
 

1 

 

Three-Dimensional Prediction of Lack-of-Fusion Porosity Volume Fraction and Morphology for 
Powder Bed Fusion Additively Manufactured Ti-6Al-4V 

Vamsi Subravetia,†, Brodan Richterb,†, Saikumar R. Yeratapallyc, Caglar Oskaya,* 

a Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, USA  
b National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, USA 

c Science and Technology Corporation, Hampton, VA, USA 
 

†Both authors contributed equally to this work 
*Corresponding author. Email: caglar.oskay@vanderbilt.edu 

 

Abstract 

Powder bed fusion (PBF) is an additive manufacturing technique that has experienced widespread growth 

in recent years due to various process advantages. However, defects such as porosity and the effects that 

porosity have on the mechanical performance remain a concern for parts manufactured using PBF. This 

work develops a three-dimensional framework to simulate lack-of-fusion (LoF) porosity during powder 

bed fusion using the voxel-based lack-of-fusion (VB-LoF) model. The framework is calibrated and 

validated against previously reported LoF porosity measurements and maximum equivalent pore diameter. 

The framework is used to study the influence of laser power, velocity, hatch spacing, and layer thickness 

on porosity volume fraction and morphology. Power and velocity have a linear relationship to porosity, and 

power has a stronger effect than velocity on changing porosity. This stronger effect of power vs. velocity 

contributes to high variability when relating energy density to porosity, and a modified energy density 

metric that weighs power heavier is shown to reduce variability. In contrast to power and velocity, hatch 

spacing, and layer thickness have a more complicated relationship with porosity, especially at their extrema. 

The influence of hatch spacing and layer thickness on pore equivalent diameter and sphericity is also 

explored, and four distinct morphological regimes are characterized. A LoF criteria proposed in a previous 

work is also confirmed. Overall, the framework offers a methodology to simulate porosity quantity and 

morphology and interfaces with other process-structure-property prediction techniques to support the 

design and development of reduced-defect powder bed fusion parts.  
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1. Introduction 

 Structurally relevant process-induced defects at the microscale, particularly those that affect mechanical 

properties, are a critical challenge facing powder bed fusion (PBF) additive manufacturing (AM) [1–3]. 

Defects frequently serve as life limiting features since they have a strong influence on the fatigue 

performance and other mechanical properties by forming localized stress concentrations within the 

microstructure of the bulk material [4, 5]. Preventing defects is therefore critical for producing high quality 

parts and enabling AM usage for load bearing components. As such, it is valuable to have methods to 

predict the occurrence of defects. Accurate prediction tools allow for accounting for the effects of defects 

on part performance or for modifying the design and processing conditions to mitigate defect occurrence. 

 The type of defect and the frequency of their occurrence during PBF depend on the specific processing 

conditions. Due to the rapid cooling rates and high temperature gradients present in PBF, inclusions, oxides, 

deleterious phases, and other microstructural inhomogeneities can be formed [2, 3]. Porosity-based defects 

(gas porosity, keyhole porosity, and lack-of-fusion porosity) constitute another class of PBF defects that 

has been widely characterized using X-ray computed-tomography (CT) or cross-section micrographs of 

samples [6, 7]. Absorbed gas porosity can form during solidification when the molten material has a higher 

solubility limit to the atmospheric gas than the solidified material [3, 8]. Residual gas porosity can be 

created when the powder feedstock used for the PBF build contains porosity from the original 

manufacturing of the powder [3, 8]. Keyhole porosity is a concern when sufficiently high powers, small 

beam diameters, and/or slow scanning velocities are used in the processing. In this process regime, the 

energy density of the laser is high enough to cause the formation of a keyhole cavity that can subsequently 

collapse and leave behind a pore [3, 8]. While these three types of porosity affect mechanical performance, 

they are generally highly spherical due to surface tension within the melt pool, which reduces potential 
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microstructural stress concentrations. Lack-of-fusion (LoF) porosity forms due to incomplete melting and 

consolidation onto previous layers or neighboring lines [3, 8]. This type of porosity occurs due to processing 

with either too low of power, too high of scanning velocity, too high of hatch spacing between lines, or too 

large of layer thickness for the material system being printed. Based on high resolution X-ray CT studies 

[9–11], it is evident that LoF pores have highly irregular geometry and are characterized by high aspect 

ratios and sharp corners. These morphological attributes of LoF pores act in concert to increase stress 

concentrations [12, 13], reduce the ductility of the material [13, 14], and increase the propensity of initiating 

fatigue cracks [14–17].  

Due to the impact that LoF pores have on performance, it is critical to have capabilities to predict the 

morphology, location, and clustering of pores. For instance, various studies have demonstrated the initiation 

of fatigue cracks in the vicinity of pores located near free surfaces [18–20]. Clusters of pores can effectively 

reduce the fatigue strength of an AM part [21, 22]. Additionally, the shapes of process-induced pores can 

have a tremendous influence on the performance of an AM part. LoF pores, which have highly irregular 

geometries with sharp features and high aspect ratios, promote strain localizations and act as drivers for 

fatigue crack initiation [14, 15]. Various computational studies [17, 23, 24] have compared the strain fields 

in the vicinity of spherical and idealized LoF pores and demonstrated the influence of pore shape on the 

accumulation of strain in the vicinity of the pore. Using two independent crystal plasticity finite element 

(CPFE) simulations, Yeratapally et al. [24] compared the strain accumulation near an idealized LoF pore 

(modeled as a super-ellipsoid with sharp features) and a keyhole pore (idealized as a sphere) which occupied 

the same volume within the microstructure domain. It was shown that the strain near the LoF pore was 

significantly higher than near the keyhole pore. Cao et al. [17] demonstrated that LoF pores significantly 

degrade fatigue performance at high peak stresses when compared to gas/keyhole pores. Given the 

deleterious effects that LoF pores have on mechanical performance, it is critical to understand how to avoid 

LoF porosity for the usage of AM parts. 

