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Abstract

Reduced order models for the nonlinear response of heterogeneous microstructures typically
require a construction (or training) stage to build the reduced order basis. In this manuscript,
an efficient model construction strategy for the eigenstrain homogenization method (EHM) is
presented. The proposed strategy relies on a parallel, element-by-element, conjugate gradient
solver. Near linear scaling has been achieved with respect to the number of degrees of freedom
used to resolve the microstructure. Linear scaling with respect to the number of pre-analyses
required to construct the reduced order model (ROM) follows from the EHM formulation.
Furthermore, a parallel implementation for fast evaluation of the constructed ROM has been
developed using shared memory parallelization. It has been shown that for large microstructures
with ≈ 10,000 grains, the total computational cost of evaluating the nonlinear response of
a polycrystal could be reduced by approximately an order of magnitude using 32 cores with
respect to serial ROM simulation. The present methodology has been verified using an additively
manufactured polycrystalline microstructure of a nickel-based superalloy, Inconel 625. The
capability of the developed framework to construct a ROM for such large microstructures, as
well as the ability of the ROM to predict average and local quantities of interest has been
demonstrated.

1 Introduction
Polycrystal simulations performed using the crystal plasticity finite element (CPFE) method are
widely used for predicting the mechanical response of metals and alloys at fine scales to characterize
a wide range of phenomena associated with fatigue initiation [1], manufacturing processes [2, 3],
impact response [4] and many others [5, 6, 7, 8, 9]. The high computational cost of simulations
limits application of CPFE to relatively small microstructural volumes or requires simplification of
subgrain features that may otherwise require very fine mesh resolution. The issue of computational
cost is particularly challenging when parametric sensitivity of response fields and quantification of
model/parameter uncertainty are of interest, or if the fine scale response is to be used in conjunction
with multiscale modeling.
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Reduced order models (ROMs), surrogate models, parallel solution algorithms, and their com-
binations have been previously proposed to address the high computational cost issue (e.g., [10,
11, 12]). Taylor [13] and Sachs [14] bounds, constructed by neglecting grain-to-grain interactions
and assuming constant stress (Sachs) or constant strain (Taylor) within each grain, provide first
order bounds to the polycrystalline plasticity problem. Using the Taylor model, Knezevic and
Savage have implemented a graphics processing units (GPU)-parallelized spectral database solver
[15] for crystal plasticity simulations [2]. Authors report a speedup of approximately 200–1,000 over
the conventional CPFE implementation for a 15,000 grain microstructure [15]. In Ref. [16], the
same authors presented GPU parallelization of iterative (Newton-Raphson) and direct (spectral
database) solvers for evaluating the nonlinear constitutive law. It was shown that a parallelized
direct solver is faster by three orders of magnitude compared to a serial iterative solver. Viscoplastic
self-consistent method has been introduced by Lebensohn and Tome for modeling rigid-viscoplastic
response of polycrystals [17]. This method improves upon first-order bounds by embedding grains
into homogenized medium with effective tangent moduli, leading to more accurate predictions of
stress-strain response.

ROMs aim to approximate the response of heterogeneous microstructures with a coarse basis
that results in a much smaller system of equations. For general heterogeneous materials, various
ROMs have been proposed, including the transformation field analysis (TFA) [18, 19], nonuniform
TFA (NTFA) [20, 21, 22, 23] and its extensions [24, 25, 26], numerical potentials [27], self-consistent
clustering analysis [28], eigendeformation and eigenstrain-based reduced order homogenization [29, 30,
31, 32, 33, 34], multiscale discrete damage theory [35, 36], proper orthogonal decomposition (POD)
[37, 38, 39], and proper generalized decomposition [40]. The general structure of the construction
and evaluation of reduced-order and surrogate models is shown in Figure 1. Implementation of
these ROMs consists of construction (offline) and the evaluation (analysis/online) stages. During
the construction stage, a series of problems defined over the domain of the microstructure volume
(i.e. a representative volume element (RVE) or a statistical volume element (SVE)) is solved to
build the reduced basis. Once the model is constructed, a reduced nonlinear system of equations
coupled with crystal plasticity constitutive equations [41] are evaluated (i.e. the evaluation stage)
to simulate the response of the microstructure volume under the provided loading condition. The
construction stage is typically computationally costly and the total time spent on construction could
scale exponentially with increasing mesh size. In the context of the eigenstrain homogenization
method (EHM), the ROM construction requires the evaluation of a series of linear elastic analyses
to compute the so called influence functions and the coefficient tensors of the model. The NTFA
method uses nonuniform reduced order basis functions (modes), which can be determined by series
nonlinear analyses under a set of prescribed loads. Compared to EHM, the NTFA method has been
shown to provide more accurate effective response of nonlinear composites. This increase in accuracy
is achieved at the expense of costly nonlinear analyses during the construction stage, and dependence
of the accuracy on the loading conditions used in training. Based on the NTFA ideas, Fritzen et al.
presented a massively parallel GPU implementation of the reduced order method (named FE2R)
for composites with a viscoplastic matrix [42, 43]. In this study, a speedup is reported in the order
of 20–35 for a GPU-parallelized ROM over a central processing unit (CPU) parallelized version of
the same code and 104 speedup over full-field computational homogenization (also known as FE2

[44]) on a single core. POD-based ROMs also use a series of nonlinear pre-analyses in conjunction
with an eigenvalue problem. Typically, the lowest frequency eigenmodes are chosen to construct the
reduced basis. POD procedure leads to microscale nonlinear finite element problems with a stiffness
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Figure 1: General framework for construction and evaluation of ROMs or surrogate models for
nonlinear homogenization.

matrix size corresponding to the number of chosen modes and an array of unknowns corresponding
to amplitudes of the modes. A speedup of larger than an order of magnitude compared to direct
numerical simulations was reported by Yvonnet and He [38].

The spectral method proposed by Moulinec and Suquet [45, 46, 47] solves the microscale boundary
value problem using fast Fourier transforms, thus avoiding the formation (and storage) of a global
stiffness matrix. The spectral method has been extensively used for modeling polycrystals and
implementation of various crystal plasticity constitutive models has been discussed in a comprehensive
review by Lebensohn and Rollett [48]. More recently, Liu et al. have developed a model order
reduction technique for the spectral method, named self-consistent clustering analysis [28]. This
technique requires evaluation of a series of convolutions in frequency space to construct the reduced
order model and delivers good agreement with respect to reference simulations, provided that
the interaction tensors are recomputed and a sufficient number of clusters/partitions are used to
discretize the microstructure.

Several data-driven models have also been recently proposed based on neural networks [49, 50],
geometric deep learning [51], and Gaussian processes [52] among others. Many studies develop
surrogate models for free energy density function using neural networks [53] and Gaussian processes
[52] for nonlinear elasticity problems. In the context of polycrystals undergoing viscoplastic deforma-
tions, Liu et al. [50] developed a neural-network-based approach for constructing a map between the
input strain space and the volume-averaged stress, and used it in concurrent multiscale modeling.
The aforementioned studies focus on macroscopic stress and homogenized tangent updates using
the surrogate models, and the microscopic information is not retained after the training process.
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Localization operators for computing the microscale fields (e.g. fatigue indicator parameters [54, 1]
or other microscale quantities of interest) are typically not available. Furthermore, loading conditions
used to train a model must span the six-dimensional strain space and varying proportional and
non-proportional loading paths, which may require a very large number of nonlinear simulations.

