Theta-type congruences for partitions and colored partitions

Olivia Beckwith, Tulane

Joint works with S. Ahlgren, M. Raum;
A. Caione, J. Chen, M. Diluia, O. Gonzalez, J. Su

May 23, 2022

Definition

A partition of n is a nonincreasing sequence of positive integers whose sum is n.

The number of partitions of n is $p(n)$.

Example

The partitions of 4 :

$$
\begin{aligned}
& 4 \\
& 3+1 \\
& 2+2 \\
& 2+1+1 \\
& 1+1+1+1
\end{aligned}
$$

Therefore $p(4)=5$.

Definition

An r-colored partition of n is a partition in which each term is assigned one of r colors. The number of r-colored partitions of n is $p_{r}(n)$.

Example

The two colored partitions of 2 :

1. 2
2. 2
3. $1+1$
4. $1+1$
5. $1+1$

So $p_{2}(2)=5$.

Congruences

A congruence for (r-colored) partitions is a property of the form

$$
p_{r}(A n+t) \equiv 0 \quad(\bmod \ell)
$$

for all integers n, where A, t are fixed integers.

A congruence for (r-colored) partitions is a property of the form

$$
p_{r}(A n+t) \equiv 0 \quad(\bmod \ell)
$$

for all integers n, where A, t are fixed integers.

In this talk ℓ is prime.

The Ramanujan Congruences

Ramanujan (1921)

For all n,

$$
\begin{aligned}
& p(5 n+4) \equiv 0 \quad(\bmod 5) \\
& p(7 n+5) \equiv 0 \quad(\bmod 7), \\
& p(11 n+6) \equiv 0 \quad(\bmod 11) .
\end{aligned}
$$

The Ramanujan Congruences

Ramanujan (1921)

For all n,

$$
\begin{aligned}
& p(5 n+4) \equiv 0 \quad(\bmod 5) \\
& p(7 n+5) \equiv 0 \quad(\bmod 7), \\
& p(11 n+6) \equiv 0 \quad(\bmod 11) .
\end{aligned}
$$

- Proved by Ramanujan using the Eisenstein series E_{2}, E_{4}, E_{6} and their derivatives.

The Ramanujan Congruences

Ramanujan (1921)

For all n,

$$
\begin{aligned}
& p(5 n+4) \equiv 0 \quad(\bmod 5) \\
& p(7 n+5) \equiv 0 \quad(\bmod 7), \\
& p(11 n+6) \equiv 0 \quad(\bmod 11) .
\end{aligned}
$$

- Proved by Ramanujan using the Eisenstein series E_{2}, E_{4}, E_{6} and their derivatives.
- Later explained combinatorially via the "rank" function of Dyson (1944) and the "crank" function of Andrews and Garvan (1988).

Other congruences?

Question

Other than Ramanujan's three congruences, are there any primes ℓ and integers t such that $p_{r}(\ell n+t) \equiv 0(\bmod \ell)$ for all n ?

Question

Other than Ramanujan's three congruences, are there any primes ℓ and integers t such that $p_{r}(\ell n+t) \equiv 0(\bmod \ell)$ for all n ?

- $r=1$: No, by work of Ahlgren and Boylan (2003).

Other congruences?

Question

Other than Ramanujan's three congruences, are there any primes ℓ and integers t such that $p_{r}(\ell n+t) \equiv 0(\bmod \ell)$ for all n ?

- $r=1$: No, by work of Ahlgren and Boylan (2003).
- $r>1$: Many examples are known.

other congruences?

Question

Other than Ramanujan's three congruences, are there any primes ℓ and integers t such that $p_{r}(\ell n+t) \equiv 0(\bmod \ell)$ for all n ?

- $r=1$: No, by work of Ahlgren and Boylan (2003).
- $r>1$: Many examples are known.
- We call a congruence of this form a Ramanujan-type congruence.

Ramanujan-type congruences

- Kiming-Olsson (1992): There are Ramanujan-type congruences when $\ell \mid r, r \equiv-1(\bmod \ell)$, or $r \equiv-3(\bmod \ell)$.

```
Ramanujan-type congruences
```

- Kiming-Olsson (1992): There are Ramanujan-type congruences when $\ell \mid r, r \equiv-1(\bmod \ell)$, or $r \equiv-3(\bmod \ell)$.
- Boylan (2000) and Dawsey-Wagner (2016): Found more Ramanujan-type congruences using CM modular forms.

Ramanujan-type congruences

- Kiming-Olsson (1992): There are Ramanujan-type congruences when $\ell \mid r, r \equiv-1(\bmod \ell)$, or $r \equiv-3(\bmod \ell)$.
- Boylan (2000) and Dawsey-Wagner (2016): Found more Ramanujan-type congruences using CM modular forms.
- Rolen-Tripp-Wagner (2022): Generalized the crank function to combinatorially explain many of these congruences.

Non-Ramanujan-type congruences?

- Atkin (1967): Found congruences for small ℓ of the form $p\left(\ell Q^{3} n+t\right) \equiv 0(\bmod \ell)$.

Non-Ramanujan-type congruences?