One of the most astute observations and measurable relationships for avoiding LoF pores was defined 
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by Tang et al. [25], who noted that the occurrence of LoF porosity can be predicted accurately knowing the 

melt pool geometry and processing parameters alone. Tang’s LoF criterion states that the onset of LoF 

porosity is defined by [25]: 

 !
𝐿
𝐷$

!
+ !

𝐻
𝑊$

!
≤ 1 (1) 

where 𝐿 is the layer thickness, 𝐷 is the melt pool depth, 𝐻 is the hatch spacing, and 𝑊 is the melt pool 

width. From this relationship and a constitutive equation tying processing parameters to melt pool 

geometry, the onset of LoF porosity can be predicted. Tang’s LoF criterion was defined through 

observations from a two-dimensional (2D) geometric model utilizing dual half-elliptical cross-sections 

projected onto a 2D plane to estimate porosity. Tang characterized the influence of processing parameters 

on the quantity of porosity and validated the model through comparisons to experimental measurements. 

Several other studies have also studied the prediction of LoF porosity. Mukherjee and DebRoy implemented 

a numerical heat transfer and fluid flow model and proposed a non-dimensional LoF number that was 

linearly related to porosity volume fraction [26]. Promoppatum et al. proposed a geometric model for LoF 

porosity and compared to those reported in prior work [27]. Mojumder et al. utilized an active learning 

framework, a neural network-based symbolic regression tool, and thermo-fluid model to predict LoF 

porosity and proposed a normalized energy density-based expression for porosity prediction [28].  

Incorporating predictions of porosity within a comprehensive integrated computational materials 

engineering (ICME) framework offers even greater value than the ability to predict porosity alone [29]. A 

wide range of simulation capabilities for PBF are in active development. For example, a variety of 

techniques have been developed for simulating AM microstructure evolution [30–36]. Understanding the 

microstructure developed during AM is important since the process frequently generates anisotropic, highly 

columnar grain structures and parts with a strong crystallographic texture [37–39]. The columnar grain 

structure and texture impact the final performance of AM components and causes anisotropic mechanical 
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properties [40–42]. In addition, computational microstructure evolution models can integrate with grain-

level performance modeling techniques (such as the CPFE [43–46]) and enable process-structure-property 

(PSP) prediction frameworks for tying initial AM processing to final part performance. Incorporating 

porosity into these frameworks is also critical due to the impact that pores have on performance.  

The present work simulates LoF pores which arise in AM processed Ti-6Al-4V using an easy-to-

deploy, low computational cost method termed the voxel-based lack-of-fusion (VB-LoF) model. The VB-

LoF model is built upon an open-source Potts kinetic Monte Carlo (kMC) framework that allows for AM 

microstructure evolution modeling and is well positioned to support PSP predictions [47–50]. This work 

extends the previous work by Tang et al. from 2D to three-dimensional (3D) simulations and validates their 

findings and their criterion for porosity onset [25]. Another contribution of the present work is in the study 

of porosity morphology alongside volume fraction. The influence of laser power, scanning velocity, hatch 

spacing, and layer thickness on the resulting porosity volume fraction is studied. The relationship between 

energy density and porosity is presented, and a modification is proposed. The morphology of the simulated 

LoF pores vs. processing conditions are also analyzed and compared to experimentally reported 

measurements. This porosity prediction enables the creation of higher-fidelity process structure maps in 

order to understand the AM parameter space and optimal parameter conditions for fully dense and near-

fully dense parts. 

2. Model Implementation and Validation 

The present work introduces the VB-LoF modeling approach for simulating the LoF porosity during 

PBF AM. The model was implemented in an open-source Monte Carlo simulation framework. This section 

discusses the implementation of the VB-LoF model as well as the calibration and validation of the model 

using previously reported experimental data. 
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2.1. Model Implementation  

2.1.1. Lack-of-Fusion Prediction Methodology 

 The VB-LoF model was implemented in the open-source Stochastic PARallel Particle Kinetic 

Simulator (SPPARKS) Monte Carlo framework developed by Sandia National Laboratories [47, 48]. The 

SPPARKS framework facilitates the development of new Monte Carlo applications, and includes a wide 

range of existing applications such as the AM module [49, 50]. In the AM module, the melt pool geometry, 

the scan pattern, and other variables can be readily controlled to allow for the modeling of the process. The 

focus of the current research is centered around calibration and in-depth examination of LoF porosity 

predictions within the SPPARKS framework. We note that SPPARKS is utilized to track the geometrical 

overlap of melt tracks for porosity prediction only. In the future, SPPARKS capabilities could be used to 

predict microstructure and porosity together as further discussed in Section 4. 

The VB-LoF approach tracks the geometrical overlap of the melt tracks on a voxelated, 3D cubic lattice 

to identify lattice sites that have not been melted. Each lattice site, 𝑖, has a marker 𝑞" 	to distinguish between 

the unmelted (𝑞" = 1) and melted (𝑞" ≠ 1) state. When the computational domain is initialized, the markers 

for all lattice sites are set to 1 to indicate that the initial state of the material is unmelted powder. During 

the simulation, the melt pool scans across the domain based on the input scan path. If a site is ever within 

the melt pool, the marker of the site permanently switches away from 1 to indicate that it has been melted. 