This study presents a new parallelized implementation of EHM construction and execution to
model the mechanical response of large-sized polycrystalline microstructures. The novelty of the
proposed implementation lies particularly in acceleration of the construction stage by leveraging the
scalable nature of the pre-analyses used to compute the model. For the ROM construction stage, we
demonstrate that near linear scaling can be achieved as a function of degrees of freedom used in
the discretization of the microstructure volume using a parallel element-by-element preconditioned
conjugate gradient solver. Linear scaling as a function of the number of parts in the ROM follows
from the independence of the pre-analyses in EHM formulation. With the proposed implementation
procedure, we demonstrate the ability to simulate the response of a microstructure that is an order
of magnitude larger than previously reported in the literature [55]. The capabilities of the model
were demonstrated by a verification study on a microstructure characterized within the Air Force
Research Laboratory (AFRL) additive manufacturing (AM) microstructure challenge series [56, 57,
58]. The challenge microstructure contains approximately 10,000 grains. The global as well as local
(i.e. grain scale) quantities of interest predicted using the EHM model were compared with the
CPFE simulations. Furthermore, performance of parallel implementation of the ROM evaluation
was analyzed and compared to a serial implementation.

The following notation is used unless otherwise stated. Scalars are denoted by lightface letters, α,
Cartesian tensor fields are denoted as italic lightface letters, Aijkl (or σij), in indicial notation with
italic indices, ijkl (or ij), and referred to as boldface italic, A (or σ), in text/tensor notation. A
comma in the indices indicates partial spatial derivative. Where appropriate, the top right superscript
is used as a descriptor, top left superscript is the iteration counter, and bottom left subscript is
the increment counter. Overbar indicates macroscopic quantity averaged over the microstructural
domain while overhead dot indicates time derivative. Boldface A and σ are used to represent (6× 6)
Voigt matrices and (6× 1) Voigt vectors in the numerical implementation, respectively.

The rest of the manuscript is organized as follows: An overview of the EHM model used in this
study is provided in Section 2. The parallel implementation frameworks for the ROM construction
and evaluation are presented in Section 3 and Section 4, respectively. Section 5 is an assessment of
the scalability and performance of the parallel EHM model construction framework. Accuracy and
performance verification in terms of the macroscale and microscale quantities are discussed. A set of
numerical experiments conducted to study the parallel performance of the ROM evaluation is also
presented in this section. Conclusions are discussed in Section 6.

2 Reduced order eigenstrain homogenization method
An overview of the governing equations for EHM is provided herein (see [32, 55] for detailed
derivation). Consider a macroscopic domain, Ω ⊂ R3, that is made of a periodic polycrystalline
microstructural volume, Θ ⊂ R3. The domain Θ consists of N grains, where the domain of each
grain α is defined as Θ(α) ⊂ Θ. A two-scale asymptotic analysis and the EHM procedure lead to two
tightly coupled boundary value problems defined over the macroscale and the microscale domains.
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The macroscale boundary value problem in the absence of inertial forces is given by

σ̄ij,j(x, t) + b̄i(x, t) = 0 (1)

ϵ̄ij(x, t) =
1

2
(ūi,j(x, t) + ūj,i(x, t)) (2)

ūi(x, t) = ū∗i (x, t) x ∈ Γu (3)
σ̄ij(x, t)n̂j = t̄∗i (x, t) x ∈ Γt (4)

where σ̄ denotes the macroscale stress field, b̄ denotes the macroscale body forces, ϵ̄ is the macroscopic
strain, ū denotes the macroscale deformation field, ū∗ is the prescribed displacement over Dirichlet
boundaries, Γu, t̄∗ is the prescribed traction over Neumann boundaries, Γt, n̂ is the normal vector,
and x denotes the macroscale spatial position vector. Using the EHM procedure [32], the microscale
homogenized equilibrium equation and the stress-strain relationship lead to the governing equation
at the microscale

M
(β)
ijklσ̇

(β)
kl (t)−

N∑
α=1

[
P

(αβ)
ijkl − δ(αβ)Iijkl

]
µ̇
(α)
kl (t) = A

(β)
ijklϵ̇kl(t) β = 1, . . . , N (5)

where α and β represent grain indices, I is the fourth-order identity tensor, M (β) represents the
compliance tensor for grain β, P (αβ) represents the interaction tensor between grains α and β, A(β)

represents the localization tensor, µ(β) is grain-averaged viscoplastic strain, and σ(β) is grain-averaged
stress. The coefficient tensors (A(β), M (β), and P (αβ)) retain information about microstructural
quantities such as the elastic properties of grains, grain orientation, grain morphology, and grain-to-
grain interactions. In a more general setting, the grain indices, α, correspond to the number of parts
in the reduced order model, i.e., each grain can be further split into multiple parts. Sub-partitioning
grains further would relax the uniform field assumption and may improve the accuracy of the model
at the expense of some computational efficiency. In the present study, a part-per-grain model is
used. We consider the viscoplastic slip evolution in a given grain to be governed by dislocation glide
over the slip systems. The flow rule is then expressed using the Schmid law as:

µ̇
(α)
ij =

Nss∑
s=1

γ̇s(α)Z
s(α)
ij (6)

where γ̇s(α) is a viscoplastic slip rate on the sth slip system of grain α, Nss is the number of slip
systems, and Zs(α) is the Schmid tensor associated with a slip system, s, of grain α. By Rice and
Pierce [59, 60, 61], the slip rate for face centered cubic (FCC) crystals (considered in the present
study) is expressed using the flow rule

γ̇s(α) = γ̇0

[
|τ s(α)|
gs(α)

]1/m
sign(τ s(α)) (7)

where the reference self-shearing rate, γ̇0, and rate sensitivity, m, are material parameters, gs(α)
is the sth slip system strength of grain α, and τ s(α) = σ(α) : Zs(α) is the grain-averaged resolved
shear stress over the sth slip system of grain α. A Voce-type isotropic hardening model [62, 63] is
considered:

ġs(α) = h0

[
gsa − gs(α)

gsa − g0

] Nss∑
r=1

|γ̇r(α)| (8)
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where h0 is reference self-hardening, g0 is the initial strength of a slip system, and gsa is saturation
strength.

