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Abstract

An inverse characterization approach to identify the in-situ elastic properties of composite constituent
materials is developed. The approach relies on displacement measurements available from image-based
measurement techniques such as digital image correlation and template matching. An optimization
problem is formulated, where the parameters of an assumed functional form describing spatially vari-
able material properties are obtained by minimizing the discrepancies between noisy displacement
measurements and the corresponding simulated values. The proposed formulation is analyzed from a
statistical inference theory standpoint. It is shown that the approach exhibits estimation consistency,
i.e. given noisy input data the identified material properties converge to the true material properties
as the number of available measurements increases. The performance of the proposed approach is
evaluated by a series of virtual characterizations that mimic physical characterization tests in which
fiber centroid displacements are obtained through fiber template matching. The virtual characteriza-
tions demonstrate that the effect of measurement noise in identifying the in-situ constituent properties
can be mitigated by selecting a sufficiently large measurement dataset. The numerical studies also
show that, given a rich measurement dataset, the proposed approach is able to describe increasingly
complex spatial variation of properties.

Keywords: Inverse characterization, In-situ property, Composite, Spatial variability, Noise effect, Statistical
consistency, Template matching.

1 Introduction1

Micromechanical analysis and multiscale modeling2

of composite materials have received substantial3

attention because of their potential to describe4

the fundamental mechanisms of mechanical and5

failure response [41, 44, 46], including the effect6

of material variability and associated uncertainty 7

across length scales [5, 6, 38], and inform mod- 8

els that aim to predict response and failure of 9

composite structures [32, 40]. The combined fun- 10

damental mechanistic understanding and predic- 11

tive modeling capability have the potential to 12
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help improve composite materials and designs.13

Microstructural analysis and multiscale modeling14

techniques for composites rely on the availabil-15

ity of (a) morphological information on material16

microstructure; and (b) properties of the con-17

stituent materials as they pertain to the mechani-18

cal regime of interest (i.e., elastic moduli, thermal19

conductivity, strength, toughness, etc.). The effect20

of microstructural morphology on the mechanical21

behavior of composites has been subject to previ-22

ous studies (e.g. [37]). In these studies, the effect of23

the microstructural morphology is typically inves-24

tigated using digital numerical models constructed25

based directly on micrographs of the material (dig-26

ital twins) or indirectly based on a statistical27

description of the microstructure. Careful char-28

acterization of the properties of the constituents29

and their spatial variation across the composite30

volume at the microscale, on the other hand, has31

received relatively less attention. The spatial vari-32

ability of the constituent properties can be due33

to chemical interactions between bonding agents34

and composite constituents [19, 25]; non-uniform35

cross-linking that results from variations in cur-36

ing temperature and polymerization [1, 34], and37

others.38

The properties of the constituents used in39

micromechanical or multiscale analysis are typi-40

cally identified by a combination of (1) inverse41

calibration informed by experiments at a larger42

scale [3, 4, 12, 13, 30, 31]; and (2) ex-situ exper-43

iments that isolate a specific property (e.g., fiber44

pullout for shear dominated interface failure [53]45

and fiber tensile testing [43]). In certain cases,46

molecular dynamics have also been employed to47

estimate constituent properties of some materi-48

als [18, 41]. A number of complicating factors49

hinder the characterization of the properties of50

the constituents. The composite constituents can51

exhibit significant differences in their in-situ and52

ex-situ properties [19, 21, 33], therefore relying53

purely on ex-situ experimentation to characterize54

all properties may lead to inaccurate predictions.55

The measured in-situ modulus of a composite resin56

has been shown to differ by as much as 30% when57

compared to the ex-situ (neat polymer) deter-58

mined value [19]. Such a difference would result59

in a proportional difference in stress and hence60

damage onset prediction. Besides, inverse calibra-61

tion with experiments at larger scale often results62

in non-unique material properties, contributing to63

prediction uncertainty. Furthermore, all experi- 64

ments exhibit a certain amount of measurement 65

noise that could lead to erroneous properties, the 66

magnitude of which is seldom quantified. 67

Characterization of the properties of the 68

constituents based on in-situ experiments at 69

the microscale offers an alternative approach. 70

Nanoidentation testing probes the substrate of 71

individual constituents within a small localized 72

region and has been employed to investigate the 73

in-situ properties of composite materials including 74

the Young’s modulus [19, 21], plasticity param- 75

eters [35], and viscoplasticity parameters [33]. 76

The spatial variation of resin Young’s modulus 77

has also been observed at fiber-resin interphase 78

regions (e.g. [24, 25] in polymer matrix com- 79

posite). Hardiman et al [21] observed that the 80

variation in Young’s modulus is related to the size 81

of resin pockets in a carbon fiber reinforced poly- 82

mer (CFRP). Measuring resin properties using 83

nanoindentation requires a strategy to account 84

for the effect of fiber constraints [21, 22]. The 85

presence of fibers and their possible contact with 86

the indenter tip can lead common indentation 87

calibration methods (e.g. continuous stiffness mea- 88

surement technique) to overestimate the resin 89

properties [20]. 90

Image-based measurement techniques, such as 91

digital image correlation (DIC) [9, 10, 28, 42], 92

digital volume correlation (DVC, i.e., 3D exten- 93

sion of DIC) [29], and fiber template match- 94

ing (FTM) [11] have been applied to measure 95

deformations and strains complementing and/or 96

replacing more traditional methods such as strain 97

gauges. Combining high-magnification microscopy 98

and high-resolution digital imaging, microscale 99

image-based methods have been used to measure 100

displacements and strain fields at the microscale in 101

composite materials with or without the presence 102

of failure [9, 10, 28, 42]. In [19, 21], signifi- 103

cant discrepancies were found when correlating 104

displacements measured at the microscale to sim- 105

ulations performed using ex-situ properties of the 106

bulk material. This result aligns with the findings 107

from the nanoindentation studies discussed previ- 108

ously, and with the notion that in-situ properties 109

may differ from their ex-situ counterparts. 110

The key novelty of this study is the proposal 111

and study of a statistically consistent framework 112
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to obtain in-situ, spatially variable, elastic prop-113