This allows for the identification of lattice sites that were not melted over the course of the simulation. The 

simplicity of this approach, in conjunction with the open-source AM module in SPPARKS, allows for the 

simulation of a range of PBF processing scenarios.  

The simulations were performed with a domain size of 100×100×100 voxels. Edge effects were 

determined to be negligible on porosity volume fraction when comparing a 200×200×200 voxels sized 

samples with their smaller counterparts. The defect morphology validation study used a larger 

200×200×200 domain size with the same voxel resolution due to the need to measure porosity size in 
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addition to the porosity volume fraction. The spatial resolution of the simulations was set to 3 μm per lattice 

site to simulate large domains with a relatively low computational cost due to the quantity of simulations 

being performed. The samples were run on 64-processor compute nodes (Intel, Xeon Gold 6130 CPU). 

Each sample took on the order of minutes to run, depending on scanning velocity. In addition to being 

straightforward to implement, the VB-LoF model is advantageous in its low computational cost that allows 

a wide design space to be surveyed. For the present work, over 1400 3D simulations were run. 

After the simulation, unmelted sites were filtered from the rest of the simulation domain to extract pore 

morphology data. The relationship between porosity and the microstructure was not characterized in this 

current work since calibrating and validating microstructure prediction represents a substantial effort and 

is on-going. The porosity was extracted, segmented, and analyzed using DREAM.3D [51]. From the 

segmented pores, the maximum defect diameter, equivalent diameter, and sphericity were calculated. The 

maximum defect diameter was defined as the longest axis length of the pore. The equivalent diameter was 

defined as the diameter of a sphere with the same volume as the pore. The sphericity (𝛹) was calculated 

with the volume of the pore (𝑉#) and surface area of the pore (𝐴#) using [52]: 

 𝛹 =
𝜋$/&46𝑉#6

!/&

𝐴#
 (2) 

A sphericity of 1 reflects a perfect sphere and is the maximum sphericity value a pore can take, while 

a sphericity of 0 is the lowest possible sphericity value and represents a sample with either an infinitely 

large surface area or infinitesimally small volume.  

2.1.2. Melt Pool Geometry and Size  

The prediction of LoF porosity is strongly dependent on the melt pool geometry. The melt pool 

geometry in the AM module was modified to resemble experimentally imaged Ti-6Al-4V melt pools, as 
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shown in Figure 1. The experimental image was taken using visible bright field optical microscopy (Leica, 

DMi8 C1).  

 
Figure 1. Examples of an (a) experimentally imaged melt pool compared to a (b) laser scan track with 

augmented melt pool in SPPARKS. The experimentally imaged melt pool had a laser power of 100W and 
scan velocity 500 mm/s. 

 

Dilip et al. imaged cross-sections of melt pools and heat affected zones produced by various laser power 

and velocity combinations for bare-plate Ti-6Al-4V [53]. When the melt pool is in the conduction mode 

(i.e., low power and/or high scanning velocity), the melt pool cross section is bi-elliptical (Figure 1(a)) [53]. 

Capturing the melt pool geometry accurately contributes to the reliability of LoF volume fraction and 

morphology predictions. Tang et al. demonstrated that the ratio of the cap height to the total melt pool depth 

had a negligible role in the total simulated porosity [25]; however, the shape of the cap will influence the 

morphology of the LoF pores. To address the potential impact of cap shape on the defect morphology, the 

melt pool constructor in the AM module was augmented with the melt pool cap geometry. The addition of 

the melt pool cap to the melt pool depth captures the bi-elliptical nature of the melt pool when compared to 

experimental images (Figure 1(a)). Conduction mode melt pool cross sections from Dilip et al. [53] were 

analyzed using image analysis software (ImageJ, [54]) to estimate the melt pool cap height. Based on these 

measurements, the melt pool cap was set to 15% of the melt pool depth. 

 
1 Specific vendor and manufacturer names are explicitly mentioned only to accurately describe the test hardware. The 
use of vendor and manufacturer names does not imply an endorsement by the U.S. Government nor does it imply that 
the specified equipment is the best available 
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 The melt pool geometry was predicted from an augmented version of the Rosenthal equation that was 

calibrated using pre-existing data in the literature for melt pool width and depth as a function of processing 

parameters. The Rosenthal equation, which is the solution to a point heat source in a semi-infinite medium, 

has been used to approximate melt pool geometry in a large number of AM and welding publications (e.g., 

[27, 55, 56]). Tang et al. [25] presented an approximation to the Rosenthal equation to allow for calculation 

of the width (𝑊) of the melt pool:  

 𝐴𝑃 ≈ 𝜋𝑘(𝑇' − 𝑇()𝑊 + 𝑒𝜋𝜌𝑐(𝑇' − 𝑇()𝑉𝑊!/8 (3) 

where 𝑇( is the initial temperature of the substrate,	𝑇'	is the melting temperature of the material, 𝐴 is the 

absorption coefficient of the surface to the laser light, 𝑃 is the laser power, 𝑉 is the laser scanning velocity, 

𝑘 is the thermal conductivity of the material, 𝜌 is the density, 𝑐 is the specific heat, 𝑒 is Euler’s number, 

and 𝑊 is the width of the melt pool. This approximation was used in this work to estimate the melt pool 

width vs. processing conditions. The thermophysical values used in this work for modeling the melt pool 

width and depth are given in Table 1.  

Table 1. Thermophysical values used in the simulations for AM Ti-6Al-4V specimens [25].  

