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Abstract

Reduced order models (ROMs) are often coupled with concurrent multiscale simulations to
mitigate the computational cost of nonlinear computational homogenization methods. Con-
struction (or training) of ROMs typically requires evaluation of a series of linear or nonlinear
equilibrium problems, which itself could be a computationally very expensive process. In
the eigenstrain-based reduced order homogenization method (EHM), a series of linear elastic
microscale equilibrium problems are solved to compute the localization and interaction ten-
sors that are in turn used in the evaluation of the reduced order multiscale system. These
microscale equilibrium problems are typically solved using either the finite element method or
semi-analytical methods. In the present study, a reduced order variational spectral method is
developed for efficient computation of the localization and interaction tensors. The proposed
method leads to a small stiffness matrix that scales with the order of the reduced basis rather
than the number of degrees of freedom in the finite element mesh. The reduced order variational
spectral method maintains high accuracy in the computed response fields. A speedup higher
than an order of magnitude can be achieved compared to the finite element method in polycrys-
talline microstructures. The accuracy and scalability of the method for large polycrystals and
increasing phase property contrast are investigated.

1 Introduction

Computational homogenization method [1] applied to heterogeneous materials that exhibit material
nonlinearities leads to coupled and nested macroscale and microscale boundary value problems
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(BVPs) defined over the structural domain and representative microstructural volumes, respectively.
Macroscale BVP is commonly solved using the finite element method, while microscale BVPs have
been evaluated using various full-field methods such as the finite element method (also known as
FE2 method [1]), virtual element method [2], spectral methods [3, 4], among others. Among these
full-field methods, the spectral approach is advantageous because of its computational efficiency.

The spectral method proposed by Moulinec and Suquet has introduced application of fast Fourier
transform (FFT) algorithms to multiscale problems [3, 5, 6]. This spectral formulation relies on
Lippmann-Schwinger type multiscale ansatz which is expressed as

ϵij(y) = ϵij −
∫
Θ

Γijkl(y, ŷ)(Lklmn(ŷ)− L0
klmn)ϵmn(ŷ)dŷ (1)

where ϵ is the strain field over the microstructure volume denoted as Θ, ϵ is the macroscale strain
tensor, y is the position vector defined over the microstructure volume, Γ is the kernel function,
and L0 is a reference stiffness. Introduction of reference stiffness allows for the analytical derivation
of the kernel function in the frequency space such that stress equilibrium and strain compatibility
are enforced. For microstructures where the constituents have high property contrast, further
methodological developments focused on accelerating convergence using the augmented Lagrangian
approach [7] and resolving Gibbs phenomenon [8]. Comprehensive reviews on recent developments
and applications of the spectral method in solving the microscale problem are provided in Refs. [9,
10, 11].

More recently, Zeman et al. [12] and Geus et al. [13] have introduced the variational spectral
method eliminating the need for selection of a reference stiffness which affects rate of convergence
[3]. In this formulation, the governing equations are solved directly for strains. Strain compatibility
is enforced using projection operators for which analytical expressions were derived in the frequency
space by Milton and Kohn [14]. Discretization of the strain field is carried out using trigonometric
polynomials instead of Lagrange polynomials often used in classical finite element methods. The
resulting linear system is then iteratively solved using FFT algorithms.

Despite the aforementioned advancements in efficient computation of the full-field solution of
the microscale BVP, application of computational homogenization to realistic-size heterogeneous
structures remain to be prohibitively expensive. Therefore, significant effort has been devoted to
the development of reduced order models (ROMs) that drastically speed up the evaluation of the
microscale BVP while attempting to preserve prediction accuracy. Various ROM approaches have
been proposed, including the transformation field analysis (TFA) [15, 16], nonuniform TFA (NTFA)
[17, 18, 19, 20] and its extensions [21, 22, 23], numerical potentials [24], self-consistent clustering
analysis [25], eigendeformation and eigenstrain-based reduced order homogenization [26, 27, 28, 29,
30, 31, 32], surrogate models [33, 34, 35], and proper orthogonal decomposition (POD) [36, 37, 38].
ROMs typically consist of an off-line model training stage where the ROM is constructed based
on prior simulations, and a model execution stage, where the solution is searched over a coarse
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approximation space spanned by a small set of basis functions. By definition, model execution is
computationally efficient, and is coupled to the macroscopic solver by replacing the full field solution
of the microscale BVP. Approaches that embed the model training stage in model execution have
also been explored (see e.g., [39]).

Depending on the size of the microstructure volume and complexity of the morphological features
embedded in the volume, model training stage could be computationally very expensive. Several
ROM approaches such as NTFA and POD-based models, as well as machine learning models rely on
a suite of full-field nonlinear microscale simulations for model training. Eigenstrain-based reduced
order homogenization method (EHM) [29] is particularly advantageous in this regard since only
linear elastic simulations are required to train the model. Specifically, localization and interaction
tensors are computed by solving linear-elastic microscale equilibrium problems, denoted as the
influence function problems (IFPs). In past studies, the finite element method [29, 40, 41] and the
generalized finite element method [42] have been used to solve these IFPs. For microstructures
with complex features that require dense meshes and a relatively large set of approximation basis
functions, the solution of IFPs can also become computationally intensive [43, 22]. To the best
of the authors’ knowledge, analytical approximations of the influence functions are not available
beyond a few idealized microstructures (e.g., ellipsoidal inclusions), although the relationship
between the Lippmann-Schwinger ansatz and the interaction tensors has been recently explored by
Buryachenko [44]. Alternatively, self-consistent or Mori-Tanaka [45, 46] type analytical methods
have been used to estimate the localization and interaction tensors, but at the expense of introducing
assumptions on phase geometry and simplifications of phase-to-phase interactions as shown in
Dvorak’s pioneering work [15, 16].