In EHM, the construction phase consists of computing the coefficient tensors, whereas the
evaluation phase refers to the solution of Eq. 5 along with the constitutive equations describing
the viscoplastic flow. The compliance tensor, M (β), is defined by the lattice orientation and the
anisotropic tensor of elastic moduli of the material. The localization tensor, A(β), and the interaction
tensors, P (αβ), are related to each other through the following kinematic consistency formula [55,
18]:

N∑
α=1

P
(αβ)
ijkl = Iijkl − A

(β)
ijkl (9)

Therefore, computation of localization tensors from given interaction tensors is straightforward.
Computation of P (αβ) requires the evaluation of N phase influence function problems (IFP) governed
by [

Lijmn(y)
(
h
(α)
(m,n)kl(y)− Imnkl1

(α)(y)
)]

,j
= 0 y ∈ Θ (10)

h
(α)
mkl(y) = 0 y ∈ ∂Θv (11)

h
(α)
mkl(y) = h

(α)
mkl(y + ŷ) y ∈ ∂Θfe (12)

where y is the microscale position vector, h(α) is the phase influence function, L = M−1 is the
tensor of elastic moduli, ∂Θv is the set of vertices (i.e., corners) of the microstructural volume,
ŷ is the period of the microstructure, and ∂Θfe is a set defined over the faces and edges of the
microstructural volume. Parentheses in the subscript of the phase influence function stand for the
symmetric part of the gradient with respect to the indices in parentheses. Indicator function, 1(α), is
defined as 1(α)(y) = 1 if y ∈ Θ(α) (where Θ(α) is the domain of grain α) and 1(α)(y) = 0 elsewhere.
The phase influence function is fixed at the vertices of the microstructural volume to eliminate
rigid body motion, and periodic boundary conditions are enforced along the faces and edges of
the microstructural volume. The interaction tensors are expressed as a function of the influence
functions as:

P
(αβ)
ijkl =

1

C(β)

∫
Θ

1(β)(y)h
(α)
(i,j)kl(y)dy (13)

where C(β) is the volume fraction of grain β. The general workflow of the EHM consists of two main
steps:

1. Construction stage: In this stage, the IFPs (given in Eqs. 12) are solved for each grain α in the
microstructure, and the localization, A(α), and interaction tensors, P (αβ), are precomputed.
In the present study, the solution of the IFPs is carried out in parallel using Algorithm 1 as
discussed in Section 3.

2. ROM evaluation: In this stage, the microscale governing equation (given in Eq. 5) is solved
at each macroscale integration point for a given macroscopic strain increment. Since the
microscale governing equation is nonlinear (due to viscoplastic strain) a staggering scheme
is used to solve the system, as shown in Algorithm 2. Parallel implementation of residual
and Jacobian assembly routines of Newton-Rhapson algorithm is further demonstrated in
Algorithms 3 and 4.
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3 Efficient construction of reduced order model
As shown by Zhang and Oskay [32], by using standard Galerkin-Bubnov finite element discretization
and using Voigt notation, phase IFPs are reduced to a system of linear equations

KD = B (14)

where K ∈ RNdofxNdof is the stiffness matrix, B ∈ RNdofx6N is the external force matrix, D ∈ RNdofx6N

is the matrix of nodal coefficients of the influence function with 6N columns for three-dimensional
problems, and Ndof is the number of degrees of freedom in a finite element mesh of the microstructural
domain. The B and D matrices are given as

B = {b̂(1), b̂(2), . . . , b̂(α), . . . , b̂(N)} (15)

D = {d̂(1), d̂(2), . . . , d̂(α), . . . , d̂(N)} (16)

where each b̂(α) is a matrix of external forces and each d̂(α) is a matrix of displacements with Ndof

number of rows and six columns.
For microstructures with complex features or many grains, the number of grains (or reduced

order parts resulting from subpartitioning), N , may be large, which results in a large number of
right hand sides in Eq. 16. These types of microstructures would also require a fine finite element
mesh (possibly with higher-order elements) so that the solution of each system for d̂(α) becomes
expensive and storing the global stiffness matrix becomes problematic. Therefore, the cost of ROM
construction for such microstructures scales with both N and Ndof, necessitating the introduction of
parallel computing algorithms.

To this end, the present study proposes an efficient ROM construction methodology based on
an element-by-element (EBE) preconditioned conjugate gradient (PCG [64]) solver. The EBE
methodology for the solution of linear systems was first introduced in Ref. [65] and then applied
to the PCG method in Ref. [66]. The main advantage of the EBE method is that the assembly
and storage of the stiffness matrix is not required in order to solve the linear system. The PCG
algorithm combined with EBE and parallel computing techniques can converge quickly when an
efficient preconditioner is used.

Since each IFP (Eq. 16) is independent of the others, the IFPs are split into batches, and the
batches are submitted to separate compute nodes to achieve parallelism. Then, each IFP in a given
batch is solved one-by-one using the parallel EBE PCG algorithm. Within each compute node, the
EBE PCG method is implemented using shared memory parallelization (OpenMP library [67]).

The general procedure for the parallel EBE PCG method for evaluating the phase IFPs is shown
in Algorithm 1. All PCG operations are performed in shared memory parallelism by splitting
the mesh of the polycrystal into partitions as indicated by superscript (partition). This domain
decomposition performed for parallel computation is distinct from the partitioning of the domain for
model order reduction introduced in Section 2. These partitionings could be made independent of
each other. However in this study, we choose them to be the same, hence each parallel computing
partition (and reduced order part) is the domain of a single grain.

The six linear solves (associated with each column of the force vector, b̂(α)) are evaluated
simultaneously by vectorizing the displacement and external force matrices such that

d(α) = {d̂(α)
1

T , . . . , d̂
(α)
6

T}T (17)

b(α) = {b̂(α)
1

T , . . . , b̂
(α)
6

T}T (18)
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This vectorization implies that the number of degrees of freedom at each node is set to 18 (rather
than 3). In the algorithm, d indicates the solution vector, b is the external force vector, D̃ is the
preconditioner, α is the line search constant, r indicates the residual vector, β is the Gram-Schmidt
orthogonalization constant, and p stands for orthogonal search directions. In steps 1–6, the solver
is initialized using an initial guess for the solution, 0d (IFP index, α, is omitted for brevity). In
step 1, an initial guess for the initial force vector, 0f (partition), is assembled using the standard finite

element procedures (such that AN
(partition)
el

el=1 represents the finite element assembly over elements in a
given partition), and N

(partition)
el stands for the number of elements in a given partition. The internal

force vector is computed without explicitly forming and storing the elemental stiffness matrix, Kel,
as described in Ref. [68]. The Jacobi preconditioner is assembled similarly (step 2). In step 3,
the internal forces, 0f (partition), the external forces, b(partition), and the preconditioner, D̃(partition),
computed for individual partitions are synchronized. Nodes shared between the partitions are
designated as halo (or ghost) nodes, and synchronization is performed by looping through all halo
nodes and summing the quantity of interest over all partitions containing a given halo node. This
synchronization process is illustrated in Figure 2 for two partitions. Yellow (see electronic version of
this article for colors) circles indicate halo nodes i.e. those nodes that are shared between partition 1
and 2, and blue arrows indicate nodal force vectors. For each halo node, a vector sum of force vectors
from two partitions (shown in Figure 2a) is performed, resulting in the force vectors in Figure 2b.
After synchronization is completed, the nodal forces for each halo node are equal in partition 1 and
partition 2.