Property Symbol Value Units 
Thermal 

conductivity 𝑘 6.7 (W/m-K) 

Density 𝜌 4430 (kg/m&) 
Heat 

capacity 𝑐 526 (J/kg-K) 

Melting 
temperature 𝑇' 1913 (K) 

Ambient 
temperature 𝑇( 303 (J/kg-K) 

 Energy density metrics are also frequently used in the context of AM to condense the processing 

parameters into a single metric. The most frequently used energy density metric in the context of AM is the 

volumetric energy density (𝑉𝐸𝐷), which is defined as [1, 57]: 
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 𝑉𝐸𝐷	 =
𝑃
𝑉𝐻𝐿

 (4) 

where 𝐻 and 𝐿 are the hatch spacing, and layer thickness, respectively. The melt pool geometry is 

hemispherical at lower 𝑉𝐸𝐷 values and transitions into a non-hemispherical, keyhole-like shape at higher 

𝑉𝐸𝐷 values; these two modes are commonly referred to as the conduction mode and the keyhole mode, 

respectively [58]. To better estimate the non-hemispherical melt pool geometry outside of the conduction 

mode and near the keyhole mode transition, the calculated depth was augmented with experimental data. 

To account for the under-prediction of melt pool depth at higher energy densities, we consider the melt pool 

aspect ratio, 𝑎, (melt pool depth/melt pool width) to be a function of 𝑉 and 𝑃. A quadratic polynomial 

surface (Eq. 5) for the melt pool aspect ratio with fit constants (Table 2) was fitted using least squares 

regression to experimental data gathered by Dilip et al. [53]. 

 𝑎(𝑃, 𝑉) = 𝐶( + 𝐶$𝑃 + 𝐶!𝑉 + 𝐶&𝑃𝑉 + 𝐶)𝑃! + 𝐶*𝑉! (5) 

 

Table 2. Constants used in the polynomial surface of aspect ratio vs. power and velocity (Eq. 5) 

Constant Value Units 
𝐶( 2.523×10-1  
𝐶$ 4.470×10-3 (1/W) 
𝐶! -4.979×10-4 (s/mm) 
𝐶& -2.314×10-6 (s/mm-W) 
𝐶) 3.938×10-6 (1/W2) 
𝐶* 2.902×10-7 (s2/mm2) 

 

The quadratic polynomial surface had a coefficient of determination (R-squared/R2) of 0.981 and 

adjusted coefficient of determination of 0.969 with the experimental data. An R2 value of 1 indicates a 

perfect fit, which demonstrates that the quadratic polynomial surface has a good fit to the experimental 

data. The comparison of the fitted response surface and the experimental measurements in the power-

velocity space is shown in Figure 2. The polynomial surface was then used to estimate the melt pool depth 
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based on the melt pool width value predicted by Eq. 3 (i.e., 𝐷 = 𝑊 × 𝑎(𝑃, 𝑉)). This approach maintains 

an elliptical melt pool within the keyhole mode and does not fully capture the actual keyhole melt pool 

shape. However, in the present work, the processing near the keyhole mode showed LoF porosity below 

the threshold value of 0.1%. At this low LoF porosity regime, the effect of shape deviations is likely 

insignificant.  

 
Figure 2. (a) Plot of 𝑎(P, V) and data from Dilip et al. [53] showing melt pool aspect ratio, taken to be 

depth/width; (b) 𝑎(P, V) evaluated at each (P, V) from Dilip et al. [53]. 
 

2.2. Model Calibration and Validation 

The porosity volume fractions from the LoF model were calibrated and validated by comparing the 

predicted values to experimentally reported values. The model was further validated by comparing the 

predicted defect morphology to experimentally reported morphology.  

2.2.1. Volume Fraction  

One of the primary parameters in the Rosenthal equation approximation for melt pool width (Eq. 3) is 

absorptivity, which has been shown in the literature to vary significantly for Ti-6Al-4V [59, 60]. In previous 

studies using the Rosenthal equation for melt pool geometry approximation, the absorptivity of Ti-6Al-4V 

was estimated at 0.38 [61] and 0.48 [56]; both of these studies used absorptivity measurements of bare-
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plate Ti-6Al-4V. Studies measuring the absorptivity of powder Ti-6Al-4V in situ have reported a maximum 

absorptivity of approximately 0.74 [59, 60]. Other absorptivity estimation approaches, such as using ray 

tracing and a variety of powder packing schemes, have also reported that bare-plate and powder absorptivity 

differ significantly [60]. It is apparent that the absorptivity of powder Ti-6Al-4V has significant uncertainty, 

and therefore contributes to the uncertainty of the melt pool geometry prediction using the Rosenthal 

equation. 

The absorptivity was used to calibrate the LoF model. To test that the model captured melt pool 

geometry in the conduction mode (i.e., a semicircular cross-section geometry) as well as in the keyhole 

transition (i.e., a non-semicircular cross-section geometry), the absorptivity was set to 0.38 and melt pool 

geometry was computed from the modified Rosenthal equation. These predictions were plotted against 

experimentally measured melt pool geometry (Figure 3) [53]. Melt pool width predictions from the 

Rosenthal equation agreed with experimental results, except for the lowest power setting. The experiments 

reported balling at this power setting, a phenomenon that occurs when the energy density is not high enough 

to form a well consolidated and smooth melt pool. The melt pool depth predictions with the dynamic aspect 

ratio term were also in good agreement with the experimental values. 