erties of composite materials using noisy image-114

based displacement measurements obtained at the115

microscale. While inverse estimation approaches116

have been previously explored and investigated117

to characterize the in-situ material properties118

for the applications, such as structural health119

monitoring (e.g. [47, 49]) and soft tissue elas-120

tography(e.g. [16, 51]), this study focuses on the121

inverse characterization of in-situ elastic prop-122

erties of composite constituent materials based123

on microscopic displacement measurements. The124

characterization follows an optimization proce-125

dure, in which the discrepancy between observed126

and simulated microscale displacements are min-127

imized to arrive at the properties of the con-128

stituents. As evidenced by nano-indentation tests,129

the resin properties can exhibit spatial variability130

that may be described by functional forms [21].131

In the present work, the parameters of these func-132

tional forms are cast as the parameters to be133

identified through the optimization procedure.134

A central aspect of this study is assessing the135

accuracy of the approach when using noisy input136

data, which can corrupt the parameter identifi-137

cation process [47]. Bayesian inference has been138

used in the literature to manage the effect of139

measurement noise on the parameter identifica-140

tion by quantifying uncertainty in the identified141

parameters. Uncertainty in the parameter iden-142

tification process can be quantified by obtaining143

a stable posterior distribution of the model pre-144

diction through a Markov sampling approach.145

Instead of Bayesian approach, as a first step and146

in order to avoid the computational cost of Monte147

Carlo-based sampling methods, the present study148

uses statistical inference theory [2, 23] to study149

and quantify the effect of measurement noise.150

Using statistical inference arguments [2, 23], the151

approach is shown to exhibit estimation consis-152

tency. Estimation consistency is defined as the153

convergence of the parameters identified by the154

approach to the true parameters with an increase155

in the number of measurements used. The effec-156

tiveness of the proposed characterization method157

is evaluated by a series of virtual characteriza-158

tions of the properties of the constituents of a159

microscopic continuous fiber-reinforced composite160

specimen. The input displacement measurements161

used in the virtual characterizations, referred to162

as synthetic experimental data, are extracted163

from the fiber centroids of numerical simulations, 164

performed with assumed constituent properties. 165

These synthetic input datasets aim to mimic the 166

datasets obtained using FTM. The effect of noise 167

is studied by adding different levels of random 168

noise to the noise free synthetic experimental 169

data and comparing the identified properties to 170

the properties assumed in the numerical simula- 171

tions. The virtual characterizations demonstrate 172

the effect of measurement noise on the fidelity of 173

identified properties. Conditions that reduce the 174

effect of noise on the accuracy of the identified 175

properties are studied. 176

The remainder of this manuscript is organized 177

as follows: in Section 2, the problem statement 178

and the elements of the inverse identification 179

approach are presented followed by a discussion 180

of the conditions required for the estimation con- 181

sistency of the approach. In Section 3, the results 182

of several virtual characterizations are reported, 183

documenting the accuracy of the proposed method 184

and assessing the effects of measurement noise 185

level and dataset size. A summary of the work 186

performed and key conclusions are provided in 187

Section 4. Appendix A discusses the conditions 188

of objective function minimization with noise. 189

Appendix B demonstrates the strict convexity of 190

the forward problem as a requisite of statisti- 191

cal consistency. Appendix C provides an analysis 192

of a one-dimensional composite specimen, which 193

is used to discuss the identifiability parameters 194

based on a set of discrete displacement measure- 195

ments. 196

2 Inverse characterization 197

methodology 198

2.1 Problem statement 199

Consider a long fiber-reinforced composite speci- 200

men at the mesoscale with the domain, Ω, param- 201

eterized by the position coordinate vector, y. The 202

specimen is subjected to loading, F (y), applied in 203

the transverse plane (i.e. y1 - y2 plane shown in 204

Fig. 1). The domain includes nf randomly posi- 205

tioned fibers. The elastic properties of the fibers 206

have been typically assumed to be unaffected by 207

curing in polymer matrix composites (PMCs), 208

e.g. [17]. Therefore, in the present study, the elas- 209

tic properties of each fiber are taken to be spatially 210

constant, and fiber-to-fiber property variability is 211
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assumed to be negligible. This study focuses on212

the characterization of the resin, since its proper-213

ties are known to vary spatially in-situ [11] and are214

a function of the curing conditions [17]. The elastic215

properties of the resin are taken to exhibit deter-216

ministic spatial variability dictated by the manu-217

facturing processes. Potential stochastic variabil-218

ity in the material properties is considered to be219

small relative to deterministic variability. Under220

the action of mechanical loading, the compos-221

ite specimen deforms elastically. A discrete set of222

displacement measurements are collected on the223

specimen surface, Γ, which is parallel to the trans-224

verse plane: umes = {umes
i }, with i = 1, 2 . . . n,225

where n denotes the total number of available dis-226

placement observations. Each displacement mea-227

surement, umes
i , could be the displacement vector228

(i.e., umes
i = {umes

y1i
, umes

y2i
}T ) at a discrete spatial229

position in the specimen or a generalized displace-230

ment (e.g., umes
i =

∫
Γ
νi(y)U

mes
i (y)dΓ, where νi is231

a weight function). Each measurement data point232

is considered to be noisy due to inaccuracies in233

the measurement system. We can further general-234

ize experimental data to be a set of observations235

from nexp experiments. All nexp experiments could236

be performed on the same specimen (e.g., load-237

unload-reload cycles with each load-up resulting238

in a different dataset due to a different load ampli-239

tude applied in each cycle or to measurement240

noise, see Section 2.2); each experiment per-241

formed on a different specimen; or a combination242

thereof. Based on the aforementioned problem243

description, we seek to estimate the spatially vari-244

able elastic properties of the material constituents245

based on the displacement information.246

Figure 1 schematically depicts the estima-247

tion approach, where material property estimation248

is posed as an optimization problem. In order249

to operate in a finite dimensional setting, the250

spatially varying elastic properties are expressed251

using a function g(y;θ), y ∈ Ω, where θ ∈ Θ is252

a vector of parameters. The “true” set of material253

properties that we seek to identify is denoted as254

θ̂ ∈ Θ. The displacement measurements, umes, are255

the input to the optimization procedure. Numer-256

ical simulation of the mechanical response of257

the specimen constitutes the “forward problem”.258

The optimization procedure iteratively adjusts the259

constitutive parameter vector, θ, until the dis-260

crepancy between the computationally obtained261

displacement measures, usim = {usim
i } with i = 262

1, 2 . . . n, and the experimental observations is 263

minimized. The prediction error, Ln (also referred 264

to as the objective function, cost or risk function), 265

adopts the form of normalized mean square error 266

(NMSE): 267

Ln (θ) =

∑n
i=1 ∥umes

i − usim
i (θ) ∥2∑n

i=1 ∥umes
i ∥2

(1)

where ∥ · ∥ stands for the l2-norm and usim
i 268

is obtained from the forward problem, which 269

minimizes the potential energy Πp with model 270

parameters, θ, and load, F, as the inputs: 271

Usim = arg min
Ûsim

Πp

(
Ûsim;θ,F

)
(2)

where Ûsim represents any kinematically admis- 272

sible displacement field. The simulated displace- 273

ment field, Usim, is then sampled to obtain usim
274

for discrete values that correspond to measured 275

data. The model estimate, θ̂n, is obtained from 276

Eq. 1 as: 277

θ̂n = argmin
θ

Ln (θ) (3)

In Section 2.2, the conditions in which one 278

can guarantee that there is a unique model esti- 279

mate that satisfies Eq. 3 and converges to the 280

true model parameters are discussed. Particular 281

attention is given to the effect of measurement 282

noise. 283

2.2 Optimization with noisy data 284

The accuracy of the solution to the optimization 285

problem (Eq. 3) depends on the following factors: 286

(1) the measurement noise level, indicated by the 287

standard deviation; (2) the amount of experimen- 288

tal observations, n; and (3) the inference of the 289

material model, such as assumption of the func- 290

tional form describing the spatial variability of the 291

properties, g(y;θ). In what follows, we focus on 292

the effect of measurement noise and assume that 293

the model error is insignificant compared with 294

the measurement noise. In the statistical infer- 295

ence theory [23], the proposed objective function 296

leads to estimates of unknown parameters, θ̂n, 297

that asymptotically converge to the true values, θ̂, 298

with an increasing amount of measurement data. 299

Following the nomenclature proposed in [2], the 300
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Fig. 1: Schematic illustration of characterization for in-situ microscopic epoxy resin properties using
optimization approach.