- Atkin (1967): Found congruences for small ℓ of the form $p\left(\ell Q^{3} n+t\right) \equiv 0(\bmod \ell)$.
- Ono (2000): For any $\ell \geq 5$, there are infinitely many primes Q and integers t with $\left(\frac{1-24 t}{\ell}\right)=0$ and $p\left(\ell Q^{4} n+t\right) \equiv 0(\bmod \ell)$.
- Atkin (1967): Found congruences for small ℓ of the form $p\left(\ell Q^{3} n+t\right) \equiv 0(\bmod \ell)$.
- Ono (2000): For any $\ell \geq 5$, there are infinitely many primes Q and integers t with $\left(\frac{1-24 t}{\ell}\right)=0$ and $p\left(\ell Q^{4} n+t\right) \equiv 0(\bmod \ell)$.
- Ahlgren-Ono (2001): Generalized this for $\left(\frac{1-24 t}{\ell}\right)=-1$.
- Atkin (1967): Found congruences for small ℓ of the form $p\left(\ell Q^{3} n+t\right) \equiv 0(\bmod \ell)$.
- Ono (2000): For any $\ell \geq 5$, there are infinitely many primes Q and integers t with $\left(\frac{1-24 t}{\ell}\right)=0$ and $p\left(\ell Q^{4} n+t\right) \equiv 0(\bmod \ell)$.
- Ahlgren-Ono (2001): Generalized this for $\left(\frac{1-24 t}{\ell}\right)=-1$.
- Treneer (2006): Feneralized Ono and Ahlgren's work to other modular forms.
- Atkin (1967): Found congruences for small ℓ of the form $p\left(\ell Q^{3} n+t\right) \equiv 0(\bmod \ell)$.
- Ono (2000): For any $\ell \geq 5$, there are infinitely many primes Q and integers t with $\left(\frac{1-24 t}{\ell}\right)=0$ and $p\left(\ell Q^{4} n+t\right) \equiv 0(\bmod \ell)$.
- Ahlgren-Ono (2001): Generalized this for $\left(\frac{1-24 t}{\ell}\right)=-1$.
- Treneer (2006): Feneralized Ono and Ahlgren's work to other modular forms.
- These works used the Shimura correspondence and Galois representations associated to modular forms of integral weight.

Non-Ramanujan-type congruences?

- Atkin (1967): Found congruences for small ℓ of the form $p\left(\ell Q^{3} n+t\right) \equiv 0(\bmod \ell)$.
- Ono (2000): For any $\ell \geq 5$, there are infinitely many primes Q and integers t with $\left(\frac{1-24 t}{\ell}\right)=0$ and $p\left(\ell Q^{4} n+t\right) \equiv 0(\bmod \ell)$.
- Ahlgren-Ono (2001): Generalized this for $\left(\frac{1-24 t}{\ell}\right)=-1$.
- Treneer (2006): Feneralized Ono and Ahlgren's work to other modular forms.
- These works used the Shimura correspondence and Galois representations associated to modular forms of integral weight.
- Ahlgren-Allen-Tang (2022): provide examples similar to Atkin's using different properties of these Galois representations.

Classifying congruences

Classifying congruences

What restrictions are there on the values A, t, r, ℓ for which $p_{r}(A n+t) \equiv 0(\bmod \ell)$ for all n ?

Classifying congruences

What restrictions are there on the values A, t, r, ℓ for which $p_{r}(A n+t) \equiv 0(\bmod \ell)$ for all n ?

- Radu (2012): If $r=1$, then $\ell \neq 2,3$.

What restrictions are there on the values A, t, r, ℓ for which $p_{r}(A n+t) \equiv 0(\bmod \ell)$ for all n ?

- Radu (2012): If $r=1$, then $\ell \neq 2,3$.
- We have two useful restrictions that were conjectured by Ahlgren and Ono for $p(n)$ (2001), proved by Radu (2013), and generalized to other eta-quotients by Andersen (2014):

Classifying congruences

What restrictions are there on the values A, t, r, ℓ for which $p_{r}(A n+t) \equiv 0(\bmod \ell)$ for all n ?

- Radu (2012): If $r=1$, then $\ell \neq 2,3$.
- We have two useful restrictions that were conjectured by Ahlgren and Ono for $p(n)$ (2001), proved by Radu (2013), and generalized to other eta-quotients by Andersen (2014):
- $\ell \mid A$.

Classifying congruences

What restrictions are there on the values A, t, r, ℓ for which $p_{r}(A n+t) \equiv 0(\bmod \ell)$ for all n ?

- Radu (2012): If $r=1$, then $\ell \neq 2,3$.
- We have two useful restrictions that were conjectured by Ahlgren and Ono for $p(n)$ (2001), proved by Radu (2013), and generalized to other eta-quotients by Andersen (2014):
- $\ell \mid A$.
- $\left(\frac{r(r-24 t)}{\ell}\right) \neq 1$.

Theta-type congruences

- In all known non-Ramanujan-type congruences with a maximal arithmetic progression $\{A n+t\}$, one has $A=\ell \cdot Q^{n}$, where Q is prime and $n \geq 3$.

Theta-type congruences

- In all known non-Ramanujan-type congruences with a maximal arithmetic progression $\{A n+t\}$, one has $A=\ell \cdot Q^{n}$, where Q is prime and $n \geq 3$.

Question

Do there exist distinct primes $Q, \ell \geq 5$ and integers t such that

$$
\begin{equation*}
p_{r}(\ell Q n+t) \equiv 0 \quad(\bmod \ell) . \tag{1}
\end{equation*}
$$

for all n ?

Theta-type congruences

- In all known non-Ramanujan-type congruences with a maximal arithmetic progression $\{A n+t\}$, one has $A=\ell \cdot Q^{n}$, where Q is prime and $n \geq 3$.

Question

Do there exist distinct primes $Q, \ell \geq 5$ and integers t such that

$$
\begin{equation*}
p_{r}(\ell Q n+t) \equiv 0 \quad(\bmod \ell) \tag{1}
\end{equation*}
$$

for all n ?

- When $r=1$ and $\ell=2,3$, the answer is no by work of Radu.

Theta-type congruences

- In all known non-Ramanujan-type congruences with a maximal arithmetic progression $\{A n+t\}$, one has $A=\ell \cdot Q^{n}$, where Q is prime and $n \geq 3$.

Question

Do there exist distinct primes $Q, \ell \geq 5$ and integers t such that

$$
\begin{equation*}
p_{r}(\ell Q n+t) \equiv 0 \quad(\bmod \ell) . \tag{1}
\end{equation*}
$$

for all n ?

- When $r=1$ and $\ell=2,3$, the answer is no by work of Radu.
- We know that (1) holds trivially if $p_{r}(\ell n+t) \equiv 0(\bmod \ell)$ is a Ramanujan-type congruence.

Theta-type congruences

- In all known non-Ramanujan-type congruences with a maximal arithmetic progression $\{A n+t\}$, one has $A=\ell \cdot Q^{n}$, where Q is prime and $n \geq 3$.