The EHM approach has been previously applied to investigate complex multiscale applications,
and validated against experimental data. For instance, Zhang et al. [47] applied EHM to multiscale
thermostructural modeling of titanium skin panels. This study showed the ability of the ROM to
conduct full concurrent nonlinear multiscale simulations that are otherwise prohibitively expensive
using traditional nonlinear computational homogenization. Zhang et al. [48] used the ROM to
predict probabilistic fatigue life of titanium polycrystals including comparison to experimentally
observed fatigue life. The results suggested that the ROM can be used to capture the evolution
of fatigue initiation parameters over thousands of polycrystal statistical volume elements and load
cycles. Nasirov et al. [43] compared stress-strain response of the ROM to experimentally-calibrated
crystal plasticity finite element results for additively-manufactured Inconel alloys.

In the present study, we propose a new computational strategy to speed up the model training
stage for EHM. The proposed strategy leverages the aforementioned ideas on the variational spectral
method (VSM) to directly compute the localization and interaction tensors without the need for first
evaluating the influence function problems. In this regard, the part-average localization tensors are
treated as the cardinal unknowns and a variational form through the VSM is obtained. Unlike the
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classical finite element or VSM, where the degrees of freedom scale with the underlying discretization,
the proposed approach scales with the order of the reduced basis, which is much smaller. The
accuracy and efficiency of the new computational strategy is assessed by comparing model predictions
to those obtained by the finite element analysis. While the proposed approach is general and different
microstructure morphologies and material behavior could be incorporated into the framework, the
numerical assessment is performed using polycrystalline microstructures that represent a wide range
of materials including metals and alloys [49, 50], molecular crystals [51, 52], among others. The
primary contribution of the present work is in the development of a reduced order version of the
variational spectral method, and its application to the offline stage of the EHM. A significant
majority of the reduced order modeling research have focused on the ROM execution stage, whereas
efficiency in ROM construction has received relatively less attention. Direct numerical simulations
(using finite elements or spectral methods) that are typically used to construct/train ROMs are often
computationally very expensive, which motivated the current effort. In particular, the proposed
approach makes the EHM model construction more efficient by reduced-basis approximation of the
generalized polarization strains.

This manuscript is organized as follows: The EHM methodology is briefly summarized in Section 2.
The mathematical formulation for the proposed spectral method to evaluate the polarization and
interaction tensors is developed in Section 3. Numerical experiments performed to assess the accuracy
and efficiency of the method are discussed in Section 4. The localization and interaction tensors
are compared to those computed directly using the finite element method as described in Ref. [29].
Conclusions drawn are summarized and discussed in Section 5.

The following notation is used unless otherwise stated. Scalars are denoted by lightface letters,
α, Cartesian tensor fields are denoted as italic lightface letters, Aijkl (or σij), in indicial notation
with italic indices, ijkl (or ij), and referred to as boldface italic, A (or σ), in text/tensor notation.
A comma in the indices indicates partial spatial derivative. The top right superscript is used as a
descriptor. Overbar indicates macroscopic quantity averaged over the microstructural domain while
overhead dot indicates time derivative. The ∗ symbol indicates convolution.

2 EHM Overview

Consider a macroscopic domain, Ω ⊂ R3, that is made of periodic polycrystalline microstructural
domain, Θ ⊂ R3. A classical two-scale homogenization procedure (see [29] for details) for elastostatics
leads to two boundary value problems defined over the macroscale domain and the microscale domain
(e.g., a representative volume element or a statistical volume element). The macroscale boundary
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value problem in the absence of inertial forces is given by

σ̄ij,j(x, t) + b̄i(x, t) = 0 (2)

ϵ̄ij(x, t) =
1

2
(ūi,j(x, t) + ūj,i(x, t)) (3)

ūi(x, t) = ū∗
i (x, t) x ∈ Γu (4)

σ̄ij(x, t)n̂j = t̄∗i (x, t) x ∈ Γt (5)

where σ̄ denotes the macroscale stress field, b̄ denotes the macroscale body forces, ϵ̄ is the macroscopic
strain, ū denotes the macroscale deformation field, ū∗ is the prescribed displacement over Dirichlet
boundaries, Γu, t̄∗ is the prescribed traction over Neumann boundaries, Γt, n̂ is the normal vector,
and x ∈ Ω denotes the macroscale spatial position vector. Using the EHM procedure [29], the
microscale homogenized equilibrium equation and the stress-strain relationship along with piece-wise
constant reduced order basis functions leads to the following relations

σ̇
(β)
ij (t) = L

(β)
ijkl

(
ϵ̇
(β)
kl (t)− µ̇

(β)
kl (t)

)
(6)

ϵ̇
(β)
ij (t) = A

(β)
ijklϵ̇kl(t) +

Nph∑
α=1

P
(βα)
ijkl µ̇

(α)
kl (t) (7)

where α and β (= 1, 2, . . . , Nph) represent part indices, L(β) stands for the tensor of elastic moduli for
part β, P (βα) represents the interaction tensor between parts α and β, A(β) stands for the localization
tensor averaged over part β, µ(β) is part-averaged viscoplastic strain, σ(β) is part-averaged stress, ϵ
stands for the macroscopic strain, and Nph is the number of basis functions (or parts) used in the
reduced order model. The parts are subdomains in the microstructural volume and each part is
typically chosen to coincide with a single grain domain (further subpartitioning can be employed).
Macroscale position dependence in Eqs. 6 and 7 is suppressed for simplicity since the part-average
stress evolution is treated as a constitutive update in the numerical implementation of the multiscale
model. Coefficient tensors (A(β), L(β) and P (βα)) retain information about the microstructure such
as the elastic properties of grains, grain orientation, grain morphology, and grain-to-grain interactions.
Combined with appropriate evolution laws for the viscoplastic strain, µ̇(β), stress update procedure
is employed to evaluate the reduced order microscale problem [29, 43].