risk consistency of the model estimate is defined301

as the convergence of objective function with θ̂n302

to the minimum value in probability:303

L (θ̂n)
p−→ min {L (θ)|θ ∈ Θ} (4)

with L indicating the objective function304

described by the expectation, E, of the continuous305

displacement field:306

L (θ) =
E
[
∥U(y) + ζ(y)−Usim(y; θ̂)∥2

]
E [∥U(y) + ζ(y)∥2]

(5)

where U(y) denotes the true displacement field307

and ζ is a Gaussian random field associated308

with the measurement noise. U(y) is not directly309

accessible since any attempt of measurement will310

include a measure of noise captured by ζ. Since311

the model error is assumed to be negligible, the312

simulation predicts the true displacement field313

when the true set of parameter values are used:314

Usim(y; θ̂) = U(y). Risk consistency indicates315

that the prediction error made based on the316

discrete displacement measurements leads asymp-317

totically (i.e., n → ∞) to the smallest prediction318

error in the continuum sense, since L is the risk319

function associated with the continuous displace- 320

ment fields. 321

In discrete form, the set of displacement mea- 322

surements umes consists of the true displacement 323

values, u, sampled from U, and the measurement 324

noise term, ϵ, that are realizations of ζ taken at 325

the measurement points: 326

umes = u+ ϵ (6)

where ϵ is the vector of independent and identi- 327

cally distributed random variables associated with 328

each displacement measurement (i.e., the mea- 329

surement noise is taken to be spatially uncorre- 330

lated). Each error component is assumed to follow 331

a certain probability distribution with zero mean 332

(E(ϵy1
) = E(ϵy2

) = 0) and the variance of E(ϵy1
) = 333

E(ϵy2
) = σ2

ϵ . We note that no spatial correlation 334

and zero-mean (i.e., lack of bias) assumptions may 335

not necessarily hold for all measurement types, 336

and are used in the exemplar cases discussed in 337

this manuscript. Some prior studies considered no 338

spatial correlation when the imaging system gains 339

the RAW data without any preprocessing [50, 52]. 340

Furthermore, characterization of the true distri- 341

bution of noise could be difficult to determine and 342

5



likely dependent on the material imaged and the343

type of the imaging system used.344

In the objective function formulation (Eq. 1),345

the random noise term can be condensed out by346

substituting Eq. 6:347

Ln(θ) =

1

n

[
n∑

i=1

∥ηi(θ)∥2 + 2ϵi · ηi(θ) + ∥ϵi∥2
]

1

n

[
n∑

i=1

∥ui∥2 + 2ϵi · ui + ∥ϵi∥2
]

=
∥ηn(θ)∥2 + 2ϵn · ηn(θ) + ∥ϵn∥2

∥un∥2 + 2ϵn · un + ∥ϵn∥2
(7)

where the numerator and denominator were mul-348

tiplied by 1/n, the overbar notation indicates349

sample averaging, and ηi(θ) = ui − usim
i (θ).350

∥ηn (θ) ∥2 is the deterministic prediction error351

between the true and simulated displacement352

values. In Appendix A, it is shown that min-353

imizing Ln does not necessarily minimize the354

deterministic prediction error due to the effect of355

measurement noise except at the asymptotic limit.356

Leveraging the law of large numbers (n → ∞)357

enables the summation of the noise terms ϵi in358

Eq. 7 to approach their expectation and the square359

of them to their variance:360

1

n

n∑
i=1

ϵi · ηi (θ) → E(ϵi) · ηn (θ) = 0 (8)

1

n

n∑
i=1

∥ϵi∥2 → E
(
∥ϵi∥2

)
= E(ϵ2y1

) + E(ϵ2y2
) = 2σ2

ϵ

(9)

1

n

n∑
i=1

ϵi · ui → E(ϵi) · un = 0 (10)

noting that the noise term is independent of the361

true displacements ui and the prediction error ηi.362

Substituting Eqs. 8-10 into Eq. 7 and letting363

n → ∞, the objective function asymptotically364

converges to:365

Ln → L∞ :=
∥ηn (θ) ∥2 + 2σ2

ϵ

∥un∥2 + 2σ2
ϵ

(11)

The value of L∞ when evaluated with the true 366

parameter set is: 367

L∞(θ = θ̂) =
2σ2

ϵ

E (∥ui∥2) + 2σ2
ϵ

(12)

since usim(θ̂) = u, which is the global mini- 368

mum (∥ηn (θ) ∥2 ≥ 0). The true parameter set 369

is also the minimizer of L (θ), hence satisfying 370

risk consistency (i.e., Eq. 4). This result shows the 371

minimization process in Eq. 3 converges to the 372

true parameter dataset as the set of measurements 373

tends to infinity if no model error is assumed. 374

Following the nomenclature proposed in [2], 375

the estimation consistency of the model estimate 376

is defined as: 377

θ̂n
p−→ θ̂ (13)