Question

Do there exist distinct primes $Q, \ell \geq 5$ and integers t such that

$$
\begin{equation*}
p_{r}(\ell Q n+t) \equiv 0 \quad(\bmod \ell) . \tag{1}
\end{equation*}
$$

for all n ?

- When $r=1$ and $\ell=2,3$, the answer is no by work of Radu.
- We know that (1) holds trivially if $p_{r}(\ell n+t) \equiv 0(\bmod \ell)$ is a Ramanujan-type congruence.
- We call congruences of the form of (1) that do not follow trivially from Ramanujan-type congruences theta-type congruences.

Theta-type congruences

Do theta-type congruences exist?

Do theta-type congruences exist?

- $r=1$: Work of Ahlgren-B-Raum implies that the answer is probably not, based on numerical data and a result that such congruences are expected to be "scarce". These results will be described in the "Scarcity" section of the talk.

Theta-type congruences

Do theta-type congruences exist?

- $r=1$: Work of Ahlgren-B-Raum implies that the answer is probably not, based on numerical data and a result that such congruences are expected to be "scarce". These results will be described in the "Scarcity" section of the talk.
- $r>1$: Work of BCCDGS: infinitely many theta-type congruences exist. This will be described in the "Examples" section.

The Dedekind Eta Function

$q:=e^{2 \pi i z}$, where $z \in \mathbb{H}:=\{x+i y: x, y \in \mathbb{R}, y>0\}$.

The Dedekind Eta Function

$q:=e^{2 \pi i z}$, where $z \in \mathbb{H}:=\{x+i y: x, y \in \mathbb{R}, y>0\}$.

$$
\eta(z):=q^{1 / 24} \prod_{n \geq 1}\left(1-q^{n}\right)
$$

The Dedekind Eta Function

$q:=e^{2 \pi i z}$, where $z \in \mathbb{H}:=\{x+i y: x, y \in \mathbb{R}, y>0\}$.

$$
\eta(z):=q^{1 / 24} \prod_{n \geq 1}\left(1-q^{n}\right)
$$

Transformation Law

For all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$,

$$
\eta\left(\frac{a z+b}{c z+d}\right)=\nu_{\eta}(\gamma)(c z+d)^{1 / 2} \eta(z) .
$$

Here

$$
\nu_{\eta}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)= \begin{cases}\left(\frac{d}{|c|}\right) e\left(\frac{1}{24}\left((a+d) c-b d\left(c^{2}-1\right)-3 c\right)\right), & 2 \nmid c, \\
\left(\frac{c}{d}\right) e\left(\frac{1}{24}\left((a+d) c-b d\left(c^{2}-1\right)+3 d-3-3 c d\right)\right), & 2 \mid c,\end{cases}
$$

with $e(x)=e^{2 \pi i x}$.

Generating function

$$
\begin{aligned}
\sum_{n=0}^{\infty} p_{r}(n) q^{n} & =\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-r} \\
& =q^{r / 24} \eta^{-r}(z)
\end{aligned}
$$

Modular forms with the ν_{η} multiplier system

Let $k \in \frac{1}{2} \mathbb{Z}$.
$M_{k}\left(\nu_{\eta}^{n}\right)$ is the space of $f: \mathbb{H} \rightarrow \mathbb{C}$ such that

1. f is holomorphic,
2. $f(z)$ is bounded as $\operatorname{Im}(z) \rightarrow \infty$, and
3. for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})$, we have

$$
(f \mid \gamma)(z):=(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right)=\nu_{\eta}^{n}(\gamma) f(z)
$$

Modular forms with the ν_{η} multiplier system

Let $k \in \frac{1}{2} \mathbb{Z}$.
$M_{k}\left(\nu_{\eta}^{n}\right)$ is the space of $f: \mathbb{H} \rightarrow \mathbb{C}$ such that

1. f is holomorphic,
2. $f(z)$ is bounded as $\operatorname{Im}(z) \rightarrow \infty$, and
3. for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})$, we have

$$
(f \mid \gamma)(z):=(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right)=\nu_{\eta}^{n}(\gamma) f(z)
$$

The $f \in M_{k}\left(\nu_{\eta}^{n}\right)$ are weight k modular forms with respect to ν_{η}^{n}.

Cusp forms with multiplier system

$S_{k}\left(\nu_{\eta}^{n}\right)$ is the space of $f \in M_{k}\left(\nu_{\eta}^{n}\right)$ such that

$$
\lim _{\operatorname{Im}(\tau) \rightarrow \infty} f(\tau)=0
$$

Cusp forms with multiplier system

$S_{k}\left(\nu_{\eta}^{n}\right)$ is the space of $f \in M_{k}\left(\nu_{\eta}^{n}\right)$ such that

$$
\lim _{\operatorname{Im}(\tau) \rightarrow \infty} f(\tau)=0
$$

The functions $f \in S_{k}\left(\nu_{\eta}^{n}\right)$ are weight k cusp forms with respect to ν_{η}^{n}.

Fourier series

Any $f \in M_{k}\left(\nu_{\eta}^{n}\right)$ has a Fourier expansion of the form

$$
f(z)=\sum_{n=0}^{\infty} a(n) q^{n / 24}
$$

Fourier series

Any $f \in M_{k}\left(\nu_{\eta}^{n}\right)$ has a Fourier expansion of the form

$$
f(z)=\sum_{n=0}^{\infty} a(n) q^{n / 24}
$$

The following linear maps act nicely on modular forms:

$$
\begin{gathered}
\left.\left(\sum_{n} a(n) q^{\frac{n}{24}}\right) \right\rvert\, U_{m}:=\sum_{n} a(m n) q^{\frac{n}{24}} \quad \text { and } \left.\quad\left(\sum_{n} a(n) q^{\frac{n}{24}}\right) \right\rvert\, V_{m}:=\sum_{n} a(n) c \\
\left(\sum_{n} a(n) q^{\frac{n}{24}}\right) \otimes \chi:=\sum \chi(n) a(n) q^{\frac{n}{24}} .
\end{gathered}
$$

where χ is a Dirichlet character.