Subsequent iterations are described by the rest of the Algorithm 1. In steps 4–6, the residual
is initialized and preconditioned, and the search direction is initialized. Steps 8–16 describe the
update on the residual and solution at an arbitrary iteration, m. Steps 11, 12, 13, and 15 follow
standard PCG procedures with the additional consideration of partitioning and parallel computation.
The scalars α and β are updated in steps 10 and 14 such that numerators and denominators are
computed by performing summation over all partitions. Iterations are performed until the following
convergence criterion is reached

Npartitions∑
partition=1

mr(partition)
Tmp(partition) < δ2

Npartitions∑
partition=1

0r(partition)
T 0p(partition) (19)

for a relative tolerance, δ.
Periodic boundary conditions are enforced over the faces and edges of the microstructure by

replacing replica node number with primary node number. Each node on the primary faces and
edges is associated with a node on the replica faces and edges of the microstructure as depicted in
Figure 3. In this study, the microstructure mesh is generated from a voxelized geometry where each
voxel is split into six linear tetrahedra. Therefore, there is a unique replica node for each primary
node on all three face pairs. As for the edges, each primary node on a primary edge has three
corresponding replica nodes on three replica edges. For a primary node on a given microstructure
face or edge, replica nodes are identified using an efficient algorithm based on the node numbering
for regular/voxelized meshes. Finally, all degrees of freedom at the vertices of the microstructure are
fixed to ensure well-posedness of the phase IFPs.

In the present study, the parallel EBE PCG method was implemented based on the Femera
solver [68]. The initial guess for the solution vector, 0d, was set to zero. A diagonal Jacobi
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Algorithm 1 Parallel EBE PCG method
Solve single phase IFP Kd = b using parallel EBE PCG method.

1: Initialize internal forces : 0f
(partition) ⇐ AN

(partition)
el

el=1 Kel
(

0del(partition)
)

2: Compute preconditioner : D̃(partition) ⇐ AN
(partition)
el

el=1 diag(Kel)

3: Synchronize over the partitions : 0f
(partition)

,b(partition), D̃(partition)

4: Initialize residual : 0r(partition) ⇐ b(partition) − 0f (partition)

5: Update preconditioned residual : 0z(partition) ⇐ D̃−1
(partition)0r(partition)

6: Initialize orthogonal search directions : 0p(partition) ⇐ 0z(partition)

7: Loop until convergence

8: Compute internal forces : mf (partition) ⇐ AN
(partition)
el

el=1 Kel
(
mpel(partition)

)
9: Synchronize internal forces : mf (partition)

10: Update line search constant : mα⇐
∑Npartitions

partition=1
mr(partition)

Tmz(partition)∑Npartitions
partition=1

mp(partition)Tmf (partition)

11: Update solution vector : m+1d(partition) ⇐ md(partition) + mαmp(partition)

12: Update residual : m+1r(partition) ⇐ mr(partition) − mαmf (partition)

13: Update preconditioned residual : m+1z(partition) ⇐ D̃−1
(partition)m+1r(partition)

14: Update Gram-Schmidt constant : mβ ⇐
∑Npartitions

partition=1
m+1r(partition)

Tm+1z(partition)∑Npartitions
partition=1

mr(partition)
Tmz(partition)

15: Update orthogonal search directions : m+1p(partition) ⇐ m+1z(partition) + mβmp(partition)

16: Update iteration counter : m⇐ m+ 1
17: End loop

preconditioner, D̃(partition), was selected (as shown in Algorithm 1) for its relatively straightforward
parallel implementation and low memory requirements. Microstructure vertices were fixed by setting
the inverse of the preconditioner, D̃−1, to zero for all global degrees of freedom corresponding to the
microstructure vertex nodes.

4 Efficient evaluation of reduced order model
This section introduces the microscale stress update procedure followed by the parallel implementation
of the ROM evaluation. Equation 5 is solved for two sets of unknowns: grain-averaged stresses, σ(α),
and slip systems strengths, g(α), for all slip systems within each grain α. For notational convenience,
grain-averaged stresses and slip systems strengths are collected into single vectors as follows

Σ = {σ(1)T ,σ(2)T , . . . ,σ(N)T}T (20)

g = {g(1)T ,g(2)T , . . . ,g(N)T}T (21)

where Σ denotes a vector that contains all microscale stresses, g denotes a vector that contains all
microscale slip system strengths, and each g(α) contains slip system strengths across all slip systems.
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(a) (b)

Figure 2: Synchronization of forces for parallel solver by summing force vectors for each halo node:
(a) before synchronization and (b) after synchronization.

Figure 3: Application of periodic boundary conditions to the faces and edges of the microstructure.

The residual and Jacobian of Eq. 5 are given by

ϕ(β) =
N∑

α=1

(δ(αβ)I−P(αβ))l+1µ̇
(α) +M(β) l+1σ

(β) −l σ
(β)

∆t
−A(β) l+1ϵ−l ϵ

∆t
(22)

∂ϕ(β)

∂σ(η)
= (δ(ηβ)I−P(ηβ))

γ̇0
m

Nss∑
s=1

1

gs(η)

[
|τ s(η)|
gs(η)

] 1−m
m

Z̃s(η) + δ(βη)
M(β)

∆t
(23)

where ϕ is the residual of the constitutive law, ∂ϕ/∂σ is the Jacobian of the constitutive law,
I is the fourth order identity matrix, indices l indicate values of the fields at time lt, A(β) are
the localization matrices, Z̃s(η) = Zs(η)Zs(η)T , and P(αβ) are the interaction matrices. A two-level
staggering scheme [69] is used to update grain-averaged stresses and strengths as shown in Algorithm 2.
The macroscopic strain increment and state variables at the previous increment are passed as input
to the algorithm. The stresses are updated through Newton-Raphson iterations (steps 4–8) under the
condition that the residual is minimized within an acceptable tolerance. The slip system strengths
are updated explicitly based on Eq. 8 at step 10. This process is repeated until convergence is

10



Algorithm 2 Microscale Stress Update Algorithm
Inputs: Macroscale strain increment ∆ϵ
Outputs: Macroscale stress σ, Macroscale tangent ∂σ/∂ϵ
1: Microscale iteration counter : k ⇐ 0
2: Initial guess : k

l+1Σ⇐ lΣ, k
l+1g⇐ lg

3: State iterations until convergence
4: N-R iterations until convergence

5: Φ

∣∣∣∣
k
l+1Σ,kl+1g

⇐ ComputeResidual(. . . )

6:

[
∂Φ

∂k
l+1Σ

]∣∣∣∣
k
l+1Σ,kl+1g

⇐ ComputeJacobian(. . . )

7: Solve linear system : ∆Σ⇐ −

[
∂Φ

∂k
l+1Σ

∣∣∣∣
k
l+1Σ,kl+1g

]−1
Φ

∣∣∣∣
k
l+1Σ,kl+1g

8: Update total stress vector : k+1
l+1 Σ⇐k

l+1 Σ+∆Σ
9: End N-R iterations

10: Update hardening : k+1
l+1 g⇐l g + ġ

∣∣∣∣
k+1
l+1 Σ,kl+1g

∆t

11: Update iteration counter : k ← k + 1
12: End state iterations

13: Update Tangent Modulus :
∂l+1σ

∂l+1ϵ
⇐

∑N
α=1C

(α)

[ ∂Φ

∂k
l+1Σ

∣∣∣∣
k
l+1Σ,kl+1g

]−1
A

∆t

(α)

14: Update Macroscopic Stress : l+1σ←
∑N

α=1C
(α)σ(α)

reached in terms of grain-averaged stresses and slip system strengths within acceptable tolerances.
The converged grain-averaged stresses and strengths are then used to update macroscale stress, l+1σ,
and tangent modulus, ∂l+1σ/∂l+1ϵ (steps 13–14).