The “model training” stage consists of preparation of the A(β) and P (βα) tensors by solving
linear-elastic microscale equilibrium problems called influence function problems (IFPs). The IFP
for the localization tensors is given as[

Lijkl(y)(Iklmn +H(k,l)mn(y))
]
,j
= 0; y ∈ Θ (8a)

Hmkl(y) = 0; y ∈ ∂Θv (8b)

Hmkl(y) = Hmkl(y + ỹ) y ∈ ∂Θfe (8c)
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where H is the influence function, ∂Θv represents vertices of the microstructure volume, ỹ stands for
the period of the microstructure volume and ∂Θfe represents the faces and edges of the microstructure
volume. The influence function is fixed at the vertices of the microstructure volume to eliminate
rigid body motion, and periodic boundary conditions are enforced along the faces and edges of the
microstructure volume. The localization tensors are expressed using the influence functions as

A
(β)
ijkl =

1

|Θ(β)|

∫
Θ

N (β)(y)Gijkl(y)dy + Iijkl (9)

in which Gijkl = H(i,j)kl and N (β) is the indicator function which acts as the reduced order basis
function (N (β)(y) = 1 if y ∈ Θ(β) and 0 elsewhere).

The IFPs for the interactions tensors are given as (for each α = 1, 2, . . . , Nph)[
Lijmn(y)

(
h
(α)
(m,n)kl(y)− ImnklN

(α)(y)
)]

,j
= 0; y ∈ Θ (10a)

h
(α)
mkl(y) = 0; y ∈ ∂Θv (10b)

h
(α)
mkl(y) = h

(α)
mkl(y + ỹ) y ∈ ∂Θfe (10c)

where h(α) is the phase influence function associated with part, α. Boundary conditions of the
interaction IFPs are the same as those used for the localization IFP. The interaction tensors are
expressed using the influence functions as

P
(βα)
ijkl =

1

|Θ(β)|

∫
Θ

N (β)(y)g
(α)
ijkl(y)dy (11)

with g
(α)
ijkl = h

(α)
(i,j)kl.

During the construction stage of the ROM, Eq. 8a is solved for H using a numerical method
(e.g. finite element method) and the solution field is integrated according to Eq. 9 to compute the
localization tensors A(α). Equation 10a is solved for h(α) where α indicates part index and then
Eq. 11 is used to arrive at interaction tensors P (βα). The cost of solving a single IFP therefore
scales with the number of degrees of freedom used in the numerical method, Ndof. On the other
hand, solving Eq. 11 requires solving 6Nph linear-elastic problems in three dimensions. Nph can be
relatively large for polycrystals with large number of grains [43], composites with large number of
randomly oriented short fibers [25], concrete microstructure with irregular inclusions, etc. Even in
the case of relatively simple microstructures, additional parts may need to be added at material
interfaces, triple junctions, and near other stress risers to capture the behavior more accurately
using the ROM [31]. Furthermore, the discretization around inclusions, cracks, defects or grain
boundaries typically needs to be very fine to capture discontinuities leading to higher Ndof. In such
cases, solving for the coefficient tensors becomes computationally expensive.
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3 Reduced order variational spectral method

In what follows a reduced order spectral method for solving the IFPs described by Eqs. 8a and 10a
is formulated. First, we formulate the spectral method for solving Eq. 8a in detail due to its relative
simplicity. The formulation is then generalized to address the IFPs for the interaction tensors.

3.1 Localization tensor

The strong form of the influence function problem is brought to the weak form by employing the
classical variational procedure∫

Θ

wij(y)Lijkl(y)Aklmn(y)dy =

∫
∂Θ

vi(y)Lijkl(y)Aklmn(y)njdy (12)

where A = G + I, v is the test function, w = ∇sv the symmetric gradient of the test function,
∂Θ denotes the exterior boundaries of the microstructural volume, and n is the outward unit
normal to the exterior boundaries. The boundary term vanishes by the use of periodicity conditions.
Equation 12 is then expressed as∫

Θ

wij(y)Lijkl(y)Gklmn(y)dy = −
∫
Θ

wij(y)Lijmn(y)dy. (13)

Substituting Gklmn = H(k,l)mn we arrive at the weak form of the Eq. 8a∫
Θ

wij(y)Lijkl(y)H(k,l)mn(y)dy = −
∫
Θ

wij(y)Lijmn(y)dy. (14)

Following the standard finite element procedure, solution to the weak form in Eq. 14 can be obtained
as described in Ref. [29]. In contrast, we seek to directly solve the weak form in Eq. 13 for the
polarization strains, G, using VSM, while satisfying compatibility and zero-mean property of the
polarization strains. Compatibility of the polarization strains can be expressed in two alternative
forms

Gijmn,kl(y)−Gkjmn,il(y)−Gilmn,kj(y) +Gklmn,ij(y) = 0 (15)

Gijmn(y) = H(i,j)mn(y) (16)

The first form shown in Eq. 15 is the classical compatibility equation [53], whereas the second form
in Eq. 16 corresponds to the observation that the polarization strain is obtained as the gradient of a
function that satisfies the standard continuity conditions of a displacement field. When evaluating
Eq. 14 using the FEM, compatibility is satisfied since Eq. 16 is directly employed. In the current
formulation, we employ Eq. 15 to enforce compatibility.