 
Figure 3. Melt pool width (a) and melt pool depth (b) vs. power and velocity comparing experimental 
(solid) and predicted (dashed) values [53]. Melt pool geometry was estimated for bare-plate conditions 

(i.e., 𝐴	= 0.38). Both plots share the legend in (b). 
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The calibration of the model for PBF of Ti-6Al-4V was performed by modifying the absorptivity 

between 0.38 (reported bare-plate value) to 0.74 (reported powder value) – and therefore altering the melt 

pool geometry – until the porosity predictions from the model matched with reported porosity in two 

different calibration experiments [56, 62]. Data used for calibration had a range of powers and constant 

laser velocity (1200 mm/s), hatch spacing (140 μm), layer thickness (30 μm) and layer rotation (67°) values 

for both studies. The calibration experiments also reported keyhole porosity at high energy densities (Fig. 

4), which cannot be predicted by the proposed model. The effect of keyhole porosity is observed at a critical 

point in the porosity trendline (between 40 J/mm3 and 50 J/mm3 in Fig. 4), beyond which the experimental 

porosity volume fraction shows a positive slope. At energy densities less than the keyhole transition zone, 

LoF porosity was reported to be the largest contributor to total porosity [56, 62]. For the purposes of the 

model, high and low porosity extremes were not considered. A central range of functional porosity (0.1% 

– 5% volume fraction) was considered for calibration and validation. The 0.1% porosity threshold was 

chosen since small porosity values will be strongly influenced by noise and the specific segmentation 

technique used to distinguish between noise and porosity [63]. 

The predicted variation of porosity as a function of energy density in the LoF regime using four 

absorptivity values ranging between 0.45 and 0.70 is shown in Figure 4(a). An absorptivity of 0.61 was 

found to minimize the discrepancy between measured and the simulated porosities and was used as the 

calibrated value in the subsequent simulations. Both experimental studies used for calibration employed the 

same machine model and manufacturer (EOS GmbH, M290). The discrepancy in porosity between the two 

sets of experiments at higher energy densities is believed to be due to differences in how the porosity was 

classified and the sample measurement size and region. The porosity size range 20 μm – 40 μm was not 

considered in the post-process porosity classification by Gordon et al. [56]. In addition, the entire 5 mm × 

5 mm × 5 mm part was scanned using micro-CT by du Plessis et al. [62], as opposed to only the top 1.5 

mm3 (dimensions approximately 1 mm × 9 mm × 0.167 mm) by Gordon et al. [56]. 
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The calibrated model was then validated against additional data from du Plessis et al. that was not used 

for calibration [62]. This data had a range of powers and constant velocity (800 mm/s), constant hatch 

spacing (140 μm), constant layer thickness (30 μm), and constant layer rotation (67°) values. The validation 

data therefore substantially differs from the calibration data in velocity, but all the other parameters are the 

same. The different velocities will cause the simulated melt pool widths and depths to differ even at similar 

energy density values due to the respective impact power vs. velocity has on the melt pool geometry (Figure 

3). The comparison of model predictions and validation data is shown in Figure 4(b).  

 
Figure 4. (a) Calibration and (b) validation of the LoF model based on experimental data [56, 62].  

 

The two curves differ since they use a different laser scanning velocity (1200 mm/s vs. 800 mm/s)  

The LoF model has good accuracy at porosity volume fractions between 0.1% – 5% when an 

absorptivity of 0.61 is used. Above the 0.05% – 1% range, the model tends to overestimate the porosity 

volume fraction, while below it underestimates the porosity. Other absorptivity values work better at high 

and low 𝑉𝐸𝐷 values – however, an absorptivity of 0.61 worked well at porosity volume fractions of interest 

for practical usage. Also note that the predicted porosity volume fraction drops to zero percent at energy 

densities between 40 J/mm3 and 50 J/mm3 while the experimental data observes an increase in porosity due 

to the occurrence of keyhole porosity. 
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Another point of consideration is how powder may interact with a LoF pore. The powder and LoF pores 

may have a similar size scale. Large pores may contain unmelted powder, while small pores may result 

from the void between partially melted powder and the melt pool [7,8]. It is not well described how the 

post-processing of the CT data used for calibrating and validating the model may have accounted for 

porosity that was partially filled with powder. For example, the CT scans used by du Plessis et al. had a 

voxel resolution of 10 µm and could determine pores with sizes of 2×2×2 voxels and greater [62]. The 

powder used in PBF often has diameters ranging between 10 µm and 60 µm [64], which is sufficiently 

small that a detectable pore could be filled with powder and impact the detectability of the pore. Tang et al. 

accounted for powder-influenced porosity by scaling the apparent density based on the packing density of 

the powder [25]. This can be implemented in the present work through Eq. 6, where the simulated porosity 

volume fraction (𝑉𝑜𝑙+,-) is scaled by the packing density of the powder (𝜌#./0"12) to calculate an adjusted 

porosity volume fraction (𝑉𝑜𝑙.34) 

 𝑉𝑜𝑙.34 = 𝑉𝑜𝑙+,-41 − 𝜌#./0"126 (6) 

 

If a packing density of 60% for Ti-6Al-4V is used [64], the adjusted volume fraction can be calculated. 

The adjusted porosity volume fractions compared to the original porosity volume fractions and calibration 

and validation data are shown in Figure 5. 



 

16 

 

 
Figure 5. Comparisons of the adjusted porosity volume fraction vs. original porosity volume fractions for 

the (a) calibration and (b) validation data.  
 

The adjusted porosity volume fraction generally underestimates the experimental porosity volume 

fraction. Uncertainty around how the CT analysis was calibrated may have accounted for partially filled 

porosity, thus the figures found in the rest of the present work will consistently refer to	𝑉𝑜𝑙+,-. However, 

they can be easily adjusted using Eq. 6.  

