in Fig. 8a, higher stress level has larger scale parameter therefore larger variation in557

D3 distribution.558

5.4 Critical FIP calibration and model validation559

Direct experimental observations of the fatigue indicator parameter at fatigue nucleation are560

not available at the material microstructure scale. The calibration of the critical D3 distribu-561

tion is performed by minimizing the discrepancy between the measurements of fatigue life and562

model predictions at a prescribed load amplitude (i.e., 91.5% of yield stress). The calibrated563

critical FIP distribution is then validated by comparing the model predictions and experimen-564
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Figure 8: Temporal evolution of (a) the scale parameter and (b) the shape parameter.

tal life curves at other load amplitudes (i.e., 95.5% and 85.8% of yield stress). 91.5% of yield565

stress load amplitude was used in the calibration because larger number of experimental data566

points are available for this load level compared with the other load levels. The calibration567

was performed using numerical optimization by minimizing the discrepancy in the probability568

of fatigue nucleation expressed as:569

RPFN
=
√
R2

1 +R2
2 + ...+R2

ncp
(20)570

where Ri is the difference between the predicted PFN and experimental PFN at the ith data571

point, and ncp is the number of calibration points. We note that since the number of exper-572

imental data points is relatively low, data were first fitted to a smooth distribution and the573

calibration was performed by minimizing the discrepancy between data points from the fitted574

distribution and the simulation results. The outcome of the calibration process is shown in575

Fig. 9b. The calibrated strength distribution and predicted evolution of D3 distributions at576

91.5% yield stress are plotted in Fig. 10. The motion of D3 is represented every 5,000 cycles577

and up to 50,000 cycles.578

Figure 9 illustrates the predicted probability of the fatigue nucleation curves are compared579

with those from experimental observations for load amplitudes of 85.8%, 91.5% and 95.5% of580

yield stress, respectively. The simulated probability of fatigue nucleation at 91.5% yield stress is581

from calibration and therefore exhibits high accuracy. The fatigue nucleation probabilities are582

slightly underpredicted for the low amplitude loading, whereas they are slightly overpredicted583

for the high amplitude loading. It is important to note that the total number of cycles to584

failure varies significantly (e.g., more than an order of magnitude between 85.8% and 91.5%585
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loading) across the narrow load amplitude range, and this variation is very well captured by586

the model predictions. One of the primary reasons for the discrepancy between the predicted587

results and the model observations is that the number of experimental data points employed588

to generate the experimental probabilities of fatigue nucleation is relatively low as shown in589

Fig. 3.590

6 Conclusion591

This manuscript established a computational framework to predict fracture nucleation in poly-592

crystalline microstructures under cyclic loading conditions. The proposed framework is proba-593

bilistic and considers the existence of an inherent property in the microstructure, i.e., a critical594

distribution of fatigue resistance that reflects the uncertainty induced by features that remain595
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unresolved at the scale of the grains. In view of the results of the proposed investigations, we596

make the following observations and conclusions: (1) A large ensemble of SVEs, of approxi-597

mately an order of magnitude larger than what most previous studies considered is necessary to598

resolve the extreme value statistics at the microstructural scale. This observation emphasizes599

the need to employ fast solution algorithms in space and in time (e.g., reduced order models,600

machine learning models, time acceleration schemes) that allow for response evaluation of such601

large ensembles of SVEs over large number of cycles. (2) Validation of a probabilistic com-602

putational framework such as the one proposed requires a large experimental dataset, since603

extreme value statistics drive the nucleation process. To the best of our knowledge, there is no604

such dataset available in the open literature. (3) Furthermore, a thorough validation of model605

predictions would need direct (and sufficient number of) experimental observations of where606

and when fatigue cracks nucleate. In view of the large variability of number of cycles that607

nucleate fatigue cracks and the role of the microstructural features in nucleating those cracks,608

the proposed probabilistic computational framework offers a pathway for robust assessment of609

fatigue life in polycrystalline materials.610
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[33] K. Kitayama, C. N. Tomé, E. F. Rauch, J. J. Gracio, and F. Barlat. A crystallographic705

dislocation model for describing hardening of polycrystals during strain path changes.706

application to low carbon steels. International Journal of Plasticity, 46:54–69, 2013.707

[34] S. Kotha, D. Ozturk, and S. Ghosh. Uncertainty-quantified parametrically homogenized708

constitutive models (uq-phcms) for dual-phase α/β titanium alloys. npj Computational709