The zero-mean property of the polarization strain can be stated as∫
Θ

Gijmn(y)dy =

∫
Θ

H(i,j)mn(y)dy =

∫
∂Θ

Himn(y)nj(y)dy = 0. (17)
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When evaluating Eq. 14 using the FEM, Eq. 17 is satisfied due to the periodicity of the elastic influence
function, H along the boundary conditions of the microstructure volume. In the current formulation,
the zero mean property of the polarization strain is enforced as a direct constraint. Considering the
microstructural equilibrium, compatibility and the zero mean property, the strong-form microscale
problem in Eq. 8a is recast using the following equations (y ∈ Θ)

[Lijkl(y)(Iklmn +Gklmn(y))],j = 0; (18a)

Gijmn,kl(y)−Gkjmn,il(y)−Gilmn,kj(y) +Gklmn,ij(y) = 0 (18b)∫
Θ

Gijmn(y)dy = 0 (18c)

where the polarization strain field, G, is taken to be the cardinal unknown field.
Following Zeman et al. [12], we define generalized test functions, w⋆, and trial functions, G⋆,

such that

wij(y) =

∫
Θ

Γijkl(y − ŷ)w⋆
kl(ŷ)dŷ = Γijkl ∗ w⋆

kl (19)

Gklmn(y) =

∫
Θ

Γklrs(y − ŷ)G⋆
rsmn(ŷ)dŷ = Γklrs ∗G⋆

rsmn (20)

where w⋆ and G⋆ are generalized incompatible tensor fields with non-zero mean that are mapped
into w and G (compatible parts) using the operator Γ. The operator Γ enforces compatibility and
zero-mean property, and is given by Milton and Kohn [14] in frequency space as follows

Γ̂ijkl =
1

2∥ξ∥2
(ξiξkδjl + ξiξlδjk + ξjξkδil + ξjξlδik)−

1

∥ξ∥4
ξiξjξkξl ∀ξ ̸= 0 (21)

where ξ is the frequency vector. For completeness, derivation of the kernel is included in Appendix A.
Substituting Eq. 20 into Eq. 13 yields∫

Θ

[w⋆
ab ∗ Γijab] Lijkl [Γklrs ∗G⋆

rsmn] dy = −
∫
Θ

[w⋆
ab ∗ Γijab]Lijmndy. (22)

We proceed by exploiting the self-adjoint property of the operator Γ which results in∫
Θ

w⋆
abΓijab ∗ [Lijkl [Γklrs ∗G⋆

rsmn]]dy = −
∫
Θ

[w⋆
ab ∗ Γijab]Lijmndy. (23)

Equation 23 represents a continuous weak form for the incompatible trial and test strains. We
proceed with a reduced order discretization of the incompatible trial and test strains using indicator
functions as follows

w⋆
ij(y) =

∑
α

N (α)(y)w
⋆,(α)
ij (24)

G⋆
ijmn(y) =

∑
β

N (β)(y)G
⋆,(β)
ijmn (25)
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where w⋆,(α) and G⋆,(β) are given as

w
⋆,(α)
ij =

1

|Θ(α)|

∫
Θ

N (α)(y)w⋆
ij(y)dy (26)

G
⋆,(β)
ijmn =

1

|Θ(β)|

∫
Θ

N (β)(y)G⋆
ijmn(y)dy. (27)

The indicator functions above are defined as

N (α)(y) =

1 y ∈ Θ(α)

0 y ̸∈ Θ(α)
(28)

where Θ(α) is the subdomain of the microstructure (referred to as "part"). Using indicator functions
as basis functions results in C−1 continuous incompatible strains, which provides the same order of
continuity for the generalized polarization strain field as is the case for standard finite element shape
functions. The coefficients w⋆,(α) and G⋆,(α) can be physically interpreted as average incompatible
strains within part α (such that Θ(α) ⊆ Θ). For single-phase polycrystalline microstructures, part-
per-grain discretization (that is a single part is assigned to the domain of each grain within the
microstructure) have been found to provide efficient and accurate reduced order approximation with
EHM [29, 40]. Verification examples below consider models based on part-per-grain discretization.

Substituting the discretized incompatible test and trial functions and the indicator functions
into the weak form results in∑

α

∑
β

w
⋆,(α)
ab

∫
Θ(α)

Γijab ∗ [Lijkl [Γklrs ∗N (β)]]dyG⋆,(β)
rsmn = −

∑
α

w
⋆,(α)
ab

∫
Θ

[Γijab ∗N (α)]Lijmndy (29)

Renaming the integrals on the left and right hand side of Eq. 29 and considering arbitrary incompatible
test functions, Eq. 29 is expressed in the simple form∑

β

K
(αβ)
abrs G

⋆,(β)
rsmn = F

(α)
abmn; α = 1, 2, . . . , Nph (30)

In matrix notation, Eq. 30 is expressed as follows
K(11) K(12) · · · K(1Nph)

K(21) K(22) · · · K(2Nph)

...
... . . . ...