Estimation consistency ensures that the optimiza- 378

tion process results in the true parameter set when 379

the objective function is minimized. The prior dis- 380

cussion on risk consistency showed that the true 381

parameter set is a minimizer of Ln. Estimation 382

consistency states that the true parameter set 383

is the only global optimizer at the asymptotic 384

limit. This can be satisfied if C(1): the forward 385

problem results in a unique set of displacements, 386

usim
i (θ), for a given set of parameters, θ, and 387

C(2) each set of displacements can only be gener- 388

ated by a unique set of parameters (identifiability 389

condition). C(1) requires strict convexity of the 390

potential energy, Πp, with respect to usim for 391

each θ. The convexity of Πp in terms of full-field 392

displacement in linear elasticity is standard, for 393

instance when usim represents all nodal displace- 394

ment values of a finite element model [39]. The 395

convexity of Πp when usim is a subset of the nodal 396

displacement vector that corresponds to measure- 397

ment points is demonstrated in Appendix B. In 398

Appendix C, C(2) is studied for a one-dimensional 399

composite specimen under known applied strain in 400

which the spatial variation of the Young’s modulus 401

of the resin, Em (y;θ), is characterized using the 402

fiber centroid displacements as input. This study 403

shows that a regular arrangement of fibers fails the 404

identifiability condition regardless of the form of 405

the spatial variation of the Young’s modulus of the 406

resin. In contrast, a random arrangement of fibers 407

typically provides sufficient information to satisfy 408

the identifiability condition. A general extension 409

to a two-dimensional (2D) case is not straight- 410

forward, but it is reasonable to suppose that the 411

6



identifiability condition is satisfied by considering412

sufficiently large datasets on specimens with ran-413

domly distributed fibers. This result suggests that414

the formulation proposed shows estimation con-415

sistency, Eq. 13. Therefore, provided a sufficiently416

large dataset is obtained, the true parameters can417

be identified despite the presence of random noise.418

The results obtained from several virtual char-419

acterizations reported in Section 3 support this420

supposition.421

2.3 Optimization Algorithms422

In the numerical studies performed in this section,423

two methods are employed to determine the424

parameters, θ̂n, that minimize Eq. 1: (1) the enu-425

meration algorithm, and (2) sequential quadratic426

programming (SQP).427

In the enumeration algorithm, the parame-428

ter space is sampled and the objective func-429

tion is computed at every sampling point. This430

approach is often computationally prohibitive for431

cases when the number of parameters exceed two432

or three due to the exponential increase in the433

number of required sample points for a fixed dis-434

cretization of each parameter. In the present work,435

the enumeration algorithm is employed to map the436

objective function and study its characteristics.437

To reduce the computational time the parameter438

space was discretized using a uniform grid that439

was finer near the optimum and coarser elsewhere.440

Additionally, the evaluations of the objective func-441

tion at each grid-point were performed in parallel.442

Gradient-based and evolutionary algorithms443

are well suited to solve optimization problems444

with several unknowns. In the present work, SQP445

is employed due to its suitability to solve con-446

strained optimization problems [7], defined as447

bounds on the parameter space. All the parame-448

ters are normalized such that their value is within449

the range of [0, 1]. The Scipy Python package (ver-450

sion 1.91) [48] and method ‘SLSQP’ is employed451

as the SQP implementation [26]. The Jacobian452

matrix is evaluated using finite differences with a453

step size of 10−4. In order to improve the like-454

lihood of determining the global minimum, the455

multi-start method is employed, where optimiza-456

tions are started with randomly selected initial457

conditions using stratified sampling of the param-458

eter space [27]. The termination tolerance of the459

optimization is also set to 10−4. The value for tol- 460

erance and finite difference step size were found to 461

be a good compromise between accuracy and com- 462

putational cost. The optimal solution is considered 463

to be given by the parameters yielding the smallest 464

objective function among all the optimizations. 465

3 Virtual characterization 466

In this section, the proposed approach is applied 467

to a series of numerically-generated experimental 468

data, henceforth designated synthetic experimen- 469

tal data, which is used in lieu of experimental 470

data. Hence, each application of the approach is 471

viewed as a virtual characterization. Since the 472

true material properties used to generate the syn- 473

thetic data are known, virtual characterizations 474

are extremely valuable to understand and doc- 475

ument the accuracy of the proposed approach. 476

Using the enumeration algorithm, the following 477

aspects of the inverse characterization approach 478

proposed are investigated: (1) the identifiability 479

condition and when it is fulfilled, (2) the effect of 480

noise amplitude on the optimization results, and 481

(3) the effect of the number of measurement points 482

and microstructure via varying the fiber volume 483

fraction. 484

3.1 Problem setup 485

In Fig. 2, the loading and boundary conditions 486

used in the numerical simulations performed to 487

generate the synthetic experimental data and eval- 488

uate the forward problem in the optimization 489

algorithm are illustrated. 2D numerical models 490

are subjected to 1% strain-controlled compres- 491

sive loading under plane strain conditions. The 492

random arrangement of fibers is created by a 493

random sequential adsorption process [45]. The 494

synthetic experimental data is generated by per- 495

forming finite element simulations using assumed 496

material properties and extracting displacements 497

at the fiber centroids, mimicking the results from 498

the FTM technique. As proposed in [11, 14], the 499

FTM algorithm detects the 2D coordinates of fiber 500

centroids in images captured within the trans- 501

verse plane and measures the displacements of 502

the fiber centroids by comparing the coordinates 503

of the fiber centroids taken from images before 504

and during loading. All finite element simulations 505

were performed using the open-source package 506
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(a) (b)

y2

y1

L

L
Applied displacement

Fig. 2: Schematic illustration of the numerical specimen in the characterization examples. (a) Geometry,
loading and boundary conditions. (b) Mesh discretization.

Table 1: Material properties of the composite constituents

Elastic properties of epoxy resin

Eint [GPa] α [µm−1] Ēm [GPa] νm

7.5426 0.23465 5.06 0.34

Elastic properties of fiber

E1 [GPa] E2 [GPa] G12 [GPa] G13 [GPa] ν31

276 19.5 7.169 70 0.24

Calculix [15]. A sample discretization of the com-507

posite specimen, where linear tetrahedral elements508

are used to discretize the domain is shown in509

Fig. 2b.510

The mechanical properties of the composite511

constituents are chosen to be similar to a typi-512

cal graphite reinforced thermoset epoxy compos-513

ite [4]. The fibers are modeled as transversely514

isotropic. All fibers are assumed to have the same,515

constant, Young’s modulus. The Young’s modulus516

of the isotropic resin is taken to be spatially vari-517

able. The resin Young’s modulus associated with a518

spatial point, Em(y), is assumed to be an exponen-519

tial function of the distance, l, from the material520

point, y, to the nearest fiber-resin interface:521

Em (y) =
(
Eint − Ēm

)
exp (−αl) + Ēm (14)

where Eint stands for the resin Young’s modulus 522

at the fiber-resin interface, α is a parameter that 523

controls the variation of Young’s modulus distri- 524

bution, Ēm represents the Young’s modulus at a 525

large distance from the fiber-resin interface (i.e. 526

Em = Ēm, with l → ∞) and its value can be 527

considered to equal the Young’s modulus of the 528

neat resin. The aforementioned spatial variation 529

is assumed based on the experiments gathered in 530

[21], wherein in-situ measurements of the resin 531

Young’s modulus suggested an exponential rela- 532

tionship between the Young’s modulus and the 533

size of the resin pocket. Other forms for the spa- 534

tial variation, requiring additional parameters, are 535

discussed in Section 3.6. The experimental mea- 536

surements for Eint, Ēm and α obtained in Ref. [21] 537

are employed for generating synthetic measure- 538

ment data and listed in Table 1 along with the 539
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Fig. 3: Average fiber centroid displacement magnitude vs. mesh size density.

Poisson ratio, νm, and the Young’s modulus of the540

fibers. The results of the finite element simulation541

assuming the properties in Table 1 are used as the542

synthetic experimental data.543

The synthetic experimental data is subse-544

quently post-processed to extract the displace-545

ments at the nodes positioned at fiber centroids.546

The mesh density used in the finite element sim-547

ulations is checked to minimize the finite element548

model error. As shown in Fig. 3, the discrepancy549

of average fiber centroid displacement compared550

between the coarsest and finest mesh is only551

0.2%. A mesh size density of 0.6 elements/µm2 is552

employed throughout this work.553

In the present work, the displacement mea-554

surements are polluted with randomly generated555

Gaussian noise, which can be traced back to the556

image resolution used in the FTM approach [11].557

To obtain an estimate for the expected relation-558

ship between noise amplitude and image resolu-559

tion, as well as the expected noise amplitude, FTM560

was applied to track the fiber centroid displace-561

ments using images of a deformed and reference562

numerical model obtained with three levels of563

image resolution: 1 pixel/µm, 10.7 pixels/µm and564

32.5 pixels/µm. As shown in Fig. 4, the stan-565

dard deviations of the absolute error for each566

displacement component range from 0.0025 µm567

to 0.2 µm. The standard deviations of uy1
and568

uy2
are approximately the same for both 32.5569

pixels/µm and 10.75 pixels/µm. In the following570

virtual characterizations, the standard deviation571

of the assumed Gaussian noise is considered to 572

range from 0 µm to 0.1 µm and is assumed to be 573

the same for both uy1
and uy2

, as suggested by 574

the results obtained for 32.5 pixels/µm and 10.75 575

pixels/µm, to satisfy the assumption of standard 576

deviation that: E(ϵy1
) = E(ϵy2

) = σ2
ϵ . 577

3.2 Identifiability assessment 578

In this section, the identifiability condition using 579

2D numerical specimens is studied for two 580

unknown parameters (i.e. θ = {Eint, α}). Identifi- 581

ability is checked by directly plotting the objective 582

function landscape probed using the enumeration 583

algorithm. The spacing for the grids is set at 584

∆Eint = 0.2 MPa and ∆α = 0.02, while the finer 585

grid spacing near the optimum is established with 586

∆Eint = 0.02 MPa and ∆α = 0.005. Three spec- 587

imens were created with different fiber arrange- 588

ments as shown in Fig. 5, where the domain size 589

is L = 100µm and the fiber radius is 5µm. The 590

specimens include a regular grid of fibers (Fig. 5a), 591

a regular grid with a resin rich region (Fig. 5b), 592

and a specimen with random fiber arrangement 593

(Fig. 5c). The corresponding fiber volume frac- 594

tions for these arrangements are 50.27%, 43.98%, 595

and 53.41%, respectively. No measurement noise 596

is added to fiber centroid displacements. The 597

contours of the objective function (denoted by per- 598

centage value) generated at the grid points in the 599

parameter space are shown in Figs. 5d–f. The con- 600

tour is displayed in the parameter space scaled by 601

9
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the relative error:602

ϵrelθ =

∣∣∣∣∣ θ̂ − θtrue
θtrue

∣∣∣∣∣ (15)