Materials, 6(1):1–20, 2020.710

[35] J. M. Larsen, S. K. Jha, C. J. Szczepanski, M. J. Caton, R. John, A. H. Rosenberger,711

D. J. Buchanan, P. J. Golden, and J. R. Jira. Reducing uncertainty in fatigue life limits712

of turbine engine alloys. International journal of fatigue, 57:103–112, 2013.713

[36] P. Lefranc, C. Sarrazin-Baudoux, and V. Doquet. Dwell-fatigue behaviour of a beta-714

forged ti 6242 alloy. In Fracture of Nano and Engineering Materials and Structures,715

pages 171–172. Springer, 2006.716

[37] C. Leyens and M. Peters. Titanium and titanium alloys: fundamentals and applications.717

John Wiley & Sons, 2003.718

28



[38] D.-F. Li, R. A. Barrett, P. E. O’Donoghue, C. J. Hyde, N. P. O’Dowd, and S. B. Leen.719

Micromechanical finite element modelling of thermo-mechanical fatigue for p91 steels.720

International Journal of Fatigue, 87:192–202, 2016.721

[39] Y. Liu, Y. Zhu, C. Oskay, P. Hu, L. Ying, and D. Wang. Experimental and computational722

study of microstructural effect on ductile fracture of hot-forming materials. Materials723

Science and Engineering: A, 724:298–323, 2018.724

[40] Y. Liu, X. Zhang, Y. Zhu, P. Hu, and C. Oskay. Dislocation density informed eigenstrain725

based reduced order homogenization modeling: Verification and application on a titanium726

alloy structure subjected to cyclic loading. Modelling and Simulation in Materials Science727

and Engineering, 28(2):025004, 2020.728

[41] G. E. R. D. Lütjering. Influence of processing on microstructure and mechanical properties729

of (α+ β) titanium alloys. Materials Science and Engineering: A, 243(1-2):32–45, 1998.730

[42] R. Madec, B. Devincre, and L. P. Kubin. From dislocation junctions to forest hardening.731

Physical review letters, 89(25):255508, 2002.732

[43] S. Mahadevan and A. Haldar. Probability, reliability and statistical method in engineering733

design. John Wiley & Sons, 2000.734

[44] P. O. Maruschak, M. G. Chausov, I. V. Konovalenko, O. P. Yasnii, S. V. Panin, and735

I. V. Vlasov. Effect of shock and vibration loading on the fracture mechanisms of a vt23736

titanium alloy. Strength of Materials, 52(2):252–261, 2020.737

[45] F. McBagonluri, E. Akpan, C. Mercer, W. Shen, and W. O. Soboyejo. An investigation of738

the effects of microstructure on dwell fatigue crack growth in ti-6242. Materials Science739

and Engineering: A, 405(1-2):111–134, 2005.740

[46] D. L. McDowell and F. P. E. Dunne. Microstructure-sensitive computational modeling of741

fatigue crack formation. International journal of fatigue, 32(9):1521–1542, 2010.742

[47] H. Mecking and U. F. Kocks. Kinetics of flow and strain-hardening. Acta metallurgica,743

29(11):1865–1875, 1981.744

[48] J. Miao, T. M. Pollock, and J. W. Jones. Microstructural extremes and the transition from745

fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy.746

Acta Materialia, 60(6-7):2840–2854, 2012.747

29



[49] Mechanical Properties Data Center Traverse City Mich. Aerospace Structural Metals748

Handbook. Volume III. Defense Technical Information Center, 1972. URL https://749

books.google.com/books?id=Y45vSwAACAAJ.750

[50] S. Naka, A. Lasalmonie, P. Costa, and L. P. Kubin. The low-temperature plastic defor-751

mation of α-titanium and the core structure of a-type screw dislocations. Philosophical752

Magazine A, 57(5):717–740, 1988.753

[51] G. M. Owolabi, R. Prasannavenkatesan, and D. L. McDowell. Probabilistic framework754

for a microstructure-sensitive fatigue notch factor. International Journal of Fatigue, 32755

(8):1378–1388, 2010.756

[52] D. Ozturk, S. Kotha, and S. Ghosh. An uncertainty quantification framework for multi-757

scale parametrically homogenized constitutive models (phcms) of polycrystalline ti alloys.758