K(Nph1) K(Nph2) · · · K(NphNph)




G⋆(1)

G⋆(2)

...
G⋆(Nph)

 =


F (1)

F (2)

...
F (Nph)

 (31)

The incompatible strain polarization coefficients, G⋆, are obtained from Eq. 31, and the localiza-
tion tensors are reconstructed using the operator, Γ as

Aijmn(y) = Gijmn + Iijmn =
∑
α

Γ
(α)
ijrs(y)G

⋆,(α)
rsmn + Iijmn (32)

A
(β)
ijmn =

∑
α

Γ
(βα)
ijrs G

⋆,(α)
rsmn + Iijmn (33)
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where,

Γ
(α)
ijmn(y) =

[
Γijmn ∗N (α)

]
(y) (34)

Γ
(βα)
ijmn =

1

|Θ(β)|

∫
Θ

N (β)(y)Γ
(α)
ijmn(y)dy. (35)

Direct evaluation of the localization tensors using the formulation described above has two key
benefits. (1) The size of the sub-matrices, K(αβ) and the overall size of the stiffness matrix, K are
6× 6 and 6Nph × 6Nph, respectively. The size of the system of equations in Eq. 31 is small given that
it is dictated by the number of reduced order basis functions. (2) Periodicity is enforced through
the kernel operator, eliminating the need to directly enforce boundary constraints through tedious
procedures such as the master-slave approach.

The system of equations shown in Eq. 31 (KG⋆ = F ) is rank deficient and possesses infinitely
many solutions since the strain compatibility and the zero mean conditions (Eqs. 18b and 18c)
are not enforced. However, when any given incompatible solution that satisfies Eq. 31 is passed
through the operator, Γ, a unique polarization strain field is recovered. As described in Appendix A,
the operator Γ projects the incompatible solutions onto their unique, zero-mean, curl-free part.
Therefore, we seek to identify any one of the infinite solutions that satisfy Eq. 31. This could be
achieved by employing the least squares (LSTSQ) solver in a straightforward manner. An alternative
approach could be using singular value decomposition (SVD) to decompose the stiffness matrix, and
then performing 6×Nph back-substitutions to compute the interaction tensors.

The operator, Γ, is analytically known in the frequency space. Therefore, the convolutions needed
to compute the force and stiffness matrices (see Eq. 29) are evaluated by applying the convolution
theorem as follows

Γijkl ∗N (α) = F−1{Γ̂ijklF{N (α)}} (36)

Γijab ∗ [Lijkl [Γklrs ∗N (β)]] = F−1{Γ̂ijabF{LijklF−1{Γ̂klrsF{N (β)}}}} (37)

where F and F−1 respectively stand for forward and inverse FFT operations. Since N (α) is known,
this operation is very efficient due to the superior scaling properties of FFT algorithms. The
remainder of the integrals in force and stiffness matrix expressions are evaluated numerically using
the piecewise-constant trapezoidal rule.

The cost of the proposed method depends on the way the linear system is constructed and solved.
We have used the discrete weak form shown in Eq. 29 to arrive at the linear system (Eq. 31). Upon
closer examination, we observe that one needs to perform 362 ×Nph FFTs and integrate over each
partition individually. One alternative derivation is to combine discrete representation of generalized
test and trial functions (Eq. 25) and the weak form shown in Eq. 22 to arrive at the following
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discrete weak form∑
α

∑
β

w
⋆,(α)
ab

∫
Θ

[
N (α) ∗ Γijab

]
Lijkl

[
Γklrs ∗N (β)

]
dyG⋆,(β)

rsmn =

−
∑
α

w
⋆,(α)
ab

∫
Θ

[N (α) ∗ Γijab]Lijmndy. (38)

Using Eq. 38 requires performing 36×Nph FFTs and integrating over the entire microstructural
domain to arrive at the stiffness matrix in Eq. 31. It is also possible to explore matrix-free iterative
methods as shown in Ref. [3, 12] to circumvent the need to construct and store the stiffness matrix
altogether.

3.2 Interaction tensors

Following similar arguments and procedure as discussed above, we arrive at the following discretized
weak form the IFP for the interaction tensors (i.e., Eq. 10a)∑

α

∑
β

w
⋆,(α)
ab

∫
Θ(α)

Γijab ∗ [Lijkl [Γklrs ∗N (β)]]dy g⋆,(βγ)rsmn =
∑
α

w
⋆,(α)
ab

∫
Θ(γ)

Γ
(α)
ijab Lijmndy. (39)

Discretization of Eq. 39 results in the following system in matrix notation:
K(11) K(12) · · · K(1Nph)

K(21) K(22) · · · K(2Nph)

...
... . . . ...

K(Nph1) K(Nph2) · · · K(NphNph)




g⋆(11) . . . g⋆(1Nph)

g⋆(21) . . . g⋆(2Nph)

...
...

g⋆(Nph1) . . . g⋆(NphNph)

 =


F (11) . . . F (1Nph)

F (21) . . . F (2Nph)

...
...

F (Nph1) . . . F (NphNph)


(40)

in which, the matrix entries, K(βγ), g⋆,(βγ) and F (βγ) respectively denote the stiffness, unknown
and force sub-matrices. Hence, in 3D, the size of each sub-matrix is 6×6. The system of linear
equations are evaluated for the incompatible g⋆,(βγ) tensors. It is worthy of note that the stiffness
matrix in Eq. 40 is identical to that in Eq. 31. Therefore, the two systems can be combined to solve
for 6× (Nph + 1) unknown coefficients of the localization and interaction tensors.