The zero point (denoted by a red circle) in603

the contour plot represents the true value of these604

parameters. As shown in Fig. 5d, the specimen605

with uniform resin pocket size (Fig. 5a) has mul-606

tiple minima since the contour lines near the607

true value are not closed. The objective func-608

tion along a line segment that passes through the609

true parameter set is plotted below the contour610

plot. As can be observed in Fig. 5d, the objec-611

tive function is zero for multiple parameter sets,612

including, but not limited to, the parameter set613

corresponding to the true values of the parame-614

ters. Therefore, in this case, the parameters are615

not uniquely identifiable and, hence, the optimiza-616

tion problem is not strictly convex. The objective617

function landscapes for the microstructure with618

two or more distinct resin pocket sizes (see Fig. 5b619

and 5c) have closed contour lines near the true620

value. The objective function along the line seg-621

ment that passes to the true parameter set is622

zero only when the parameter set equals the true623

value of the parameters. The identifiability con-624

dition is therefore satisfied, indicating convexity625

of the optimization problem. These results sug-626

gest that the identifiability condition is affected by627

the fiber arrangement when using fiber centroid628

displacements to infer spatially distributed resin629

properties. The relationship between fiber and630

resin geometric arrangement and the identifiabil- 631

ity condition is further studied in the Appendix C 632

via a 1-dimensional (1D) problem. The 2D results 633

reported, as well as the insight obtained through 634

the 1D study in Appendix C, indicate that, pro- 635

vided the number of different resin pocket sizes 636

is larger than the number of material parameters 637

that need to be determined, the identifiability con- 638

dition is met. Hence, given the random nature 639

of typical fiber arrangements, a complex spatial 640

variation of material properties (with complex- 641

ity judged by number of parameters) can be 642

assumed without compromising the identifiability 643

condition. 644

3.3 Effect of noise 645

A specimen of size L = 200µm with a ran- 646

dom arrangement of fibers (radius of 5µm) is 647

employed. The fiber volume fraction is set to 55% 648

and there are 280 fibers in total within the spec- 649

imen. Each displacement component in the fiber 650

centroid displacement measurements is assumed 651

to be corrupted with independent Gaussian noise 652

with zero mean and standard deviation desig- 653

nated by σϵ. To study the variability of the virtual 654

characterization results in the presence of noise, 655

the virtual characterization is repeated 100 times 656

using different synthetic experimental data each 657

time. Each synthetic dataset is created by adding 658

different noise realizations, but with the same 659

standard deviation, to a noise free dataset. The 660

effect of the noise amplitude is studied by adjust- 661

ing the value of the standard deviation which takes 662
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Fig. 5: The specimen with (a) a regular grid of fibers, (b) a grid of a resin rich region, and (c) random fiber

arrangement. (d), (e), and (f) are the objective function landscapes corresponding to (a), (b), and (c), respectively.
In the first row the objective function value as a function of the two parameters, Eint and α is illustrated. In the

second row the value of objective function along the red lines denoted in the first-row contours is displayed.

values from σϵ = 0 µm to σϵ = 0.1 µm in incre-663

ments of 0.01 µm. The enumeration algorithm is664

employed for the optimization. In this exercise,665

the virtual characterization aims to determine666

the Young’s modulus, Eint, and spatial variance667

parameter, α, in Eq. 14, and assumes all other668

material properties are known. The grid spacing is669

configured to match that of Section 3.2, and it is670

also utilized for the enumeration algorithm exam-671

ples in the subsequent sections. In Fig. 6a, the672

statistics of the error of displacement prediction673

relative to the true displacement field (Ltrue :=674 ∑n
i=1 ∥ui−usim

i ∥2/
∑n

i=1 ∥ui∥2) are reported as a675

function of the noise amplitude. The mean value676

(denoted by a circle) and the standard devia-677

tion (denoted by a whisker) of true prediction678

error are amplified when the amplitude of the679

noise increases. The mean values and the standard680

deviations of the relative errors in {Eint, α} are681

shown in Figs. 6b and c. The errors in identify-682

ing Eint and α reach 18.8% ± 12% and 143.8% ±683

100%, respectively, at the highest noise amplitude684

considered. The overall error in the identifica- 685

tion of resin Young’s modulus is measured by 686

the maximum relative error within the modulus 687

distribution (named maximum Young’s modulus 688

error herein), expressed by ϵrelmax = max
y

|(Êm(y)− 689

Em(y))|/Em(y), where Em(y) is the true distri- 690

bution. As shown in Fig. 6d, the Young’s modulus 691

error reaches a maximum of 28% ± 13.7% at the 692

highest noise amplitude, despite a significantly 693

higher error in α being registered at the same noise 694

amplitude. 695

3.4 Alleviating the effects of 696

measurement noise 697

The corrupting effect of noise can be alleviated 698

by increasing the number of sampling points 699

for measurement as discussed in Section 2.2. In 700

the context of using fiber centroids for mea- 701

surements, enlarging the specimen size, hence 702

increasing the number of fibers, nf , or performing 703

nexp experiments can increase the sampling points 704

for the measurement, n, given by n = nexpnf . 705
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Fig. 6: The mean value (circle) and standard deviation (whisker) of (a) displacement prediction error, (b) Eint,
(c) α, (d) maximum relative error in Young’s modulus within the distribution, for the characterizations using a

200µm specimen with different noise levels represented by the standard deviation σϵ.

Those points are named “measurement points”706

for brevity. In the following virtual characteriza-707

tions, three specimens with fiber volume fraction708

of 55% and length (i.e. L in Fig. 2) of 200 µm,709

500 µm, and 1 mm are employed. The total num-710

ber of fibers are 280, 1,750, and 7,000 for L = 200711

microns, 500 microns, and 1 mm, respectively.712

In order to increase the number of measurement713

points, the same specimens were unloaded and714

reloaded elastically 1, 2, 5, 10, 20 times. The vir-715

tual characterizations are repeated for 100 times716

for each specimen loaded nexp times. The measure-717

ment error is introduced independently for each718

virtual characterization with standard deviation719

of σe = 0.1 µm.720

The mean values and ranges of displacement721

prediction error obtained by the enumeration algo-722

rithm are shown in Figs. 7a through 7c for each723

specimen as the number of measurement points,724

n, increases. The prediction error reveals less vari- 725

ance with increasing n and the error introduced 726

by the measurement noise is reduced. 727

In Fig. 8, the mean value and standard devia- 728

tion of the relative error of Eint, α, and the max- 729

imum relative error in Young’s modulus whithin 730

the distribution are depicted as a function of the 731

measurement points. The results for each speci- 732

men size are discriminated by different colors and 733

markers. For a fixed-sized specimen, a monotoni- 734

cally decreasing trend of bias and variance in the 735

identified parameters with increase in the num- 736

ber of measurement points can be observed. The 737

number of measurements points is increased by 738

performing more experiments on the same spec- 739

imen. The maximum error in Young’s modulus 740

reduces from 28% ± 13.7% (200 µm specimen 741

loaded a single time) to 1.48% ± 1.13% (1 mm 742

specimen loaded 10 times), and 1.12%± 0.82% (1 743

mm specimen loaded 20 times). 744
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(c) maximum Young’s modulus within the distribution, for the characterizations of 200 µm, 500 µm, and 1 mm
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In Fig. 9a, the characterized Young’s modu-745