In order to speed up convergence of the solver, the matrix decomposition computed for the stress
update prior to convergence of the microscale problem is reused for tangent computation. Since
the difference between k+1

l+1Σ and k
l+1Σ is small (within the tolerance used) at the last increment

prior to convergence, accuracy of the tangent computation isn’t significantly affected by using the
decomposition computed from k

l+1Σ instead of k+1
l+1Σ. Furthermore, the initial guess for microscale

stresses used in Algorithm 2 was replaced with explicit solutions for 0
l+1Σ and 0

l+1g computed using
the equations

0
l+1σ

(β) =l σ
(β) +M(β)−1

[
A

′ (β) l+1ϵ−l ϵ

∆t
−

N∑
α=1

(δ(αβ)I−P
′ (αβ)

)lµ̇
(α)

]
∆t (24)

0
l+1g =l g + ġ

∣∣∣∣
lΣ,lg

∆t. (25)

Explicit estimates speed up convergence of the solver significantly, particularly in the elastic and
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Algorithm 3 ComputeResidual
1: function ComputeResidual(. . .)
2: Initialize viscoplastic strain and residual : µ̇(β) ⇐ 0,ϕ(β) ⇐ 0

3: !$OMP PARALLEL DO PRIVATE(β, s)
4: for β ← 1 to N do
5: for s← 1 to Nss do
6: Compute slip rate : γ̇s(β)

7: Compute inelastic strain rate : µ̇(β) ⇐ µ̇(β) + γ̇s(β)Zs(β)

8: end for
9: end for
10: !$OMP END PARALLEL DO

11: !$OMP PARALLEL DO PRIVATE(β, α, δ(αβ))
12: for β ← 1 to N do
13: for α← 1 to N do
14: Add viscoplastic contribution : ϕ(β) ⇐ ϕ(β) + (δ(αβ)I−P(αβ))µ̇(α)

15: end for

16: Add elastic contribution : ϕ(β) ⇐ ϕ(β) +M(β) l+1σ
(β) −l σ

(β)

∆t

17: Add total contribution : ϕ(β) ⇐ ϕ(β) −A(β) l+1ϵ−l ϵ

∆t
18: end for
19: !$OMP END PARALLEL DO
20: Assemble Φ from ϕ(β)

21: end function

viscoplastic regions. However, several state iterations are still required inside the elasto-viscoplastic
transition region due to nonlinearities.

4.1 Parallel computation of the residual and Jacobian

The significant majority of the computational cost of executing Algorithm 2 is due to (1) residual
computation (step 5), (2) Jacobian assembly (step 6), and (3) the solution of the system of
equations (step 7). A pseudo-algorithm for parallel implementation of the residual computation is
shown in Algorithm 3. First, viscoplastic strain rates for all grains are computed in one for-loop,
which is parallelized with respect to grain index β. γ̇s(α) is a function of stress and hardening of the
αth grain only, and is computed using Eq. 7. The residual for each grain, ϕ(α), is computed in the
second for-loop, which is parallelized with respect to grain index β. The process of assembly of the
Jacobian matrix (Eq. 23) is shown in Algorithm 4. Jacobian assembly consists of computing ∂µ/∂σ,
and adding elastic and viscoplastic contributions to the matrix. In both steps of the assembly
process, the loops are parallelized with respect to the grain index β. Since computing the outer
product of the Schmid tensor, Z̃s(η), at each iteration is computationally intensive, it is precomputed
at the initialization stage. Precomputing this value is possible provided that the texture evolution is
considered to be small under the applied loading conditions. Assembly of the Jacobian matrix for
the computation of tangent moduli (step 13 in Algorithm 2) follows the same pattern, except that
there are six right hand sides (due to the minor symmetry of the localization tensor) instead of one.

4.2 Parallel evaluation of linear system

The evaluation of the stress increment ∆Σ in step 7 of Algorithm 2 is also parallelized. In the
classical EHM formulations [32], the resulting Jacobian is dense, hence stress update scales poorly
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Algorithm 4 ComputeJacobian
1: function ComputeJacobian(. . .)

2: Initialize
∂µ̇(η)

∂σ(η)
and the Jacobian :

∂µ̇(η)

∂σ(η)
⇐ 0,

∂ϕ(β)

∂σ(η)
⇐ 0

3: !$OMP PARALLEL DO PRIVATE(β, s)
4: for β ← 1 to N do
5: for s← 1 to Nss do

6: ∂µ̇(η)

∂σ(η)
⇐

∂µ̇(η)

∂σ(η)
+

γ̇0

m

1

gs(η)

[
|τs(η)|
gs(η)

] 1−m
m

Z̃s(η)

7: end for
8: end for
9: !$OMP END PARALLEL DO

10: !$OMP PARALLEL DO PRIVATE(β, η, δ(ηβ))
11: for β ← 1 to N do
12: for η ← 1 to N do

13: Add viscoplastic contribution :
∂ϕ(β)

∂σ(η)
⇐

∂ϕ(β)

∂σ(η)
+ (δ(ηβ)I−P(ηβ))

∂µ̇(η)

∂σ(η)

14: Add elastic contribution :
∂ϕ(β)

∂σ(η)
⇐

∂ϕ(β)

∂σ(η)
+ δ(ηβ)

M(β)

∆t

15: end for
16: end for
17: !$OMP END PARALLEL DO

18: Assemble
∂Φ

∂Σ
from

∂ϕ(β)

∂σ(η)

19: end function

with number of grains. A formulation that employs a sparse Jacobian with better scalability has been
proposed in Ref. [55]. The sparse Jacobian is achieved by adjusting the interaction matrices, P(αβ)

without changing the overall structure of the ROM. This formulation (corresponding to a 1-layer
ϵ-sparse EHM model in Ref. [55]) is adopted in this study such that only the interaction between
nearest neighbors are considered. Solution of the sparse system of equations is handled using a direct
sparse solver - PARDISO [70]. The PARDISO solver is parallelized internally and parallelization is
activated by passing the number of cores/threads as an environment variable. Further, additional
time is saved during the multiscale simulation by performing symbolic decomposition of the Jacobian
at initialization using PARDISO. Due to sparse nature of the interaction tensors, for-loops at
step 13 (Algorithm 3) and step 12 (Algorithm 4) have been replaced with loops over all first nearest
neighbors (of grain β) since P(αβ) = 0 for non-neighboring grains α and β. The number of neighbors
and neighbor indices are fetched from precomputed maps and denoted as thread-private variables to
preserve thread independence. Sparse formulation leads to a sparse Jacobian matrix which is stored
in a compressed row storage (CRS) format.