Fourier series

Any $f \in M_{k}\left(\nu_{\eta}^{n}\right)$ has a Fourier expansion of the form

$$
f(z)=\sum_{n=0}^{\infty} a(n) q^{n / 24}
$$

The following linear maps act nicely on modular forms:

$$
\begin{gathered}
\left.\left(\sum_{n} a(n) q^{\frac{n}{24}}\right) \right\rvert\, U_{m}:=\sum_{n} a(m n) q^{\frac{n}{24}} \quad \text { and } \left.\quad\left(\sum_{n} a(n) q^{\frac{n}{24}}\right) \right\rvert\, V_{m}:=\sum_{n} a(n) c \\
\left(\sum_{n} a(n) q^{\frac{n}{24}}\right) \otimes \chi:=\sum \chi(n) a(n) q^{\frac{n}{24}} .
\end{gathered}
$$

where χ is a Dirichlet character.

- These are useful for restricting to n in an arithmetic progression.

Hecke Operators

For $Q \geq 5$ prime and $(r, 24)=1$, we have the index Q^{2} Hecke operator

$$
T_{Q^{2}}: M_{k / 2}\left(\nu_{\eta}^{r}\right) \rightarrow M_{k / 2}\left(\nu_{\eta}^{r}\right) .
$$

given by

$$
\begin{aligned}
& \left(\sum_{n} a(n) q^{n / 24}\right) \mid T_{Q^{2}}= \\
& \sum_{n}\left(a\left(Q^{2} n\right)+Q^{k-\frac{3}{2}}\left(\frac{(-1)}{Q}\right)^{k-\frac{1}{2}}\left(\frac{12 n}{Q}\right) a(n)+Q^{2 k-2} a\left(\frac{n}{Q^{2}}\right)\right) q^{\frac{n}{24}} \\
& =f\left|U_{Q^{2}}+Q^{k-\frac{3}{2}}\left(\frac{-1}{Q}\right)^{k-\frac{1}{2}}\left(\frac{12}{Q}\right) f \otimes \chi_{Q}+Q^{2 k-2} f\right| V_{Q^{2}}
\end{aligned}
$$

Modular forms modulo ℓ

Let $\ell \geq 5$ be prime and let $k \in \mathbb{Z}$.

$$
\begin{aligned}
M_{k}\left(\mathbb{F}_{\ell}\right) & :=M_{k}(1) \cap \mathbb{F}_{\ell}[[q]] \\
& =\left\{\text { reduction modulo } \ell \text { of all } f \in M_{k}(1) \text { with } \ell \text {-integral coefficients. }\right\}
\end{aligned}
$$

Modular forms modulo ℓ

Let $\ell \geq 5$ be prime and let $k \in \mathbb{Z}$.

$$
\begin{aligned}
M_{k}\left(\mathbb{F}_{\ell}\right) & :=M_{k}(1) \cap \mathbb{F}_{\ell}[[q]] \\
& =\left\{\text { reduction modulo } \ell \text { of all } f \in M_{k}(1) \text { with } \ell \text {-integral coefficients. }\right\}
\end{aligned}
$$

Swinnerton-Dyer (1973)

$$
\begin{aligned}
\mathbb{F}_{\ell}\left[E_{4}, E_{6}\right] /\left(E_{\ell-1}-1\right) & =\sum_{k \in \mathbb{Z}} M_{k}\left(\mathbb{F}_{\ell}\right) \\
& =\oplus_{a \in \mathbb{Z} /(\ell-1) \mathbb{Z}}\left(\cup_{k \equiv a} \quad(\bmod \ell-1) M_{k}\left(\mathbb{F}_{\ell}\right)\right) .
\end{aligned}
$$

Filtrations

Definition (Serre)

Let $\ell \geq 5$ be prime, $k \in \mathbb{Z}$. For $f \in M_{k}\left(\mathbb{F}_{\ell}\right)$, the filtration of f is given by

$$
w(f)=\inf \left\{r \in \mathbb{Z}: f \in M_{r}\left(\mathbb{F}_{\ell}\right)\right\} .
$$

Filtrations

Definition (Serre)

Let $\ell \geq 5$ be prime, $k \in \mathbb{Z}$. For $f \in M_{k}\left(\mathbb{F}_{\ell}\right)$, the filtration of f is given by

$$
w(f)=\inf \left\{r \in \mathbb{Z}: f \in M_{r}\left(\mathbb{F}_{\ell}\right)\right\} .
$$

- Example: Since $E_{\ell-1} \equiv 1(\bmod \ell)$, we have $w\left(E_{\ell-1}\right)=0$.

Filtrations and linear maps

- Serre used properties of filtrations to define ℓ-adic modular forms.

Filtrations and linear maps

- Serre used properties of filtrations to define ℓ-adic modular forms.

Serre (1972)
For $\ell \geq 5$,

- $w\left(f \mid U_{\ell}\right) \leq \ell+\frac{w(f)-1}{\ell}$,

Filtrations and linear maps

- Serre used properties of filtrations to define ℓ-adic modular forms.

Serre (1972)
For $\ell \geq 5$,

- $w\left(f \mid U_{\ell}\right) \leq \ell+\frac{w(f)-1}{\ell}$,
- Let Θ be the Ramanujan Theta operator, i.e. $\Theta=q \frac{d}{d q}$. Then

$$
w(f \mid \Theta) \leq w(f)+\ell+1
$$

with equality if and only if $\ell \nmid w(f)$.

The q-expansion principle

Deligne and Rapoport (1973)

Let ℓ be prime and $k, N \in \mathbb{N}$. Let π be a prime ideal above ℓ in a number field \mathbb{F} which contains all N th roots of unity.
Suppose that $f \in M_{k}(\Gamma(N))$ has π-integral coefficients and $\gamma \in \Gamma_{0}\left(\ell^{m}\right)$, where ℓ^{m} is the highest power of ℓ dividing N. Then $f \mid \gamma$ has π-integral coefficients, and

$$
f \equiv 0 \quad(\bmod \pi) \Longleftrightarrow f \mid \gamma \equiv 0 \quad(\bmod \pi)
$$

Generating functions

Let $k_{r, \ell, 0}:=\frac{\ell-r-1}{2}$ and $k_{r, \ell,-1}:=\frac{\ell^{2}-r-1}{2}$.