2.2.2. Defect Morphology  

One of the primary advantages of the VB-LoF model is that it allows for direct morphological 

comparisons between defects predicted by the model and defects observed in experiments. Montalbano et 

al. [65] reported the effects of energy density on defect volume fraction and maximum defect diameter on 

Ti-6Al-4V specimens. The VB-LoF model was used to compare simulated maximum defect diameters to 

those found experimentally. The comparison between the experimentally observed defect diameters and 

the numerical simulations is shown in Figure 6. The experimentally built samples LF1 and LF2 had a hatch 

spacing of 140 µm, a layer thickness of 30	µm, and a velocity of 1200 mm/s. LF1 was built with laser 

power 160 W, and LF2 was built with 130 W [65]. The numerical simulations employed the calibrated 

absorptivity value provided in the previous section.  
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Figure 6. Maximum defect diameter vs. energy density plot. The blue points show the maximum diameter 
in the simulated sample corresponding to the energy density input as reported in Montalbano et al. 2021 
[65]. Note that for low energy densities outside of the functional prediction range (< 30 J/mm^3), LoF 

porosity presents as interconnected structures spanning the entirety of the simulation domain. 
 

The LoF model predicted a maximum defect diameter for LF1 within the reported range from 

Montalbano et al. [65]. The maximum defect diameter was then predicted for samples at higher energy 

densities of interest (30 J/mm3 - 45 J/mm3) before complete melting occurred. At energy densities lower 

than this range (including the LF2 case), LoF structures were interconnected throughout the entirety of the 

domain, implying a true pore size larger than the simulation domain. However, the LoF prediction 

methodology does not model fluid effects such as surface tension which will affect defect morphology [66]. 

Energy densities higher than this range presented little LoF porosity, indicating complete melting. The 3D 

and 2D LoF porosity structure generated for LF1 is shown in Figure 7.  
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Figure 7. Simulated LoF pores that mimic sample LF1 from Montalbano et al. [65] shown in (a) 3D 

and in a (b) 2D cross-section of the 3D domain taken at the midpoint of the Y-axis at a position of 300 
µm.  

While the 3D structure shown in Figure 7(a) seems to show a substantial amount of porosity, the 2D 

cross-section resembles a polished sample cross-section with porosity. The LF1 simulations shown in 

Figure 7 had a simulated porosity volume fraction of 3.43% porosity and an adjusted porosity volume 

fraction of 1.37% vs. a reported porosity volume fraction of approximately 1% [65].  

3. Model Predictions and Discussion 

The validated VB-LoF model was used to predict LoF porosity with a wide range of processing 

conditions to create maps across the process space (process maps). These process maps were used to 

observe porosity trends across the process-parameter space and relate porosity to AM build parameters such 

as laser power and scanning velocity. Process maps generated by sampling the model parameters and 

simulating using the validated LoF model could provide build guidelines, help process parameter selection, 

and provide porosity predictions across a wider domain in the process space than is conventionally 

accessible through experimental build methods.  

The two process parameter spaces that were sampled were the power-velocity space (PV space) and 

the scan pattern parameter space (LH space). To populate the PV space, the scan pattern parameters were 
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held constant at a hatch spacing of 140 μm and a layer thickness of 30 μm while the power and velocity 

were varied. For the LH space, the power was held constant at 280 W, and the velocity was held at 1200 

mm/s, while the hatch spacing and layer thickness were varied. For the process parameter samples in both 

spaces, the layer rotation was held constant at 67°. These choices for constant values were based on the 

processing conditions used in previous experimental studies [56].  

3.1. Influence of Laser Power and Scanning Velocity 

The PV space was populated by using random sampling of powers between 80 W - 200 W and velocities 

between 600 mm/s - 1300 mm/s. A small number of these samples are located near the keyhole transition 

regime, where the true shape of the melt pool deviates from the bi-elliptical conduction-mode shape. The 

shape deviations likely had no impact on the prediction of LoF porosity near this regime, as the volume 

fractions were below the 0.1% porosity threshold.  A total of 975 samples were used to generate the contour 

plot of porosity shown in Figure 8. The volume fraction of porosity across the PV space is shown in Figure 

8.  

 
Figure 8. PV space showing porosity contours ranging from 0.1% to 35%. 

 

 The simulated LoF porosity follows a linear trend within the sampled PV space (Figure 8). When the 

linear trend is normalized by scaling the maximum and minimum power and velocity between 0 and 1, the 

following relationship for the porosity volume fraction can be defined for the linear region as:  
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 𝑉𝑜𝑙+,- =	𝐶5𝑃L + 𝐶6𝑉L + 𝐶7 (7) 

where 𝐶5 and 𝐶6 are scaling constants for the normalized power (𝑃L) and normalized velocity (𝑉L ) and 

equal to -47.1 and 37.6, respectively, and 𝐶7 is an intercept term equal to 7.8. This relationship has an 

adjusted coefficient of determination value of 0.95. The normalization allows for direct comparisons of the 

effect of the power and velocity through the scaling constants. The absolute value of 𝐶5 is approximately 

25% larger than 𝐶6, indicating that changes in power are a stronger contributor to the final LoF porosity 

than equivalent changes in velocity. The relationship between porosity volume fraction and 𝑉𝐸𝐷 was also 

studied, which is shown in Figure 9.  

 
Figure 9. Impact of 𝑉𝐸𝐷	on the resulting LoF porosity across the (a) entire 𝑉𝐸𝐷	space and across (b) 

a subregion of high 𝑉𝐸𝐷 values shown in the dotted box. 
 