5 Verification : AFRL challenge problem
In this section, the performance of the proposed ROM construction and evaluation framework is
assessed using the microstructure of an additively manufactured Inconel 625 alloy that was thoroughly
characterized within the AFRL AM Modeling Challenge Series [56, 57, 58].

The grain morphology of the microstructure obtained from Ref. [56] after digital "cleanup" is
shown in Figure 4a. The original voxelized microstructure contained approximately 30,000 grains,
a small amount of porosity (0.001% by volume) and experimental markers. The microstructure
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Table 1: Elastic and viscoplastic properties of Inconel 625.

C11 C12 C44 g0 gsa h0 m γ̇0

243.3 GPa 156.7 GPa 117.8 GPa 138 MPa 170 MPa 400 MPa 0.048 0.001

was processed by deleting the experimental markers and merging pores and border artifacts into
neighboring grains using DREAM.3D software [71]. The number of grains was reduced from
approximately 30,000 to 9,294 by merging small grains (with diameters < 10.7 µm) into neighboring
large grains. The voxel resolution was set to 4 µm, which does not significantly alter the morphology
of the grains. The final size of the processed microstructure is 496 × 700 × 496 µm. Since the
implementation of EBE PCG algorithm was optimized for linear tetrahedral elements we split each
voxel into six tetrahedral elements before solving IFPs. The preprocessed microstructure, shown in
Figure 4a, contained 9,294 grains and was discretized using 16.2 million linear tetrahedral elements
and 2.75 million nodes. The morphological characteristics (e.g. average grain size, orientation
distribution, etc.) of the microstructure are provided in Ref. [72].

A set of 28 grains named "challenge grains" that were experimentally characterized in particular
detail [56] is shown in Figure 4b. It is worth noting that challenge grains and their nearest neighbors
were not merged to any other grains in preprocessing to preserve their morphology for accurate
grain-scale results. The material was subjected to tensile loading (with occasional partial unloads)
and the response state was measured at six load states (denoted as S1–S6). For the load state S1,
the specimen was loaded to 100 MPa, for S2 it was further loaded to 200 MPa. S3 was achieved
by further loading to 300 MPa and then unloading by 50 MPa. Load states S4, S5, and S6 were
achieved by continuing to load the specimen to 0.35 %, 0.5 %, and 1 % strain levels, respectively,
and unloading by 50 MPa after the target strain level is reached.

The reference CPFE simulation was carried out by Yeratapally et al. [72] and was completed
in 44.5 hours on 640 Intel Xeon E5-2670 processing cores on the NASA Langley Research Center
(LaRC) K-cluster. Boundary conditions used for the CPFE study are given in Figure 4c where the
domain of the cuboid represents the challenge microstructure. Laplacian smoothing was used for
the CPFE microstructure to smooth the voxelized grain boundaries. The challenge microstructure
was then meshed with quadratic tetrahedral elements. Cubic elastic constants (C11, C12, and C44)
and the viscoplastic properties used in the present study were calibrated for Inconel 625 superalloy
in Ref. [72] and are given in Table 1. The pole figure (generated using MTEX [73]) depicted in
Figure 4d reveals scattered pattern and absence of texture in the microstructure.

In order to construct the ROM for the challenge problem, 9,294 IFPs (Eq. 12) were split into
twelve batches with around 773 IFPs in each batch. The batches were submitted to twelve separate
compute nodes for parallel evaluation (using Algorithm 1). The number of batches could be varied
and, in general, depends on the availability of computational resources. IFPs were solved to a
relative tolerance of 10−3 using 32 physical cores. Solution of each IFP consumed approximately
three minutes on an Intel Xeon Processor E5-2683 v4 processor on average.

For the ROM, a single reduced integration linear hexagonal element was used for the macroscale
finite element model. The macroscale boundary conditions were set the same as the reference CPFE
simulation and are shown in Figure 4c. Loading is applied along the Y axis, while axes X and Z are
transverse to the loading direction. The loading on the top surface along the Y axis was alternated
between traction boundary conditions and displacement boundary conditions corresponding to the

14



description of the load states from the experimental procedure. The target strain rate used in the
simulation was 10−2/s corresponding to the strain rate used for CPFE simulations. However, since
mixed traction/displacement boundary conditions were used to simulate the loading, the exact
strain rates slightly vary from the target strain rate. The macroscale simulation was performed
using the Abaqus/Standard1 finite element software package [74]. ROM evaluation (i.e. solving
Algorithm 2 for a given macroscopic strain increment) is performed by a user subroutine at the
single integration point of macroscopic finite element. In total, around 100 macroscale increments of
the ROM consumed less than 16 minutes on an Intel Xeon Gold 6130 CPU @ 2.10 GHz processor
employing only one core. It is worth mentioning that the interaction tensors from the sparse
formulation [55] were used to speed up the ROM simulations, whereas the localization tensor from
the full EHM formulation [32] were employed to prevent the introduction of additional errors in the
elastic region. Using localization tensors from the full EHM does not add to the computational cost
of the ROM simulation.

The preprocessed microstructure and mesh are not identical to those used for the reference
simulations since preprocessing was performed separately and by a different group. It is worthy of
note that the ROM results could have been compared to experimental data directly in the form of a
validation study. In that case, the experimental macroscale stress-strain curve would be used to
calibrate viscoplastic properties used in the ROM, similar to that performed for CPFE in Ref. [72].
Direct comparison of the ROM results with CPFE ensures that the same set of viscoplastic properties
(calibrated using CPFE) is used for both simulations. The rest of this section discusses a comparison
between ROM and CPFE results, scalability of the ROM construction framework, and performance
of the parallel implementation of ROM evaluation.

5.1 Comparison of CPFE and ROM predictions

5.1.1 Macroscopic stress-strain curves

The macroscopic stress-strain curves obtained from CPFE (orange line) and ROM simulations under
monotonic tensile loading conditions (black line) are shown in Figure 5a. The gray line shows the
response of the ROM including the unloading steps used to extract the microscale data at steps
S1 through S6. In the elastic region, a reasonable agreement is observed between the stress-strain
curves as shown in Figure 5b. The homogenized elastic moduli in the Y direction are given as
∼ 213 GPa and ∼ 198 GPa when employing ROM and CPFE, respectively. In the viscoplastic
region, the ROM exhibits higher stress levels compared to the CPFE simulation, consistent with
results available in the literature for reduced order models [21, 75]. In a verification study over a
smaller microstructure, Ref. [32] reports an error of approximately 10% at peak stress levels, whereas
in the present study the error is approximately 17%. This discrepancy could be partly attributed to
differences in the way the microstructure was preprocessed and meshed for the ROM and CPFE
simulations. Differences in preprocessing of the microstructure influences the grain morphologies and
crystal orientations and, by extension, the accuracy of localization and interaction tensors. Influence
of the relative tolerance used for the PCG algorithm in ROM construction showed negligible effects
on the ROM results. The larger discrepancies observed in the present study are also due to the use

1Specific vendor and manufacturer names are explicitly mentioned only to accurately describe the analytical tools
used. The use of vendor and manufacturer names does not imply an endorsement by the authors nor does it imply
that the specified equipment is the best available.
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Figure 4: (a) 28 challenge grains inside the microstructure, (b) challenge microstructure, (c)
macroscale boundary conditions and d) pole figure showing orientation distribution.
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of quadratic tetrahedral elements in CPFE simulations (linear tetrahedral elements were used in
Ref. [32]). Knezevic and coworkers [76] have demonstrated that overly stiff behavior for microscale
stresses is exhibited by linear tetrahedral elements in CPFE simulations which aligns better with
the stiffer response predicted by the ROM. Accuracy in the viscoplastic region could be improved
by increasing the number of parts in the reduced order model or using techniques for recomputing
localization and interaction tensors [75, 77] at the expense of additional computational cost.