Journal of the Mechanics and Physics of Solids, 148:104294, 2021.759

[53] V. T. Phan, X. Zhang, Y. Li, and C. Oskay. Microscale modeling of creep deformation760

and rupture in nickel-based superalloy IN 617 at high temperature. Mech. Mater., 114:761

215–227, 2017.762

[54] A. L. Pilchak, W. J. Porter, and R. John. Room temperature fracture processes of a near-763

α titanium alloy following elevated temperature exposure. Journal of Materials Science,764

47(20):7235–7253, 2012.765

[55] C. P. Przybyla and D. L. McDowell. Microstructure-sensitive extreme value probabilities766

for high cycle fatigue of ni-base superalloy in100. International Journal of Plasticity, 26767

(3):372–394, 2010.768

[56] C. P. Przybyla and D. L. McDowell. Simulated microstructure-sensitive extreme value769

probabilities for high cycle fatigue of duplex ti–6al–4v. International Journal of Plasticity,770

27(12):1871–1895, 2011.771

[57] J. K. Qiu, Y. J. Ma, J. F. Lei, Y. Y. Liu, A. J. Huang, D. Rugg, and R. Yang. A compar-772

ative study on dwell fatigue of ti-6al-2sn-4zr-xmo (x= 2 to 6) alloys on a microstructure-773

normalized basis. Metallurgical and Materials Transactions A, 45(13):6075–6087, 2014.774

[58] R. Quey, P. R. Dawson, and F. Barbe. Large-scale 3d random polycrystals for the finite775

element method: Generation, meshing and remeshing. Computer Methods in Applied776

Mechanics and Engineering, 200(17-20):1729–1745, 2011.777

30

https://books.google.com/books?id=Y45vSwAACAAJ
https://books.google.com/books?id=Y45vSwAACAAJ
https://books.google.com/books?id=Y45vSwAACAAJ


[59] M. D. Sangid, H. J. Maier, and H. Sehitoglu. An energy-based microstructure model778

to account for fatigue scatter in polycrystals. Journal of the Mechanics and Physics of779

Solids, 59(3):595–609, 2011.780

[60] F. Sansoz and H. Ghonem. Effects of loading frequency on fatigue crack growth mecha-781

nisms in α/β ti microstructure with large colony size. Materials Science and Engineering:782

A, 356(1-2):81–92, 2003.783

[61] S.Forest. Some links between cosserat, strain gradient crystal plasticity and the statistical784

theory of dislocations. Philosophical Magazine, 88(30-32):3549–3563, 2008.785

[62] W. Shen, W. O. Soboyejo, and A. B. O. Soboyejo. An investigation on fatigue and786

dwell-fatigue crack growth in ti–6al–2sn–4zr–2mo–0.1 si. Mechanics of materials, 36(1-2):787

117–140, 2004.788

[63] J. Sieniawski, W. Ziaja, K. Kubiak, and M. Motyka. Microstructure and mechanical prop-789

erties of high strength two-phase titanium alloys. Titanium Alloys-Advances in Properties790

Control, pages 69–80, 2013.791

[64] V. Sinha, M. J. Mills, and J. C. Williams. Understanding the contributions of normal-792

fatigue and static loading to the dwell fatigue in a near-alpha titanium alloy. Metallurgical793

and Materials Transactions A, 35(10):3141–3148, 2004.794

[65] V. Tong, S. Joseph, A. K. Ackerman, D. Dye, and T. B. Britton. Using transmission795

kikuchi diffraction to characterise α variants in an α+ β titanium alloy. Journal of796

microscopy, 267(3):318–329, 2017.797

[66] M. A. Tschopp, B. B. Bartha, W. J. Porter, P. T. Murray, and S. B. Fairchild.798

Microstructure-dependent local strain behavior in polycrystals through in-situ scanning799

electron microscope tensile experiments. Metallurgical and Materials Transactions A, 40800

(10):2363–2368, 2009.801

[67] B. Viguier, K. J. Hemker, J. Bonneville, F. Louchet, and J.-L. Martin. Modelling the flow802

stress anomaly in γ-tial i. experimental observations of dislocation mechanisms. Philo-803

sophical Magazine A, 71(6):1295–1312, 1995.804

[68] S. Waheed, Z. Zheng, D. S. Balint, and P. E. Dunne. Microstructural effects on strain805

rate and dwell sensitivity in dual-phase titanium alloys. Acta Materialia, 162:136–148,806