Generating functions

Let $k_{r, \ell, 0}:=\frac{\ell-r-1}{2}$ and $k_{r, \ell,-1}:=\frac{\ell^{2}-r-1}{2}$.

$$
f_{r, \ell, 0}:=\sum_{\left(\frac{r(r-24 n)}{\ell}\right)=0} p_{r}(n) q^{\frac{24 n-r}{24 \ell}} .
$$

and

$$
f_{r, \ell, \delta,-1}:=\sum_{\left(\frac{r(r-24 n)}{\ell}\right)=-1} p_{r}(n) q^{\frac{24 n-r}{24}} .
$$

Generating functions

Let $k_{r, \ell, 0}:=\frac{\ell-r-1}{2}$ and $k_{r, \ell,-1}:=\frac{\ell^{2}-r-1}{2}$.

$$
f_{r, \ell, 0}:=\sum_{\left(\frac{r(r-24 n)}{\ell}\right)=0} p_{r}(n) q^{\frac{24 n-r}{24 \ell}} .
$$

and

$$
f_{r, \ell, \delta,-1}:=\sum_{\left(\frac{r(r-24 n)}{\ell}\right)=-1} p_{r}(n) q^{\frac{24 n-r}{24}} .
$$

- By aforementioned work of Andersen, we don't need to consider a generating function with $\left(\frac{r(r-24 n)}{\ell}\right)=1$.
- $f_{r, \ell, 0} \equiv 0(\bmod \ell)$ when we have a Ramanujan-type congruence $p_{r}\left(\ell n-\left(\frac{\ell^{2}-1}{24}\right)\right) \equiv 0(\bmod \ell)$.

Holomorphic generating functions

Fact (Ahlgren, B, Raum)

Let $\ell \geq 5$ be prime, $\delta \in\{0,-1\}$.
There is a modular form $\sum a_{\ell, \delta}(n) q^{n / 24} \in S_{k_{1, \ell, \delta}}\left(\nu_{\eta}^{-1}\right)$ such that

$$
f_{1, \ell, \delta} \equiv \sum a_{\ell, \delta}(n) q^{n / 24}(\bmod \ell)
$$

Holomorphic generating functions

Fact (Ahlgren, B, Raum)

Let $\ell \geq 5$ be prime, $\delta \in\{0,-1\}$.
There is a modular form $\sum a_{\ell, \delta}(n) q^{n / 24} \in S_{k_{1, \ell, \delta}}\left(\nu_{\eta}^{-1}\right)$ such that

$$
f_{1, \ell, \delta} \equiv \sum a_{\ell, \delta}(n) q^{n / 24}(\bmod \ell)
$$

- This is generalized to $r>1$ for $f_{r, \ell, \delta}$ with a modified weight for $\ell<r$.

Consequences of the q-expansion principle

Theorem B (Ahlgren, B, Raum)

1. There are no theta-type congruences with $\left(\frac{24 t-1}{Q}\right)=0$.

Consequences of the q-expansion principle

Theorem B (Ahlgren, B, Raum)

1. There are no theta-type congruences with $\left(\frac{24 t-1}{Q}\right)=0$.
2. Fix $\delta \in\{0,-1\}$ and $\epsilon \in\{ \pm 1\}$. If there is a theta-type congruence with

$$
\left(\frac{1-24 t}{\ell}\right)=\delta \text { and }\left(\frac{24 t-1}{Q}\right)=\epsilon,
$$

then

$$
\begin{equation*}
f_{1, \ell, \delta}\left|U_{Q} \equiv-\epsilon\left(\frac{-12}{Q}\right) Q^{-1} f_{\ell, \delta}\right| V_{Q} \quad(\bmod \ell) . \tag{2}
\end{equation*}
$$

Consequences of the q-expansion principle

Theorem B (Ahlgren, B, Raum)

1. There are no theta-type congruences with $\left(\frac{24 t-1}{Q}\right)=0$.
2. Fix $\delta \in\{0,-1\}$ and $\epsilon \in\{ \pm 1\}$. If there is a theta-type congruence with

$$
\left(\frac{1-24 t}{\ell}\right)=\delta \text { and }\left(\frac{24 t-1}{Q}\right)=\epsilon
$$

then

$$
\begin{equation*}
f_{1, \ell, \delta}\left|U_{Q} \equiv-\epsilon\left(\frac{-12}{Q}\right) Q^{-1} f_{\ell, \delta}\right| V_{Q} \quad(\bmod \ell) \tag{2}
\end{equation*}
$$

- (2) holds for theta functions.

Consequences of the q-expansion principle

Theorem B (Ahlgren, B, Raum)

1. There are no theta-type congruences with $\left(\frac{24 t-1}{Q}\right)=0$.
2. Fix $\delta \in\{0,-1\}$ and $\epsilon \in\{ \pm 1\}$. If there is a theta-type congruence with

$$
\left(\frac{1-24 t}{\ell}\right)=\delta \text { and }\left(\frac{24 t-1}{Q}\right)=\epsilon,
$$

then

$$
\begin{equation*}
f_{1, \ell, \delta}\left|U_{Q} \equiv-\epsilon\left(\frac{-12}{Q}\right) Q^{-1} f_{\ell, \delta}\right| V_{Q} \quad(\bmod \ell) \tag{2}
\end{equation*}
$$

- (2) holds for theta functions.
- We use a q-expansion formula of Radu (2013) at the cusp $\frac{1}{Q}$.

Scarcity Result

Theorem C (Ahlgren, B, Raum)

Suppose that $\ell \geq 5$ is prime, and fix $\delta \in\{0,-1\}$. Let S be the set of primes Q for which we have a theta-type congruence with $\left(\frac{1-24 t}{\ell}\right)=\delta$.