5.1.2 Grain-averaged elastic strains

Grain-averaged elastic strain components extracted at load states S1–S6 for the 28 challenge grains
are shown in Figure 6. Results are compared to the CPFE elastic strains as scatter plots where
each point represents a single challenge grain. Each color represents a strain component and each
marker represents a load state. During load states S1–S3 the specimen is still in the elastic regime
with relatively small viscoplastic deformation. At S4–S6, the specimen has undergone relatively
significant viscoplastic strain. A point that lies along the solid black line represents ideal agreement
between the elastic component of the strain computed by the ROM and CPFE. The dashed lines
are two standard deviations away from the solid black line. Overall, there is a reasonable agreement
between the ROM and CPFE strains. For longitudinal grain-wise elastic strain (ϵyy), very good
agreement is observed for load states S1–S3 and a slight overestimation of the elastic strains by the
ROM is observed for load states S4–S6. Overestimation of elastic strains is related to the higher
stress levels predicted by the ROM in the viscoplastic region. For lateral grain-averaged elastic
strains (ϵxx and ϵzz), at load states S4–S6, the results are more spread out, indicating higher relative
errors in lateral strains compared with the longitudinal strains. The magnitude of absolute errors
are similar for all strain components. R2 values for each load state and strain component are plotted
in Figure 6b. R2 values were computed by taking the square of the correlation coefficient between
the ROM and reference CPFE data. R2 values for all strain components are greater than 0.8 for
elastic load states S1–S3. For load states S4–S6 with viscoplastic strains, R2 values for longitudinal
strains are also higher than 0.8. R2 values for lateral strains drop to around 0.6 for viscoplastic load
states S4–S6. It is worth noting that the R2 values for shear strain XZ (perpendicular to the tension
axis) are lower than those for all other strain components. One possible explanation for this is that
the XZ shear magnitudes are small (∼ 10−5) in CPFE simulation, while they are overestimated
(∼ 10−4) in ROM simulation, thus exacerbating the errors. Difference in the shear strain magnitudes
may originate from periodicity assumptions used in the solution of IFPs.

5.1.3 Grain-averaged microscale stress distributions

Histograms of grain-averaged microscale stress components for all grains are compared in Figure 7
at 1% macroscopic strain. For tensile stress components, stresses computed with CPFE are more
concentrated compared to the stresses from the ROM simulation. For lateral stresses (σxx and σzz),
both ROM and CPFE distributions are centered at zero stress. Individual grains can experience non-
zero transverse stresses due to anisotropy induced by orientation of crystals. The CPFE simulation
indicates a smaller deviation in the stress components from the mean compared with the ROM
results. However, the deviation is less pronounced for shear strains and better agreement is observed.
Consistent with the homogenized stresses, grain-averaged stresses from the ROM simulation show
stiffer response compared to the CPFE results.
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Figure 5: (a) Comparison of stress-strain graphs from CPFE and ROM simulations and (b) stress-
strain response in the elastic regime.

5.1.4 Grain-averaged Fatemie-Socie parameter

The ability of the ROM in predicting quantities of interest that are complex functions of stress and
strain measures is further assessed. Fatemi-Society (FS) parameter is a measure of stress, strain,
and internal state variables, that is used to indicate initiation of fatigue failure [78]. Accurate
characterization of such complex functions of response fields with the ROM offers the potential
for accelerated assessment of failure initiation [1, 54]. In this study, we employ the crystal-scale
version of the FS parameter [79] for verification purposes. We note that the current study does
not attempt to characterize fatigue behavior of the microstructure, but rather assess accuracy of
the ROM in capturing quantities of interest. The FS parameter for a slip plane p is given by the
following formula [80]

FSp =

∫ t

0

Nd∑
α=1

|γ̇α,p|(1 + k
⟨σp

n⟩
g0

)dt (26)

where Nd is the number of slip directions on a given slip plane p, k = 0.5 is a parameter dictating the
weight of tensile stress, and ⟨σp

n⟩ is tensile stress projected on slip plane p. Macaulay brackets ⟨·⟩ are
defined as ⟨σp

n⟩ = 0 if σp
n ≤ 0 and ⟨σp

n⟩ = σp
n if σp

n ≥ 0. FS parameter for each slip plane extracted
from the ROM and CPFE simulations is compared in Figure 8, where each color corresponds to
a slip plane for FCC crystals (111), (111), (111), and (111). For each slip plane there are 28 data
points representing grain-averaged FS parameter of the challenge grains at load state S6. The R2

values were calculated as 0.651, 0.830, 0.919, and 0.935 for slip planes (111), (111), (111), and (111),
respectively. As indicated by the R2 values, FS parameter from the ROM captures the general trend
of the FS parameter from the CPFE simulation. The discrepancies between the reference and ROM
simulations are attributed to higher stress estimates in viscoplasticity observed in Figure 5 for ROM,
since stresses directly affect the FS parameter as shown in Eq. 26.
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Figure 6: Grain-averaged elastic strain components are computed for the 28 challenge grains over
load states S1–S6 as shown in a). R2 values computed for each load state for each strain component
are provided in b).
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Figure 7: Histogram of grain-averaged stress components a) XX, b) YY, c) ZZ, d) YZ, e) XZ, and f)
XY for all grains at 1% macroscopic strain.
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Figure 8: Scatter plot comparing FS parameter for 28 challenge grains at load state S6 for slip
planes (111), (111), (111), and (111).

5.1.5 Grain-averaged von Mises stress-equivalent strain plots

The grain-averaged von Mises stress vs. grain-averaged equivalent strain plots for two challenge
grains (grain IDs 5876 and 21698) are shown in Figure 9. The two grains were selected from the
set of challenge grains as they exhibit the highest and lowest stresses according to the reference
CPFE simulations. Behavior of these two grains are therefore the upper and lower bounds of the
grain-scale microscale stress-strain responses of all challenge grains within the microstructure. The
elastic responses of the ROM and CPFE curves are in good agreement. The stress magnitudes in
viscoplasticity from the ROM are slightly higher than their CPFE counterparts. Overall, the ROM
is able to accurately pick out the extreme values of grain-averaged stresses and strains within the
microstructure.