lus variation for 100 inverse characterizations are746

plotted as a function of the distance from the near-747

est fiber, l, based on the measurements of a 1 mm748

specimen loaded 20 times (denoted by gray lines)749

and compared to the true value (denoted by black750

lines). Among 100 inverse characterizations, most751

characterization results deviate from the reference752

distribution at l = 0 µm (i.e., at the interface)753

and beyond 1 µm. The errors are at their lowest754

around l = 1 µm. The contours of the relative755

error in Young’s modulus are illustrated in Fig. 9b,756

which confirms the trend that the higher discrep-757

ancies occur at the fiber/resin interface (yellow758

region indicated by positve error) and the cen-759

ter of the resin pocket (blue region indicated by760

negative error). This trend is attributed to the761

observation that (a) the actual resin Young’s mod- 762

ulus distribution in a specimen is bounded by the 763

proximity of the fibers; and (b) the upper bound 764

of the resin Young’s modulus in the finite element 765

computation is dictated by the distance between 766

the fiber-resin interface and the closest integration 767

points in the resin. Regarding the latter, refining 768

the mesh near the interfaces would allow more 769

measurement points for interface Young’s modu- 770

lus (Eint) and hence its identification. Regarding 771

the former, the histogram of distances between 772

each integration point in the resin and the near- 773

est fiber in the mesh is shown in Fig. 9a. Most 774

of the integration points in the resin phase have 775

the nearest fiber distance ranging from 0µm < 776

l < 5µm, the range where the error in Young’s 777

modulus variation reaches minimum. The results 778

in Fig. 9a suggest that the magnitude of the error 779
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in the estimated modulus (for each point at a780

distance l from the nearest fiber) is affected by781

the range of distances between fibers within the782

microstructure.783

3.5 Effect of fiber volume fraction784

on characterization error785

The fiber volume fraction affects property identi-786

fication in two ways. For a fixed-sized specimen, a787

reduction in fiber volume fraction implies a reduc-788

tion in the number of measurement points (assum-789

ing data collection is restricted to fiber centroid790

displacements) and hence adversely affects the791

identification process. However, a relatively low792

fiber volume also implies a larger fiber-to-fiber dis-793

tance in the specimen and hence a more uniform794

sampling of resin modulus variation. We consider795

fiber volume fractions 15%, 30%, 42%, and 55%796

in 500 µm specimens. Each specimen is subjected797

to 1, 2, 5, 10, and 20 load-unload cycles. Virtual798

characterizations are repeated 100 times using799

noisy synthetic experimental data, generated as800

described in Section 3.3, with an assumed noise801

amplitude of σe = 0.1µm. In Fig. 10, the mean802

value and standard deviation of the characteriza-803

tion error for each volume fraction is reported as804

a function of number of measurement points. The805

reducing trend in the error associated with Eint is806

apparent. Decreasing volume fraction also lowers807

the estimation error of the spatial variation term,808

α. This is because the specimen with lower vol-809

ume fraction has larger sizes of resin pockets amid810

the fibers resulting in a more even sampling of the811

spatial variation of the resin modulus. Hence, the812

specimen with the lower volume fraction exhibits a813

higher sensitivity of displacement response to the814

changes in the spatial variation term α and there-815

fore the effect of the noise diminishes, despite the816

smaller number of measurement points. The char-817

acterization error in the examples with a relative818

higher volume fraction of 55% is less susceptible to819

the impact of reducing the size of the resin pocket.820

In this scenario, the increased number of measure-821

ment points (i.e. number of embedded fibers) plays822

a more significant role, resulting in a slightly lower823

characterization error compared to the 42% cases.824

3.6 Increasing the parameter set size 825

In this section, larger sets of parameters describing 826

a more complex spatial variation of resin prop- 827

erties are identified using the SQP optimization 828

approach described in Section 2.3. A specimen of 829

size L = 500µm and 42% fiber volume fraction 830

(55 fibers) is employed. The specimen is subjected 831

to 20 load-unload cycles. The synthetic datasets 832

used are assumed to be polluted by random noise 833

with σe = 0.01µm, corresponding to the image 834

resolution of 10.7 pixels per micron in Fig. 4. 835

The resin modulus is taken to vary at two 836

scales. The variation at the lower scale is assumed 837

to be adequately represented by the exponential 838

form of Eq. 14. To capture the variation at a 839

coarser scale, a harmonic form is added to Eq. 14 840

yielding: 841

Em (y) =
(
Eint − Ēm

)
exp (−αl) + Ēm

+A sin

(
2πy1
λy1

)
sin

(
2πy2
λy2

)
(16)

in which λy1 and λy2 are the wave lengths of har- 842

monic variations along the y1 and y2 directions 843

and A is the amplitude of harmonic variation. The 844

harmonic form chosen is not physically motivated 845

and can be revisited as needed. 846

In the following virtual characterizations, the 847

number of unknown model parameters, θ, is pro- 848

gressively increased. The true values, θ̂, are listed 849

in Table 2 for reference. The Poisson’s ratio of 850

the resin is assumed to be unknown for all the 851

examples. In cases 2–4, the remote resin modulus, 852

Ēm, is also considered as an unknown parameter 853

in addition to Eint and α. The harmonic vari- 854

ation of Young’s modulus in Eq. 16 is included 855

in cases 3 and 4. Case 3 assumes that the wave- 856

length of the variation is identical in two spatial 857

directions (λy1 = λy2 = 200µm). In case 4, the 858

harmonic wavelengths are assumed to be different: 859

λy1 = 200µm, λy2 = 300µm. 860

The characterization results and error values 861

are displayed in Table 2. The error in the Pois- 862

son’s ratio is almost negligible in all cases. This 863

is because the Poisson’s ratio is only related to 864

the ratio of normal strains at two directions, and 865

the overall vertical strain is relatively fixed since 866
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Fig. 9: (a) The estimated resin Young’s modulus variation (gray lines) vs. true distribution (black line), and
the histogram of integration points number in the resin phase for various distances from the nearest fiber l, (b)
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100µm× 100µm region for one of the estimation, based on the measurement 1 mm specimen loaded 20 times.
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Fig. 10: The mean value (marker) and standard deviation (whisker) of the relative error of (a) Eint, (b) α, and
(c) maximum Young’s modulus within the distribution, for characterizations of a 500 µm specimen with 15%,

30%, 42%, and 55% fiber volume fraction loaded 1, 2, 5, 10, and 20 times with the highest noise level of
σϵ = 0.1µm.