A trend was found between a decreased 𝑉𝐸𝐷 and an increased porosity. This trend between porosity 

and 𝑉𝐸𝐷 is well known [1, 67], and this result demonstrates that the VB-LoF model captures the same 

behavior. However, there is also high variance in the data at 𝑉𝐸𝐷 values around than 31 J/mm3. These 

values are shown in more detail in the inset plot in Figure 9(b), where the power values are indicated based 

on the coloring of the individual data points. For a set 𝑉𝐸𝐷 value, the power decreases from a high to a low 

value as the porosity volume fraction increases. Maintaining an equivalent 𝑉𝐸𝐷 requires changing the 

velocity varying an equal amount. The high variance in the relationship between 𝑉𝐸𝐷 and porosity at 𝑉𝐸𝐷 
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values greater than 29 J/mm3 can be explained by the difference in the normalized coefficients of the linear 

fit given by Eq. 7. The 𝑉𝐸𝐷 weighs changes in power and velocity equally – a equivalent increase or 

decrease in both power and velocity will give an equivalent energy density, even though the impact of 

power is approximately 25% higher. The variance in the relationship between energy density and porosity 

can be reduced by instead considering a modified energy density (𝑀𝐸𝐷) that weighs power stronger than 

velocity by raising power to the 5/4th power. The relationship between porosity volume fraction and 𝑀𝐸𝐷 

is shown in Figure 10.  

 
Figure 10. Impact of 𝑀𝐸𝐷	on the resulting LoF porosity across the (a) entire 𝑀𝐸𝐷	space and across (b) a 

subregion of high 𝑀𝐸𝐷 values shown in the dotted box. 
 

This stronger weighting of power in the MED reduces the variability in the data and allows for 

estimating a more accurate porosity based on the MED. The reason for weighing power more can also be 

understood by looking at how the power vs. velocity impact the melt pool depth and width (Figure 3). 

Increasing the power has a stronger effect on the melt pool geometry than decreasing velocity when both 

are changed a comparative amount. However, the 5/4th exponent should not be considered a universal 

constant as the value of the exponent likely depends on the thermophysical properties of the material and 

other build parameters such as the layer thickness and hatch spacing that are studied in the following section.  
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3.2. Influence of Layer Thickness and Hatch Spacing 

 The LH space was populated by sampling the ratio between the layer thickness and effective depth 

(𝐿/𝐷8) and the ratio between the hatch spacing and melt pool width (𝐻/𝑊) at regular intervals. The effective 

depth (𝐷8) was defined to be the sum of the melt pool depth calculated using Eq. 3 and Eq. 5 and the melt 

pool cap. The effective depth is equal to the total melt pool geometry component in the build direction (the 

Z direction in Figure 1). Using the melt pool width and effective depth, 𝐿/𝐷8 and 𝐻/𝑊 were sampled within 

the ranges of 0.1–1.25 and 0.1–1.4, respectively. These bounds were used to limit the number of simulations 

that need to be performed to generate the process map. For example, if a layer thickness value is close to 0 

μm, then the build time for the part would be high and is likely not feasible due to the size range of the 

powder used in powder bed fusion. Therefore, such a run was not simulated. Tang’s LoF criterion (Eq. 1) 

predicts 0% porosity for process parameters satisfying the inequality; however, some samples with process 

parameters satisfying Eq. 1 presented with nonzero porosity close to 𝐿/𝐷8= 1. These outliers were 

determined to result from the discretization of the elliptical shape of the cap and the bottom of the melt pool 

onto the voxel-base lattice of the simulation. When 𝐿 is close to 𝐷8, the discretization of the elliptical shape 

of the melt pool sometimes results in porosity.  

 
Figure 11. LH space showing porosity contours ranging from 0.1% to 25%. 

 

The contour map of LoF pore volume fraction in the LH space around Tang’s LoF criterion curve, 

given in Eq. 1, is shown in Figure 11. A total of 448 samples were used to generate the contour plot of 
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porosity in Figure 11. The porosity threshold predictions of the proposed model are consistent with the 

previously derived threshold for LoF porosity. The inverse-sigmoidal trend of the predicted contours also 

matches well with porosity contours predicted by Tang for AlSi10Mg [68]. The upper left portion of the 

LH space where 𝐿/𝐷8 is greater or equal to 1 is also the region of the most rapid increase in porosity 

content. In contrast, the lower right portion of this space where 𝐻/𝑊 is greater or equal to 1 is the region 

of the slowest increase in porosity content. This is since a small 𝐿/𝐷8 can mitigate the effects of a large 

𝐻/𝑊 through additional melting of previous layers due to deep melt pools and scan orientation rotation 

between layers. In contrast, decreasing 𝐻/𝑊 does not eliminate porosity that exists when 𝐿/𝐷8 is greater 

than 1.  

3.3. Pore Morphology  

The LoF prediction methodology was also used to analyze the pore morphology across the LH space. 

The power was held constant at 280 W, and velocity was held constant at 1200 mm/s. Like the volume 

fraction prediction, 𝐿/𝐷8 and 𝐻/𝑊 were sampled at regular intervals, and the measured volume-weighted 

mean equivalent diameters are shown in Figure 12.  