Scarcity Result

Theorem C (Ahlgren, B, Raum)

Suppose that $\ell \geq 5$ is prime, and fix $\delta \in\{0,-1\}$. Let S be the set of primes Q for which we have a theta-type congruence with $\left(\frac{1-24 t}{\ell}\right)=\delta$. One of the following is true.

1. S has density zero, or
2. we have

$$
\begin{equation*}
\#\left\{n \leq X: a_{\ell, \delta}(n) \not \equiv 0 \quad(\bmod \ell)\right\} \ll \sqrt{X} \log X \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{1, \ell, \delta} \mid T_{Q^{2}} \equiv 0 \quad(\bmod \ell) \quad \text { for all primes } Q \equiv-1 \quad(\bmod \ell) \tag{4}
\end{equation*}
$$

Scarcity Result

Theorem C (Ahlgren, B, Raum)

Suppose that $\ell \geq 5$ is prime, and fix $\delta \in\{0,-1\}$. Let S be the set of primes Q for which we have a theta-type congruence with $\left(\frac{1-24 t}{\ell}\right)=\delta$. One of the following is true.

1. S has density zero, or
2. we have

$$
\begin{equation*}
\#\left\{n \leq X: a_{\ell, \delta}(n) \not \equiv 0 \quad(\bmod \ell)\right\} \ll \sqrt{X} \log X \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{1, \ell, \delta} \mid T_{Q^{2}} \equiv 0 \quad(\bmod \ell) \quad \text { for all primes } Q \equiv-1 \quad(\bmod \ell) . \tag{4}
\end{equation*}
$$

- The LHS of (3) is $\sim \sqrt{X}$ if $f_{1, \ell, \delta}$ is a theta function.

We use (4) to rule out the second possibility for specific Q :

Theorem (Ahlgren, B, Raum)

For $17 \leq \ell \leq 10,000, S$ has density 0 .

Some cases

We use (4) to rule out the second possibility for specific Q :

Theorem (Ahlgren, B, Raum)

For $17 \leq \ell \leq 10,000, S$ has density 0 .
$\ell=13 ?$
Barrier:
work of Atkin $\Longrightarrow f_{1,13,-1} \mid T_{Q^{2}} \equiv 0(\bmod 13)$ for $Q \equiv-1(\bmod 13)$.

Arithmetic Large Sieve

Montgomery (1968)

Let R be a nonempty set of Z positive integers in [1, $N+1$]. Let $w(p)$ be the number of residue classes $\bmod p$ which contain no element of R.

For $X \geq 1$,

$$
Z \leq \frac{\left(N^{1 / 2}+X\right)^{2}}{T}
$$

where

$$
T=\sum_{q \leq X} \mu^{2}(q) \prod_{p \mid q} \frac{w(p)}{(p-w(p))} .
$$

Square class structure

Radu (2012)

Suppose $p_{r}(A n+t) \equiv 0(\bmod \ell)$ for all n, where $(A, 24)=1$. If $1-24 t^{\prime} \equiv(1-24 t) \cdot h^{2}(\bmod A)$ where $(h, A)=1$, then $p\left(A n+t^{\prime}\right) \equiv 0(\bmod \ell)$ for all n.

Square class structure

Radu (2012)

Suppose $p_{r}(A n+t) \equiv 0(\bmod \ell)$ for all n, where $(A, 24)=1$. If $1-24 t^{\prime} \equiv(1-24 t) \cdot h^{2}(\bmod A)$ where $(h, A)=1$, then $p\left(A n+t^{\prime}\right) \equiv 0(\bmod \ell)$ for all n.

Consequence: given a theta-type congruence $p_{r}(\ell Q n+t) \equiv 0$ $(\bmod \ell)$, we must have

$$
p_{r}(n) \equiv 0 \quad(\bmod \ell)
$$

for any n such that $\left(\frac{r-24 n}{\ell}\right)=\left(\frac{r-24 t}{\ell}\right)$ and $\left(\frac{r-24 n}{Q}\right)=\left(\frac{r-24 t}{Q}\right)$.

Sketch of proof of Theorem C

$$
\text { Let } f_{1, \ell, \delta} \equiv \sum a_{\ell, \delta}(n) q^{n / 24}(\bmod \ell) \text { be as above, } Q \in S, \epsilon_{Q}=\left(\frac{1-24 t}{Q}\right)
$$

Sketch of proof of Theorem C

Let $f_{1, \ell, \delta} \equiv \sum a_{\ell, \delta}(n) q^{n / 24}(\bmod \ell)$ be as above, $Q \in S, \epsilon_{Q}=\left(\frac{1-24 t}{Q}\right)$.

$$
f_{\ell, \delta} \equiv \sum_{\left(\frac{n}{Q}\right)=-\epsilon_{Q}} a_{\ell, \delta}(n) q^{n / 24}+\sum a_{\ell, \delta}\left(Q^{2} n\right) q^{n / 24}
$$

Sketch of proof of Theorem C

Let $f_{1, \ell, \delta} \equiv \sum a_{\ell, \delta}(n) q^{n / 24}(\bmod \ell)$ be as above, $Q \in S, \epsilon_{Q}=\left(\frac{1-24 t}{Q}\right)$.

$$
f_{\ell, \delta} \equiv \sum_{\left(\frac{n}{Q}\right)=-\epsilon_{Q}} a_{\ell, \delta}(n) q^{n / 24}+\sum a_{\ell, \delta}\left(Q^{2} n\right) q^{n / 24}
$$

Each $Q \in S$ imposes a quadratic condition on the $n \in \mathbb{Z}$ with $\ell \nmid a_{\ell, \delta}(n)$:

$$
\left(\frac{n}{Q}\right)=\epsilon \text { or } Q^{2} \mid n
$$

Sketch of proof of Theorem C

Let $f_{1, \ell, \delta} \equiv \sum a_{\ell, \delta}(n) q^{n / 24}(\bmod \ell)$ be as above, $Q \in S, \epsilon_{Q}=\left(\frac{1-24 t}{Q}\right)$.

$$
f_{\ell, \delta} \equiv \sum_{\left(\frac{n}{Q}\right)=-\epsilon_{Q}} a_{\ell, \delta}(n) q^{n / 24}+\sum a_{\ell, \delta}\left(Q^{2} n\right) q^{n / 24}
$$

Each $Q \in S$ imposes a quadratic condition on the $n \in \mathbb{Z}$ with $\ell \nmid a_{\ell, \delta}(n)$:

$$
\left(\frac{n}{Q}\right)=\epsilon \text { or } Q^{2} \mid n .
$$

If S has positive density, the arithmetic large sieve bounds the number of n that satisfy all the quadratic conditions, establishing (3).