the specimen is under constant displacement-867

controlled compressive loading. For modulus char-868

acterization, case 2 results indicate that the cur-869

rent characterization approach identifies the neat870

resin properties with good accuracy in addition871

to the interface modulus and the spatial variation872

parameter. In cases 3 and 4, the characterization873

is performed for 6 and 7 parameters, respec-874

tively. The characterizations for large-wavelength875

harmonic variation are accurate for both the876

amplitude, A, and the wavelengths (λy1, λy2),877

while the accuracy for fine-scale exponential vari-878

ation is lower compared to the cases 1 and 2.879

The lower accuracy is attributed to the increased 880

difficulty in finding the global minimum in a rel- 881

atively high dimensional space using a gradient 882

based optimization approach, for modulus prop- 883

erties varying at two spatial scales. Approaches to 884

improve accuracy in this case may include increas- 885

ing the number of optimization starting points, 886

at the expense of additional computation time, 887

investigating strategies to increase the accuracy in 888

the Jacobian matrix calculation and revisiting the 889

selection of tolerance for termination of the opti- 890

mization. As shown in Fig. 11, the larger relative 891
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Table 2: Reference parameters of epoxy resin properties and the SQP characterization results

Eint [GPa] α Ēm [GPa] A [GPa] λy1 [µm] λy2 [µm] νm

Case 1

θ̂ 7.5426 -0.23465 / / / / 0.34

SQP 7.49 -0.217 / / / / 0.3399

Error -0.68% -7% / / / / < 0.1%

Case 2

θ̂ 7.5426 -0.23465 5.06 / / / 0.34

SQP 7.49 -0.22 5.04 / / / 0.3399

Error -0.7% -5% -0.32% / / / < 0.1%

Case 3

θ̂ 7.5426 -0.23465 5.06 2 200 / 0.34

SQP 7.88 -0.392 5.65 2.03 200 / 0.339

Error 4.48% -69% 11% 1.67% < 0.1% / < 0.1%

Case 4

θ̂ 7.5426 -0.23465 5.06 2 200 300 0.34

SQP 8.228 -0.6 5.86 2.02 200 300 0.339

Error 9% -155% 15.8% 1.09% < 0.1% < 0.1% < 0.1%
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Fig. 11: The contours of the relative error of the resin modulus over the central 100µm× 100µm region within
the 500 µm specimen, as well as refined contours for one of the fibers and its surrounding, obtained for the

harmonic variation characterization of (a) θ = {Eint, α, Ēm, νm, A, λy1}, (b) θ = {Eint, α, Ēm, νm, A, λy1, λy2}

.

errors of resin modulus are at the fiber-resin inter-892

face and larger resin pockets. The largest value is893

very similar to the error of interface modulus Eint.894

The larger error in α is attributed to the dominat-895

ing effect of the large-scale harmonic variation of896

modulus over the exponential fine-scale variation897

which results in displacement measurements that898

are less sensitive to α.899

4 Conclusion 900

This manuscript developed an inverse charac- 901

terization approach for identifying spatially het- 902

erogeneous in-situ elastic properties of compos- 903

ite materials based on microscopic image-based 904

experimental measurements. Particular attention 905

is given to the effect of random noise polluting 906

the input data. To ensure the inverse charac- 907

terization problem was formulated such that the 908

correct solution can be obtained despite the pres- 909

ence of measurement noise, concepts of statistical 910
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inference theory were used to analyze the objec-911

tive function and the forward problem and guide912

their formulation. This analysis suggests that the913

true material properties can be identified pro-914

vided a sufficient number of measurement points915

are obtained (i.e., the inverse problem is esti-916

mation consistent). The estimation consistency917

of the approach is further examined and docu-918

mented through several virtual characterizations.919

The virtual characterizations use numerically gen-920

erated data, named synthetic data, in lieu of921

experimental data. The synthetic data consists of922

noisy fiber centroid displacements (measurement923

points), mimicking the measurements obtained924

with fiber template matching extracted from sim-925

ulations performed with known (true) material926

properties. In the virtual characterizations, the927

synthetic data is used to determine the parameters928

of assumed functional forms defining the spatial929

variation of the properties of the material, which930

can be compared to the true material properties.931

The results show that the effect of measurement932

noise is progressively reduced by increasing the933

number of measurement points, which can be934

achieved by increasing the specimen size (and935

hence the number of fibers tracked) or by perform-936

ing multiple experiments on a single specimen, or937

multiple specimens, as long as they exhibit a sim-938

ilar spatial variation in properties. Furthermore,939

characterization accuracy could also be improved940

by specimen design, where the specimen domain941

is tailored to include factors (e.g., resin pockets,942

functional gradients of fiber volume fraction, etc.)943

that provide sufficient sampling to identify the944

parameters for describing the spatial variation of945

the properties, such as resin modulus. We note946

that such an approach could be restricted by man-947

ufacturing constraints. Using SQP, a larger set948

of parameters, representing variability at different949

scales, was identified suggesting that the proposed950

inverse modeling framework can be further gener-951

alized if required. The accuracy of the identified952

parameters in such cases are naturally influenced953

by the efficacy of the optimization tool and the954

size and richness of the dataset used.955

Future work may include the study of the956

model error (or bias) which can be caused by957

numerical error or the image noise with non-958

zero mean value. These are considered outside959

the scope of this initial study. In this context,960

a Bayesian approach to the problem may be961

worth pursuing as it could enable one to quantify 962

uncertainty in the parameter evaluation while con- 963

sidering the effect of both measurement noise and 964

model error. Given the relatively large number of 965

model evaluations typically required in a Bayesian 966

framework, such an approach may also require the 967

use (and development) of a micro-scale surrogate 968

model. 969
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Appendix A The conditions 976

of objective 977

function 978

minimization 979

with noise 980

Assume that the objective function Ln in Eq. 7 981

under noise is minimized at θ̂ = {θ̂1, θ̂2 . . . θ̂m} and 982

it is satisfied when ∂L /∂θ = 0. Using the chain 983

rule, the following equation can be derived by 984

incorporating the noise term in the measurements 985

(see Eq. 6): 986

∂usim

∂θ

∣∣∣∣
θ̂

·
(
usim − u− ϵ

)
= 0 (A1)

Consider the following three conditions: 987

1. ∂usim/∂θ

∣∣∣∣
θ̂

= 0. According to mean 988

value theorem [36], there exists different param- 989

eter vectors θa = {θa1, θa2 . . . θam} and θb = 990

{θb1, θb2 . . . θbm} satisfying θ̂1 ∈ (θa1, θb1), θ̂2 ∈ 991

(θa2, θb2). . .θ̂m ∈ (θam, θbm), such that: 992

∥usim(θa)−usim(θb)∥ ≤
∥∥∥∥∂usim

∂θ

∣∣∣∣
θ̂

∥∥∥∥ ∥θa − θb∥ = 0

(A2)
Then we can obtain usim(θ1) = usim(θ2) 993

since ∥ · ∥ ≥ 0. In this case, the identifiabil- 994

ity condition (i.e. usim(θ1) = usim(θ2) only if 995

θ1 = θ2) is not satisfied. The detailed discussion 996

about the identifiability condition is provided in 997

Appendix C. 998
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2. usim − u − ϵ = usim − umes = 0. Typically,999

this condition is not satisfied, because usim follows1000

the equilibrium equation, whereas, umes does not1001

satisfy equilibrium due to the presence of noise1002

term.1003

3. ∂usim/∂θ ̸= 0, usim−u−ϵ ̸= 0. If we assume1004

that the objective function is minimized at the1005

true displacement u (i.e., u = usim), there is:1006

∂usim

∂θ

∣∣∣∣
θ

· ϵ = 0 (A3)