5.2 Scalability of the ROM construction framework

In order to test the performance of the ROM construction, a set of numerical experiments was
performed using the challenge problem microstructure. The resolution of the mesh used in ROM
construction was varied from 2 µm to 5 µm with an increment of one, producing four meshes with
392.8, 116.6, 49.5 (used for the ROM simulation in previous section), and 25.4 million degrees of
freedom, respectively. Practically, the number of degrees of freedom is slightly lower since reported
numbers include degrees of freedom associated with the replica and vertex nodes. To obtain the
average computational cost of solving an IFP problem (see Algorithm 1), ten IFPs were solved
at any given resolution, and the simulation times were then averaged. Computational costs as a
function of problem size for relative tolerances of 10−1, 10−2, 10−3, and 10−4 are reported in Figure 10.
An Intel Xeon CPU E5-2683 v4 @ 2.10 GHz processor with 32 physical cores was used for the
simulations. Solving a system with 100 million degrees of freedom to 10−3 relative tolerance requires
approximately 10 minutes. The slopes of the four lines are given by 1.0127, 1.1644, 1.2163, and 1.2846
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Figure 9: Comparison of the history of microscale von Mises stress against equivalent strain for
challenge grains 5876 and 21698.

for relative tolerances (δ in Algorithm 1) of 10−1, 10−2, 10−3, and 10−4, respectively. It follows from
the slopes that relative tolerance has significant effect on the total simulation time and simulation
time increases with increasing relative tolerance. Near linear scaling is observed with respect to
number of degrees of freedom for tolerance of 10−1. However, deviation from linearity increases with
increasing relative tolerance as indicated by increasing slopes. Due to the independence of the phase
IFPs, the scaling of the code with respect to number of IFPs is linear.

5.3 Scalability of the proposed ROM evaluation algorithm

In order to test the scalability of the parallel implementation of the ROM evaluation algorithm, a
set of numerical experiments was performed using the coefficient tensors computed for the challenge
microstructure. The implementation of Algorithm 2 (together with Algorithms 3 and 4) was compiled
with the Intel ifort 2021.3.0 compiler using O3 flag on Intel Xeon CPU E5-2683 v4 @ 2.10 GHz
processor with 32 physical cores. To simulate a tensile test with constant strain rate, the following
macroscopic strain history was applied : ∆ϵxx = ∆tϵ̇, ∆ϵyy = −ν∆ϵxx, and ∆ϵzz = −ν∆ϵxx where
∆ϵ is the strain increment, ∆t is the time increment, ϵ̇ is the strain rate, ν is a parameter controlling
lateral strains. ν was set to 0.5 to represent volume-preserving tension. The time increment (∆t)
was set to 1 second and the strain rate of 10−4/s was used.

To test the parallel implementation of ROM evaluation algorithm, simulations were performed
for 100 and 1,000 increments with ϵxx reaching 1% strain and 10% strain, respectively. Varying
number of cores, time spent on the linear solver, total simulation time, and ratio of time spent
on the linear solver to total simulation time are shown in Table 2. For 100 increment simulations,
total simulation time decreases rapidly as the number of cores is increased, reaching 55 seconds for
16 cores and 45 seconds for 32 cores. The rightmost column presents the ratio of the linear solver
computations to total time. For 1,000 increment simulations, it takes almost a half an hour to run
the simulation in the serial setting. However, as the number of cores was increased to 32 the total
simulation time drops to 3 minutes. For both 100 and 1000 increment simulations, as the number of
cores increases from 1 to 32, the share of time spent on the linear solver is within 70%–80% and
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Figure 10: Cost of solving one IFP vs. number of degrees of freedom with varying relative tolerance
of the PCG solver.

only 20%–30% of the total time is spent on non-solver related computation.
In both 100 and 1,000 increment tests, the total time was reduced by almost ten times when the

number of physical cores reached 32. The total simulation time is plotted against number of cores in
Figure 11. Linear scaling with respect to the number of cores is observed up to 8 cores, after which
the performance flattens out slightly. The lack of linear scaling can be attributed to saturation of
memory bandwidth because of memory intensive numerical decomposition performed by the linear
solver. However, since the share of linear solver related computations remains consistently high
with varying the number of physical cores, further improvements to other subroutines will yield
diminishing returns. Therefore, scaling improvements would require either changes to the solver
strategy or reduction of total solver calls. One potential approach to minimize solver time would
be to use a fully-coupled Newton-Raphson scheme to solve for both stresses and strengths at the
same time [81]. This scheme could reduce the number of microscale iterations needed to converge
which would reduce number of linear solver calls. Alternatively, sparse iterative methods could be
experimented with to avoid the large cost of numerical decomposition of the Jacobian matrix.

6 Conclusion
In this manuscript, parallel implementation algorithms were presented for construction and evaluation
of ROMs developed, based on the EHM approach. The scalability of the implementations was
evaluated for both the construction and evaluation stages. For ROM construction, near linear scaling
has been achieved with respect to the number of degrees of freedom in the mesh and linear scaling
with respect to the number of phase IFPs follows from EHM formulation. Additionally, it was shown
that increasing the number of cores for ROM evaluation led to significant improvements in simulation
time, with nearly an order of magnitude improvement observed as the number of cores was increased
to 32. These algorithms open the possibility of efficiently evaluating the mechanical response of
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Table 2: Scaling results for 100 and 1,000 increment parallel ROM simulations.

# of in-
crements

# of
cores

Time spent on
linear solver (s) Total time (s) Ratio of linear

solve/total time

100

1 276.8 355.8 78%
2 154.1 202.0 76%
4 90.4 120.0 75%
8 56.5 76.8 74%
16 38.6 53.9 72%
32 32.8 45.5 72%

1000

1 1,110.1 1,493.3 74%
2 626.7 848.6 74%
4 386.3 515.5 75%
8 236.7 318.9 74%
16 171.4 228.5 75%
32 148.8 191.2 78%

large microstructural volumes or microstructural volumes that contain a large number of complex
subgrain features. The proposed implementations were verified against CPFE simulations using a
large microstructure previously investigated in an AFRL study. The comparison between the ROM
and CPFE simulations showed reasonable agreement in terms of macroscale stress-strain behavior
and microscale quantities of interest. However, it was observed that the ROM exhibited a stiffer
response compared to the reference CPFE simulations. The discrepancies could be attributed to
two main factors: the constrained kinematics due to the assumption of uniform fields (strain, stress,
and internal state variables) within the subdomains associated with reduced order parts (grains
in this particular study), and the possible locking phenomenon observed in the ROM due to the
effects of incompressibility in the viscoplastic flow regime. The occurrence of locking phenomenon is
well-known in CPFE simulations when first order finite elements are used, but this phenomenon has
not yet been investigated thoroughly in the context of reduced order modeling. Further improvements
will be investigated in the future to enhance the accuracy of the ROM in the viscoplastic regime.
Another potential direction for future research is to extend the ROM evaluation to a multiscale
solver by leveraging the hierarchical nature of multiscale methods. This multiscale approach could
involve coupling parallel domain decomposition methods for the macroscale solver with a parallel
ROM evaluation algorithm, enabling scalable multiscale simulations of complex systems beyond the
scope of academic benchmarks.
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