Extraction of the compatible part of the interaction tensors is then performed as follows

P
(βγ)
ijmn := g

(βγ)
ijmn =

∑
α

Γ
(βα)
ijrs g

⋆,(αγ)
rsmn . (41)

The simplicity of Eq. 41 is because the same discretization is adopted in the spectral method as in
the partitioning used in the ROM. In general, it is possible to adopt separate discretizations in the
evaluation of the interactions tensors and ROM partitioning. A possible motivation for adopting
separate discretizations could be to improve the accuracy of coefficient tensor computation (by using
a more refined partitioning for the spectral method) at some additional cost.
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Figure 1: 2-grain polycrystal geometry.

Figure 2: a) Computed interaction field, P (1)
3333(y), and b) computed interaction field, P (2)

3333(y).

4 Numerical experiments

The accuracy of the proposed spectral method as well as the scalability with respect to number
of grid points and number of phases in the microstructure is assessed using numerical examples.
Microstructures were generated using the Neper software [54]. Generated microstructures are
voxel images and can be directly used as input to the spectral method, which employs voxel-based
discretization needed for the Fast Fourier transforms in Eqs. 36 and 37. The solution of the IFPs
using the finite element method (FEM) serves as the basis of accuracy and scalability assessment.
In the FEM simulations, each voxel is split into six linear tetrahedral elements, and periodicity is
enforced as described in Ref. [29]. The reference code has been implemented in Fortran, while the
spectral method is implemented as a Python script using Numpy [55], Scipy [56], and Numba [57]
libraries. The reference simulations therefore have a speed advantage over the proposed approach
due to the speed differences between the programming languages.

The accuracy of the proposed spectral method relative to FEM is quantified based on the average

12



e(G(β)) e(P (βα)) e(L)

3.48436E-04 % 6.44938E-06 % 2.92416E-05 %

Table 1: 2-grain case: errors in polarization, interaction tensors and homogenized moduli.

error measure, e, for some tensorial quantity, BSp, computed using following formula

e(BSp) =

√ ∑
αβ...,ijkl...

(
B

Sp,(αβ... )
ijkl... −B

FE,(αβ... )
ijkl...

)2

√ ∑
αβ...,ijkl...

(B
FE,(αβ... )
ijkl... )2

(42)

where BSp is the quantity computed using the proposed spectral method and BFE is from the
reference solution.

In all examples discussed below, the microstructures are taken to be made of face-centered cubic
(FCC) polycrystals. The elastic properties are set to those for pure Aluminum: C11 = 108.2 GPa,
C12 = 61.3 GPa, and C44 = 28.5 GPa. The phase property contrast comes from different crystal
orientations of the phases within a polycrystal, unless otherwise stated.

4.1 2-grain and 10-grain microstructures

A 2-grain, layered polycrystal microstructure is considered first due to the simplicity of the geometry
and, by extension, simplicity of the resulting response fields. The microstructure considered is shown
in Fig. 1. The discretization consists of 125 voxels. The volume fractions of phases (1) and (2) are
60% and 40%, respectively. The orientations of the phases in terms of Bunge-Euler angles are given
as (101.98, 145.03, 249.44) and (131.73, 86.26, 229.29) for phase one and two, respectively. The
errors for the polarization and interaction tensors of the proposed method compared to the FEM
solution are shown in Table 1. Homogenized moduli is given as

Lijkl =
1

|Θ|

∫
Θ

Amnij(y)Lmnab(y)Aabkl(y)dy. (43)

The spectral method accurately computes the IFPs in this case, as evidenced by the small errors.
Due to the simplified geometry, the polarization and interaction tensor fields are piecewise constant
as observed in Fig 2.

A more complicated example with a 10-grain polycrystals is considered next to investigate the
effect of mesh (i.e., voxel) size. Generated polycrystals are shown in Fig. 3. The microstructures
are nearly identical, and discretized using 8,000, 15,625, and 125,000 voxels. The errors of the
polarization and interaction tensors computed using the proposed spectral approach for all resolutions

13



Figure 3: 10 grain polycrystal geometry with a) 8,000 voxels, b) 15,625 voxels, and c) 125,000 voxels,
and d) pole figure showing grain orientations.

Figure 4: Interaction field P
(1)
3333 visualized over 10 grain polycrystal geometry with 8,000 voxels.

Fields are computed using a) finite element and b) reduced order spectral methods.
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are measured relative to the finest finite element solution (for 125,000 voxel problem) and are reported
in Table 2.

The errors in the homogenized elastic stiffness tensor are negligible relative to the polarization and
interaction tensors (approximately 0.01%). For all three quantities, the errors reduce with increased
mesh refinement. When compared with the 2-grain microstructure, there is a marked increase in
errors. The reason for the higher errors is the fact that localization and interaction tensor fields are
no longer piecewise constant as shown in Fig. 4 and therefore reduced order approximation (piecewise
constant approximation) does not recover exact fields. Still, the developed method captures essential
features of the interaction field (compared to finite element solution) with some discrepancies in the
grain boundary regions.

Although error measures give a sense of the accuracy of the method, a more consequential
assessment could be made based on prediction of multiscale nonlinear responses using the ROM.
To this end, the accuracy of the method is further assessed by comparing the ROM response using
localization and interaction tensors computed from the spectral and the finite element methods.

We consider a cubic domain as the macroscopic structure. The domain is discretized using a
single reduced-integration hexahedral element. The domain is subjected to six separate cases of
monotonic loading as shown in the inset figures of Fig. 5. For each load case, 0.05 mm deformation
is applied to the nodes shown in the Fig. 5a-f within a period of one second. The response of
the 10-grain polycrystal is evaluated at the integration point at each increment of the nonlinear
simulation. Viscoplastic flow rule and hardening rule as well as the viscoplastic properties for pure
aluminum are used following Refs. [29, 58]. The resulting stress-strain response is shown in Fig.
5a-c for tensile tests and Fig. 5d-f for shear tests. The elastic-viscoplastic macroscopic response of
the ROM using coefficient tensors from the spectral and the reference approaches are near identical
for both tensile and shear tests. For completeness, microscale average Von Mises stress distribution
(σ(β)) for tensile loading in X direction is shown in Fig. 6. As observed from the figure, the errors in
microscale stress distribution are minor suggesting that underlying reduced order approximation in
the IFPs is not significantly affecting the performance of the reduced order model.