Equation A3 is not necessarily satisfied as ϵ1007

is a random variable. In this case, the true dis-1008

placements do not minimize the objective function1009

with noise, therefore the parameter vector θ̂ iden-1010

tified by the optimization does not contain the1011

true parameters.1012

Appendix B Strict convexity1013

of the forward1014

problem: subset1015

of1016

displacements1017

vs. full1018

displacement1019

field1020

Using the finite element method, the potential1021

energy in terms of a nodal displacement vector1022

U, the stifness matrix K and force vector F is1023

expressed as [39]:1024

Πp =
1

2
UTKU−UTF (B4)

Consider that usim consists of a subset of the1025

nodal displacements and they do not overlapped1026

with the boundaries with enforced displacements.1027

Aggregating the displacement at the measurement1028

points, Eq. B4 can be rewritten as:1029

Πp =
1

2

[
(usim)

T , (ur)
T
] [Kss Ksr

Krs Krr

] [
usim

ur

]
−
[
(Fs)

T , (Fr)
T
] [usim

ur

] (B5)

where, ur collects the nodal displacements at loca-1030

tions other than the measurement points, Kss,1031

Ksr, Krs and Krr are stiffness submatrices, Fs and 1032

Fr are force subvectors after reordering. 1033

Let U∗ = [u∗
sim,u

∗
r ]

T denote a nodal displace- 1034

ment vector. The principle of minimum energy 1035

∂Πp/∂U|U=U∗ = 0 results in: 1036

Kssu
∗
sim +Ksru

∗
r = Fs (B6)

Krsu
∗
sim +Krru

∗
r = Fr (B7)

Consider another state of nodal displacements 1037

U∗∗ = [u∗∗
sim,u

∗
r ]

T , in which the nodal dis- 1038

placements at the measurement points u∗∗
sim are 1039

different from u∗
sim. The strict convexity of poten- 1040

tial energy with respect to the subset of nodal 1041

displacement usim leads to the following inequal- 1042

ity [8]: 1043

Πp (U
∗∗)−Πp (U

∗)− ∂Πp

∂usim
∆usim > 0 (B8)

where ∆usim = u∗∗
sim − u∗

sim. Substituting Eqs. B5 1044

and B6 in Eq. B8 results in: 1045

[∆usim]
T [Kss][∆usim] > 0 (B9)

Therefore, strict convexity is satisfied only if [Kss] 1046

is positive definite. It is well-known that the 1047

stiffness matrix [K] is already positive definite 1048

according to the energy minimization principal. 1049

For arbitrary non-zero vector x ∈ RN\ {0}, there 1050

is xTKx > 0. [Kss] can be proved to be positive 1051

definite by assuming another arbitrary non-zero 1052

vector v ∈ Rn\ {0} and x∗ = [v;0], which holds: 1053

x∗TKx∗ =
[
vT ,0T

] [Kss Ksr

Krs Krr

] [
v
0

]
= [vT ][Kss][v] > 0

(B10)

Appendix C Discussion of 1054

identifiability 1055

condition in 1D 1056

composite 1057

specimen 1058

Consider a composite bar of length L (See Fig. C1) 1059

under the displacement loading U . There are n 1060

“fibers” with length r and Young’s modulus of Ef . 1061

The “matrix” Young’s modulus Em is assumed to 1062

vary spatially with the distance (l) from the near- 1063

est fiber interface. The measured fiber centroid 1064
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displacements u(i), i = 1, 2, . . . n are considered1065

to be the inputs of the optimization problem1066

that aims to characterize the parameter θ, which1067

defines the spatial variation of the resin modulus.1068

It is straightforward to obtain an anlytical expres-1069

sion for the fiber centroid displacements u(i), i =1070

1, 2 . . . n:1071

u(i) =

[∑i−1
j=0 C̄mj

ljEf + (2i− 1)r
]
U∑n+1

j=0 C̄mj
ljEf + 2nr

(C11)

where C̄mi
stands for the average compliance of1072

the resin part between i − 1th and ith fiber, C̄m0
1073

for the resin part between left specimen boundary1074

and the leftmost fiber, C̄mn+1
for the resin part1075

between right boundary and rightmost fiber. In1076

terms of resin length, li, the average compliance is1077

expressed as:1078

C̄mi =


1

li

∫ li

0

dx

Em (l;θ)
; i = 0, n

2

li

∫ li/2

0

dx

Em (l;θ)
; i = 1, 2 . . . n− 1

(C12)
Let us assume that the same displacement1079

measurements (û(i), i = 1, 2 . . . n) can be obtained1080

with a different set of constitutive parameters, θ̂:1081

û(i) =

[∑i−1
j=0

ˆ̄Cmj ljEf + (2i− 1)r
]
U∑n+1

j=0
ˆ̄Cmj

ljEf + 2nr
(C13)

in which the average compliance matrices obtained1082

using the constitutive parameters θ̂ are denoted1083

by ˆ̄Cmi
. Equating Eq. C13 to Eq. C11, there is:1084

C̄m1l1 − 2C̄m0l0 = ˆ̄Cm1l1 − 2 ˆ̄Cm0l0 (C14)

C̄m(i+1)li+1 − C̄mili =
ˆ̄Cm(i+1)li+1 − 2 ˆ̄Cmili

(C15)

According to the Cauchy mean value theorem,1085

there exist ξ0 ∈ [min{l0, l1/2}, max{l0, l1/2}],1086

ξ1 ∈ [min{l1/2, l2/2},max{l1/2, l2/2}], . . . ξn−1 ∈1087

[min{ln−1 /2, ln/2},max{ln−1/2, ln/2}] which1088

transforms Eq. C14, C15 into:1089

Em (ξi;θ) = Em

(
ξi; θ̂

)
(C16)

The identifiability condition is not held if 1090

Eq. C16 is satisfied (with θ̂ ̸= θ) within the 1091

interval of ξ0 ∈ [min{l0, l1/2},max{l0, l1/2}], 1092

ξi ∈ [min{li/2, li+1 /2},max{li/2, li+1/2}], i = 1093

1, 2 . . . n− 1. If li = li+1, i = 1, 2 . . . n− 1, Eq. C16 1094

is unconditionally satisfied, indicating that the 1095

identifiability condition is not held for the speci- 1096

men with uniform resin length (indicated in left 1097

figure in Fig. C1b). If li ̸= li+1, i = 1, 2 . . . n − 1098

1, there exist diverse sizes of resin parts and 1099

the satisfaction of Eq. C16 depends on the exis- 1100

tence of intersection points between Em (y;θ) and 1101

Em

(
ξi; θ̂

)
. Assume that the number of the resin 1102

parts with unique lengths within the specimen is 1103

q and the maximum number of intersection points 1104

between Em (ξi;θ) and Em

(
ξi; θ̂

)
is p. If p ≥ q−1, 1105

Eq. C16 is then satisfied at all the intervals and the 1106

identifiability condition is not held (shown in mid- 1107

dle figure in Fig. C1b). If p < q−1, Eq. C16 cannot 1108

be satisfied at some intervals (e.g., [l1/2, l2/2] in 1109

the right figure of Fig. C1b) and the identifiability 1110

condition is satisfied. 1111
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