Sketch of proof of Theorem C

For every prime Q, there is an n_{Q} that produces a square class restriction on the Q in S, or a strong version of the $U_{Q}-V_{Q}$ relation.

Sketch of proof of Theorem C

For every prime Q, there is an n_{Q} that produces a square class restriction on the Q in S, or a strong version of the $U_{Q}-V_{Q}$ relation.

If the first case occurs infinitely often, then there are infinitely many quadratic restrictions and S has density 0 . So if S has positive density, then the stronger version of the $U_{Q}-V_{Q}$ relation holds for all but finitely many Q.

Sketch of proof of Theorem C

For every prime Q, there is an n_{Q} that produces a square class restriction on the Q in S, or a strong version of the $U_{Q}-V_{Q}$ relation.

If the first case occurs infinitely often, then there are infinitely many quadratic restrictions and S has density 0 . So if S has positive density, then the stronger version of the $U_{Q}-V_{Q}$ relation holds for all but finitely many Q.

From the strong $U_{Q}-V_{Q}$ relation, a q-expansion principle calculation shows $f_{1, \ell, \delta} \mid T_{Q^{2}} \equiv 0(\bmod \ell)$ if $Q \equiv-1(\bmod \ell)$.

Sketch of proof of Theorem C

For every prime Q, there is an n_{Q} that produces a square class restriction on the Q in S, or a strong version of the $U_{Q}-V_{Q}$ relation.

If the first case occurs infinitely often, then there are infinitely many quadratic restrictions and S has density 0 . So if S has positive density, then the stronger version of the $U_{Q}-V_{Q}$ relation holds for all but finitely many Q.

From the strong $U_{Q}-V_{Q}$ relation, a q-expansion principle calculation shows $f_{1, \ell, \delta} \mid T_{Q^{2}} \equiv 0(\bmod \ell)$ if $Q \equiv-1(\bmod \ell)$.

The theory of Galois representations associated to modular forms in $\mathrm{Sh}_{t}\left(f_{1, r, \ell}\right)$ implies that $f_{1, \ell, \delta} \mid T_{Q^{2}} \equiv 0(\bmod \ell)$ for every $Q \equiv-1$ $(\bmod \ell)$. This establishes (4).

Numerical data for $r=1$

Ahlgren, B, Raum

Apart from the Ramanujan Congruences, there are no theta-type congruences for $\ell<10^{3}$ and $Q<10^{13}$ or $\ell<10^{4}$ and $Q<10^{9}$.

Numerical data for $r=1$

Ahlgren, B, Raum

Apart from the Ramanujan Congruences, there are no theta-type congruences for $\ell<10^{3}$ and $Q<10^{13}$ or $\ell<10^{4}$ and $Q<10^{9}$.

It seems like there are no theta-type congruences when $r=1$, but a barrier to proving is this is that all the conditions on $f_{1, r, \delta}$ that we derive are satisfied by theta functions.
$r=3, \ell=7$
In this case there is a theta-type congruence for every Q. The table below shows the t-values for several values of Q.

Q	t
5	15,29
11	$15,36,50,57,64$
13	$29,36,50,64,78,85$
17	$36,50,57,64,85,92,99,113$
19	$29,36,57,78,85,92,99,113,127$
23	$15,29,50,57,78,85,99,113,120,127,134$
29	$15,36,64,78,85,92,99,120,134,155,162,169,176,190$
31	$15,50,57,64,78,92,120,127,134,141,155,162,176,183,211$
37	$15,50,78,85,92,99,11,134,141,155,169,183,90,211,25,232,239,246$
41	$15,57,78,85,113,120,127,134,141,155,169,190,204,218,225,232,239,246,274,281$
43	$29,57,64,78,92,99,120,141,155,176,183,190,204,211,218,225,232,260,274,281,288$
47	$29,36,50,64,92,99,113,120,141,162,169,176,190,204,225,232,239,246,260,267,274,281,323$

$r=3, \ell=7$
In this case there is a theta-type congruence for every Q. The table below shows the t-values for several values of Q.

Q	t
5	15,29
11	$15,36,50,57,64$
13	$29,36,50,64,78,85$
17	$36,50,57,64,85,92,99,113$
19	$29,36,57,78,85,92,99,113,127$
23	$15,29,50,57,78,85,99,113,120,127,134$
29	$15,36,64,78,85,92,99,120,134,155,162,169,176,190$
31	$15,50,57,64,78,92,120,127,134,141,155,162,176,183,211$
37	$15,50,78,85,92,9,113,134,141,155,169,183,190,211,225,232,239,246$
41	$15,57,78,85,113,120,127,134,141,155,169,190,204,218,225,232,239,246,274,281$
43	$29,57,64,78,92,99,120,141,155,176,183,190,204,211,218,225,232,260,274,281,288$
47	$29,36,50,64,92,99,113,120,141,162,169,176,190,204,225,232,239,246,260,267,274,281,323$

- The number of t's is $\frac{Q-1}{2}$ because of the square class property.
$r=3, \ell=7$
In this case there is a theta-type congruence for every Q. The table below shows the t-values for several values of Q.