2019.807

31



[69] X. G. Wang, V. Crupi, C. Jiang, and E. Guglielmino. Quantitative thermographic method-808

ology for fatigue life assessment in a multiscale energy dissipation framework. Interna-809

tional journal of fatigue, 81:249–256, 2015.810

[70] G. Whelan and D. L. McDowell. Uncertainty quantification in icme workflows for fatigue811

critical computational modeling. Engineering Fracture Mechanics, 220:106673, 2019.812

[71] G. Whelan and D. L. McDowell. Machine learning-enabled uncertainty quantification for813

modeling structure–property linkages for fatigue critical engineering alloys using an icme814

workflow. Integrating Materials and Manufacturing Innovation, 9(4):376–393, 2020.815

[72] D. Wilson and F. P. E. Dunne. A mechanistic modelling methodology for microstructure-816

sensitive fatigue crack growth. Journal of the Mechanics and Physics of Solids, 124:817

827–848, 2019.818

[73] M. Yaghoobi, K. S. Stopka, A. Lakshmanan, V. Sundararaghavan, J. E. Allison, and D. L.819

McDowell. Prisms-fatigue computational framework for fatigue analysis in polycrystalline820

metals and alloys. npj Computational Materials, 7(1):1–12, 2021.821

[74] S. R. Yeratapally, M. G. Glavicic, M. Hardy, and M. D. Sangid. Microstructure based822

fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis823

on the role played by twin boundaries in crack initiation. Acta Materialia, 107:152–167,824

2016.825

[75] S. R. Yeratapally, M. G. Glavicic, C. Argyrakis, and M. D. Sangid. Bayesian uncertainty826

quantification and propagation for validation of a microstructure sensitive model for pre-827

diction of fatigue crack initiation. Reliability Engineering & System Safety, 164:110–123,828

2017.829

[76] F. Yuan, C. Liu, H. Gu, F. Han, Y. Zhang, M. Ali, and G. Li. Effects of mechanical pol-830

ishing treatments on high cycle fatigue behavior of ti-6al-2sn-4zr-2mo alloy. International831

Journal of Fatigue, 121:55–62, 2019.832

[77] M. Zecevic and M. Knezevic. A dislocation density based elasto-plastic self-consistent833

model for the prediction of cyclic deformation: Application to aa6022-t4. International834

Journal of Plasticity, 72:200–217, 2015.835

[78] X. Zhang and C. Oskay. Eigenstrain based reduced order homogenization for polycrys-836

talline materials. Computer Methods in Applied Mechanics and Engineering, 297:408–436,837

2015.838

32



[79] X. Zhang and C. Oskay. Sparse and scalable eigenstrain-based reduced order homoge-839

nization models for polycrystal plasticity. Computer Methods in Applied Mechanics and840

Engineering, 326:241–269, 2017.841

[80] X. Zhang and C. Oskay. Material and morphology parameter sensitivity analysis in par-842

ticulate composite materials. Computational Mechanics, 62(3):543–561, 2018.843

[81] X. Zhang and C. Oskay. Plastic dissipation sensitivity to mechanical properties in poly-844

crystalline β-hmx subjected to impact loading. Mechanics of Materials, 138:103079, 2019.845

[82] X. Zhang and C. Oskay. Modeling and numerical investigation of mechanical twinning846

in β-hmx crystals subjected to shock loading. Modelling and Simulation in Materials847

Science and Engineering, 29(7):075009, 2021.848

[83] Z. Zhang and F. P. Dunne. Microstructural heterogeneity in rate-dependent plasticity of849

multiphase titanium alloys. Journal of the Mechanics and Physics of Solids, 103:199–220,850

2017.851

[84] Z. Zhang and F. P. Dunne. Phase morphology, variants and crystallography of alloy852

microstructures in cold dwell fatigue. International Journal of Fatigue, 113:324–334,853

2018.854

33


	Introduction
	Overview of the Uncertainty Quantification Framework
	Titanium Alloy, Ti-6242
	Microstructural features
	Uncertainty in microstructure
	Uncertainty in fatigue life

	Methodology
	DD-EHM formulation
	Constitutive model
	Fatigue indicator parameter

	Fatigue Nucleation Prediction
	Constitutive model parameters
	SVE ensemble
	Long term evolution of FIP distributions
	Critical FIP calibration and model validation

	Conclusion