The computational efficiency of the proposed spectral method relative to the reference FEM for
ROM construction was also studied. The computation time for the reference (tFE) and the proposed
(tSp) ROM construction stages are compared in Table 3 for the 10 grain polycrystal. For 125,000
voxels, the spectral code computes the coefficient tensors in approximately 23 seconds while the
finite element code ran in approximately 5 hours, resulting in a speed-up of more than 800 fold.
Majority of the finite element computation time is spent on constructing the stiffness matrix and
computing the forcing vectors for each partition (i.e., right hand side in Eq. 40). Spectral code scales
well with increasing grid size while increasing mesh size creates considerable decrease in efficiency of
finite element code. For the discretization in the order of a half million voxels, the reference FE
code is very expensive and the simulation did not complete within a reasonable period of time.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: 10-grain polycrystal under monotonic a) tension in X, b) tension in Y, c) tension in Z, d)
shear in XY, e) shear in XZ, and f) shear in YZ.
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Voxel
number

e(G(β)) e(P (βα)) e(L)

8,000 4.724 % 4.416 % 0.018 %
15,625 4.467 % 4.071 % 0.013 %
125,000 3.553 % 3.121 % 0.003 %

Table 2: 10-grain case: errors in localization and interaction tensors for the three grids considered.

Voxel
number

tSp tFE Speedup

8,000 9.23 s 130 s 14.08
15,625 10.25 s 383 s 37.36
125,000 23.18 s 18,727 s 808.03
512,000 95.86 s - -

Table 3: 10-grain case: total time spent on finite element and spectral simulations

Figure 6: Comparison of microscale Von Mises stress (σ(β)) distributions for 10-grain polycrystal
under tensile loading in X direction at 5% strain.
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Figure 7: a) 25-grain polycrystal, b) 50-grain polycrystal, c) 75-grain polycrystal, d) 100-grain
polycrystal, and e) 150-grain polycrystal.

4.2 Effect of microstructure size

The performance of spectral method is further assessed with increasing number of grains/ROM
parts. Larger polycrystals with 25, 50, 75, 100, and 150 grains were generated as shown in Fig. 7.
Total time consumed by the spectral method for constructing localization and interaction tensors is
shown in Table 4. The number of voxels between the microstructures is kept approximately constant
to the extent permitted by the microstructure generation software, Neper. For 100 grain polycrystal,
it takes less than four minutes to construct the ROM, whereas in the reference simulation, memory
limitation requires that computed solutions need to be transferred back-and-forth between the hard
drive and the random access memory, drastically increasing the computation time. The accuracy of
the method is similar to the case of 10-grain polycrystal. This result indicates that piecewise constant
discretization is enough for constructing ROMs to sufficient accuracy for single-phase polycrystals. It
is worth noting that for extreme number of phases or partitions in the microstructure, the efficiency
of the spectral method should start to drop. This is due to the fact that resulting stiffness matrix (see
Eq. 31 and Eq. 40) is dense. Therefore, for very large scale problems (e.g., >10,000 phases), it may
be necessary to modify the proposed approach. For instance, enforcement of sparsity by neglecting
certain interactions as proposed in Ref. [40] may provide efficiency enhancements. Matrix-free
iterative methods, as described in Ref. [12, 3], offer an alternative approach in which convolutions
are employed to perform matrix-vector products, thereby eliminating the requirement to store the
stiffness matrix.
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Grain
number

tSp tFE Voxel
number

Speedup e(G(β)) e(P (βα)) e(L)

25 26.0 s 33,256 s 157,464 612.3 3.885 % 3.540 % 0.002 %
50 86.5 s 18,574 s 117,649 254.9 3.191 % 3.510 % 0.001 %
75 120.0 s 19,268 s 117,649 160.6 4.458 % 4.530 % 0.004 %
100 210.7 s 208,533 s 157,464 989.8 4.381 % 4.497 % 0.003 %
150 339.0 s - 117,649 - - - -

Table 4: Scaling of the spectral method with increasing number of grains.

r e(G(β)) e(P (βα)) e(L)

1 4.467 % 4.071 % 0.013 %
2 6.254 % 5.167 % 0.095 %
5 8.699 % 7.210 % 0.235 %
10 16.345 % 13.657 % 1.541 %

Table 5: Errors of polarization and interaction tensors with changing value of contrast ratio, r.

4.3 Effect of phase contrast

Heterogeneity in the polycrystalline materials is induced by the differences in the elastic modulus
along different crystal orientations. For most materials, the property contrast between neighboring
crystals is relatively low. Higher property contrasts can develop due to the presence of additional
hard/soft phases in the microstructure. For example, α and β phases in titanium alloys have phase
contrast of approximately two in crystal coordinate system [41, 59]. Phase contrast can reach 40-50
for other cases such as polymer composite materials reinforced with carbon fibers [60, 61].