 
Figure 12. LH space showing (a) volume-weighted mean equivalent diameter of the pores in each sample, 

and (b) characteristic porosity within region shown in (a). 
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There are four distinct regions that can be observed in Figure 12(a) and the corresponding porosity 

within those four regions are shown in Figure 12(b). The upper left portion, labeled #1, contains pores that 

are characteristic of a large layer thickness and small hatch spacing. The layer thickness is large enough 

that a continuous void between layers is seen which causes a large overall porosity volume fraction (Figure 

11). The middle-left portion, labeled #2, has a larger hatch spacing and smaller layer thickness than #1. The 

porosity in this region is defined by large tracks between sequential melt tracks. The layer thickness is small 

enough that there is no longer a continuous void between layers. The middle-right portion, labeled #3, is 

the region with the largest pores. In this region, the hatch spacing and layer thickness combination cause a 

continuous web of interconnected porosity. The final region in the lower right, #4, has a small layer 

thickness and large hatch spacing. This leads to sporadic, columnar voids and a lower overall porosity 

(Figure 11). While the examples of porosity shown in Figure 12(b) are exaggerations vs. those observed in 

practice, the examples suggest that LoF porosity has regimes within itself where the relational characteristic 

between pores depends on an interrelation effect between hatch spacing, layer thickness, melt pool depth, 

and melt pool width. 

In addition to the mean equivalent diameter, the volume-weighted mean sphericity was calculated to 

characterize the impact of hatch spacing and layer thickness on the porosity morphology. The characterized 

sphericity and two samples exhibiting similar porosity volume fractions but different morphologies are 

presented in Figure 13.  
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Figure 13. LH space showing (a) volume-weighted mean sphericity of the pores in each sample, and (b,c) 

two samples that exhibit similar porosity fractions but different morphologies and sphericities. 
 

The four regions seen in the volume-weighted mean equivalent diameter measurements (Figure 12) can 

been seen in the sphericity. The pores in region #4 have higher sphericity alongside a lower equivalent 

diameter. The pores in region #3 in general have the lowest sphericity alongside their high equivalent 

diameter. Region #2, which were long pores located between melt tracks, had low equivalent diameters and 

moderate sphericities. An example comparing two samples from regions #2 and regions #4 are shown in 

Figure 13(b) and 13(c). These two samples had similar porosity volume fractions but different sphericities 

and pore morphologies.  

4. Limitations and Extensibility  

 The present framework has several limitations that could be relaxed in later iterations of the VB-LoF 

model. The first limitation is in using the Rosenthal equation to predict melt pool morphology. Due to the 

equation being the solution to a point heat source, the predicted melt pool depth will be half the melt pool 

width. While the change in the melt pool depth across the domain space was accounted for using the fit 

discussed in Figure 2, the adjusted melt pool depth will still be elliptical and not necessarily reflective of 

the keyhole-like shape that occurs at high energy densities. The present model also did not simulate laser 

turn-around regions, contouring regions, or the balling phenomena which occurs at high scanning velocities. 
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Additionally, melt pool dynamics were not explicitly modeled, which would affect pore morphology. These 

limitations could be relaxed through using higher-fidelity models such as computational fluid dynamic 

(CFD) simulations of PBF that can accurately capture transient melt pool evolution. However, CFD 

simulations would increase the required computational demand and limit the design space that can be 

explored using the model. Another limitation is that the model in the current work does not resolve 

individual powder particles, and instead considers each powder layer as bulk material. Not resolving the 

powder could affect the volume fraction, equivalent diameter, and sphericity of the predicted porosity. To 

rectify this, the powder layer could be explicitly modeled using techniques such as the discrete element 

method (DEM) and resolving the individual powder particles at the cost of increased computational 

resources and complexity. 

 The VB-LoF model could be extended in various ways. For example, the methodology supports 

simulating microstructure evolution alongside the porosity prediction. However, the calibration and 

validation of microstructure evolution parameters requires a dedicated study with numerous experimental 

conditions within the LoF build regime. This work focused on calibrating and validating the porosity 

prediction component. The VB-LoF could also incorporate stochastic melt pool geometry to model how 

local fluctuations in melt pool geometry may impact the porosity volume fraction and defect morphology. 

This work also has extensibility in supporting PSP predictions for PBF in a ICME framework. The results 

described within this paper further the development of the simultaneous prediction of porosity and 

microstructure, form the foundation for characterizing uncertainty and sensitivities due to the presence of 

defects in microstructures [69–71] and offers a methodology for generating pseudo-microstructures for 

incorporation into multiscale structural performance modeling techniques [72–74]. 

5. Conclusions 

 The present work developed, calibrated, and validated an easy-to-deploy, low computational cost VB-

LoF model to simulate the volume fraction and morphology of LoF porosity during PBF AM. An analytical 
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model of the melt pool geometry during PBF was calibrated to experimental data based on absorptivity and 

a depth-scaling factor. The predicted melt pool geometry was used in the VB-LoF model that was calibrated 

and validated through non-blind and blind comparisons with experimental measurements of LoF porosity 

volume fractions. The validated LoF porosity prediction was then used to determine the impact of laser 

power and scanning velocity on the resulting porosity predictions. It was found that LoF porosity had a 

linear relationship with velocity and power, and power was found to have a stronger effect than velocity on 

porosity. The effect of energy density was reported and a modification to the energy density that weighs 

power more than velocity was proposed that reduced variability. The role of hatch spacing and layer 

thickness on the LoF porosity was described, and Tang’s LoF criterion was validated. The contrasting 

impact of layer thickness and hatch spacing on the LoF porosity at extreme values was discussed, and the 

impact of processing parameter on the pore equivalent diameter and sphericity was reported. Four distinct 

morphological regions were identified that depended on hatch spacing and layer thickness. The 

quantification and prevention of defects are critical towards enabling the usage of AM parts in structural 

applications. This methodology enables the relating of processing to final part performance for AM for the 

purpose of defect avoidance and process optimization and empowers the use of additively manufactured 

parts.  
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