In this section, we study the effect of phase property contrast on the accuracy of the spectral
method. To construct such an example, the 10-grain polycrystal discretized using 15,625 voxels is
used. High property contrast is introduced into the microstructure by rescaling the elastic constants
of a grain near the center of the microstructure volume shown in Fig 8. Specifically, we increase the
cubic elastic constants using following formulas Ĉ11 = rC11, Ĉ12 = rC12, and Ĉ44 = rC44 where r is
the contrast ratio. The errors in polarization and interaction tensors are shown in Table 5. Errors
for homogenized moduli appear to be relatively small for all phase contrasts considered. However,
accuracy of polarization and interaction tensors decreases with increasing value of r indicating effect
of higher phase contrast on the accuracy of the spectral method. We also report the response of
the ROM for the phase contrast of r = 10 under tensile loading as shown in Fig. 9. Although
macroscale response of the ROM and microscale average Von Mises stresses are indistinguishable,
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Figure 8: 10-grain polycrystal (transparent) with high-contrast grain in the center.

there are higher errors observed in individual microscale average stress component σ(β)
11 . The highest

error of about 4.8% occurs in microscale stresses of grain 10 which is the grain with elevated elastic
constants. There are two levels of discretizations that are used in the reduced order spectral method:
a regular voxel grid for FFT algorithms and piecewise uniform partitioning for incompatible strain
fields. Majority of the discrepancy observed for increasing phase contrast is coming from coarse
discretization of the incompatible strain fields (Eq. 25) and can be controlled in a similar way to
finite element discretizations. For instance, using more partitions around regions with high phase
contrast (similar to h-refinement) or using higher order basis functions to represent the variation of
the strain fields with the partitions (similar to p-refinement) could mitigate the errors associated with
high property contrasts. High phase contrast could also amplify the Gibbs phenomenon necessitating
introduction of modified projection operators as discussed in Ref. [8].

5 Conclusion

A reduced order spectral method for computation of localization and interaction tensors for reduced
order computational homogenization was developed. The proposed method does not make any
assumption regarding the geometry of the phases, phase-to-phase interactions, or the introduction
of a reference stiffness parameter. The accuracy of macro and micro-scale quantities of the proposed
method has been demonstrated for singe-phase polycrystals indicating sufficiency of the reduced
order approximation. Proposed method achieves a speedup of higher than an order of magnitude
over finite element method.
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(a) (b)

(c)

Figure 9: Comparison of a) macroscale stress-strain response of a 10 grain polycrystal (with
contrast of r = 10) under tensile loading in X direction for ROM constructed using FE and spectral
methods, b) corresponding microscale grain-wise average Von Mises stresses (σ(β)) at 5% strain and
c) corresponding microscale grain-wise average normal stresses (σ(β)

11 ) at 5% strain.
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On the other hand, accuracy of the method decreases with increasing phase contrast. This issue
can be addressed by adding additional degrees of freedom with the advantage of using non-uniform
basis functions without restriction to elementary (finite-element type) geometries [18, 22, 19]. Further,
the scalability of the method degrades with increasing number of partitions due to storage and lack
of efficient algorithms for dense linear systems. However, iterative methods in conjunction with FFT
algorithms for convolutions could be used to improve efficiency of the method [12].
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Appendix A Derivation of the compatibility operator

The resulting expression for the compatibility operator is stated by Milton and Kohn [14]. For
completeness, we provide one way to arrive at the resulting expression. Consider Helmholtz
decomposition for a generalized polarization strain tensor given as

G⋆
ijmn(y) = Gijmn(y) +Gdivfree

ijmn (y) +Gijmn (44)

where first term is curl-free (compatible) zero-mean field, second term is divergence-free (incompatible)
zero-mean field, and third term is a constant field representing the average. The operator Γ needs to
be constructed such that a generalized polarization strain tensor, G⋆, is mapped into its compatible
zero-mean part, G. Note that divergence of both sides is given by ∇·G⋆ = ∇·G. On the other hand,
by definition of G we have ∇×G = 0. One can use these two properties to establish a relationship
between the whole tensor, G⋆, and the curl-free zero-mean part, G. The classical compatibility
relationship can be written as follows

Gab,cd −Gcb,ad −Gad,cb +Gcd,ab = 0. (45)

Note that indices m and n have been dropped for the sake of compactness. The divergence with
respect to a and b indices is given by

Gab,cdab −Gcb,adab −Gad,cbab +Gcd,abab = 0. (46)

The expression above can be transformed to frequency space such that

Ĝabξcξdξaξb − Ĝcbξbξd||ξ||2 − Ĝadξcξa||ξ||2 + Ĝcd||ξ||4 = 0. (47)

Note that the G tensor in the first three terms can be replaced with G⋆ due to divergence relationship
given earlier such that

Ĝ⋆
abξcξdξaξb − Ĝ⋆

cbξbξd||ξ||2 − Ĝ⋆
adξcξa||ξ||2 + Ĝcd||ξ||4 = 0. (48)

We can then isolate the curl-free part and express it in terms of G⋆ as

Ĝcd =
1

||ξ||2
(Ĝ⋆

cbξbξd + Ĝ⋆
adξcξa)−

1

||ξ||4
Ĝ⋆

abξcξdξaξb. (49)

Considering symmetry of Ĝ⋆ one can rewrite the following relationship as

Ĝcd =

[
1

2||ξ||2
(δcaξbξd + δcbξaξd + δbdξcξa + δadξcξb)−

1

||ξ||4
ξcξdξaξb

]
Ĝ⋆

ab (50)

Ĝcd = Γ̂cdabĜ
⋆
ab (51)

where the operator Γ acts as a map into zero-mean compatible space of strains. Using the convolution
theorem, we can rewrite the result in real space as

Gcd = Γcdab ∗G⋆
ab. (52)
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