Q	t
5	15,29
11	$15,36,50,57,64$
13	$29,36,50,64,78,85$
17	$36,50,57,64,85,92,99,113$
19	$29,36,57,78,85,92,99,113,127$
23	$15,29,50,57,78,85,99,113,120,127,134$
29	$15,36,64,78,85,92,99,120,134,155,162,169,176,190$
31	$15,50,57,64,78,92,120,127,134,141,155,162,176,183,211$
37	$15,50,78,85,92,99,11,134,141,155,169,183,90,211,25,232,239,246$
41	$15,57,78,85,113,120,127,134,141,155,169,190,204,218,225,232,239,246,274,281$
43	$29,57,64,78,92,99,120,141,155,176,183,190,204,211,218,225,232,260,274,281,288$
47	$29,36,50,64,92,99,113,120,141,162,169,176,190,204,225,232,239,246,260,267,274,281,323$

- The number of t's is $\frac{Q-1}{2}$ because of the square class property.
- Every Q appears because $f_{3,7,0}$ is a theta function.

Theta functions

We say that $f \in M_{k}\left(\nu_{\eta}^{r}\right)$ is a theta function if the Fourier expansion of f is of the form

$$
f=\sum_{n=0}^{\infty} a(n) q^{c n^{2} / 24}
$$

for some integer c.

Theta functions

We say that $f \in M_{k}\left(\nu_{\eta}^{r}\right)$ is a theta function if the Fourier expansion of f is of the form

$$
f=\sum_{n=0}^{\infty} a(n) q^{c n^{2} / 24}
$$

for some integer c.
Examples:

$$
\eta^{3}=\sum_{n \geq 1}\left(\frac{-4}{n}\right) n q^{n^{2} / 24}
$$

Theta functions

We say that $f \in M_{k}\left(\nu_{\eta}^{r}\right)$ is a theta function if the Fourier expansion of f is of the form

$$
f=\sum_{n=0}^{\infty} a(n) q^{c n^{2} / 24}
$$

for some integer c.
Examples:

$$
\begin{aligned}
& \eta^{3}=\sum_{n \geq 1}\left(\frac{-4}{n}\right) n q^{n^{2} / 24} \\
& \eta(z)=\sum_{n=1}^{\infty}\left(\frac{12}{n}\right) q^{n^{2} / 24} .
\end{aligned}
$$

Conjectures

Conjecture (B, Caione, Chen, Diluia, Gonzalez, Su)

All theta-type congruences come from a congruence between $t_{r, \ell, \delta}$ and a theta function.

Conjectures

Conjecture (B, Caione, Chen, Diluia, Gonzalez, Su)

All theta-type congruences come from a congruence between $f_{r, \ell, \delta}$ and a theta function.

So if you have one theta-type congruence, you have one for every Q.

Small r

r	3	9	15	17	19	21
(ℓ, δ)	$(7,0)$	$(5,0),(13,0)$	$(19,0)$	$(7,0)$	$(5,0)$	$(5,-1)$

Theorem (B, Caione, Chen, Diluia, Gonzalez, Su)
For odd r such that $1 \leq r<24$, there are no theta-type congruences with ℓ and Q in the range $[5,6133$] such that $\ell \nmid r$ except when (r, ℓ) is in the table.

Small r

r	3	9	15	17	19	21	23
(ℓ, δ)	$(7,0)$	$(5,0),(13,0)$	$(19,0)$	$(7,0)$	$(5,0)$	$(5,-1)$	$(5,0$ and -1$),(7,0$ and -1$)$

Theorem (B, Caione, Chen, Diluia, Gonzalez, Su)
For odd r such that $1 \leq r<24$, there are no theta-type congruences with ℓ and Q in the range $[5,6133]$ such that $\ell \nmid r$ except when (r, ℓ) is in the table.

For the (r, ℓ, δ) in the table, $f_{r, \ell, \delta}$ is congruent to $\eta, \eta^{3}, \eta^{\ell}$, or $\eta^{\ell^{2}}-\eta$.

Small r

r	3	9	15	17	19	21	23
(ℓ, δ)	$(7,0)$	$(5,0),(13,0)$	$(19,0)$	$(7,0)$	$(5,0)$	$(5,-1)$	$(5,0$ and -1$),(7,0$ and -1$)$

Theorem (B, Caione, Chen, Diluia, Gonzalez, Su)
For odd r such that $1 \leq r<24$, there are no theta-type congruences with ℓ and Q in the range $[5,6133]$ such that $\ell \nmid r$ except when (r, ℓ) is in the table.

For the (r, ℓ, δ) in the table, $f_{r, \ell, \delta}$ is congruent to $\eta, \eta^{3}, \eta^{\ell}$, or $\eta^{\ell^{2}}-\eta$. This is true of all the theta-type congruences we've found.

Nonvanishing condition

$\delta=0$: We say that Condition C is satisfied by (r, ℓ, δ) if the Fourier expansion of $t_{r, \ell, \delta}$ is supported on positive indices.

Nonvanishing condition

$\delta=0$: We say that Condition C is satisfied by (r, ℓ, δ) if the Fourier expansion of $t_{r, \ell, \delta}$ is supported on positive indices.

- For $\delta=0$, this is true whenever $\left\lceil\frac{r\left(\ell^{2}-1\right)}{24 \ell}\right\rceil>\frac{r \ell}{24}$ or $\ell>r$.
- For $\delta=-1$, this is true if $r<23$.

Weight bound

Set

$$
b(r, \ell):=(\ell-1)\left\lfloor\frac{1}{\ell-1}\left(\ell+\frac{r\left(\ell^{2}-1\right)-2}{2 \ell}\right)\right\rfloor-\frac{r \ell}{2} .
$$

- This is the weight of $f_{r, \ell, 0}$ computed by examining the filtration of $\Delta^{r\left(\ell^{2}-1\right) / 24} \mid U_{\ell}$.

Some classes of examples

Theorem (B-C-C-D-G-S)

For r, ℓ, δ satisfying Condition A in the table below, $f_{r, \ell, \delta}$ is congruent modulo ℓ to a multiple of the corresponding function on the right. Unless Condition B holds, $t_{r, \ell, \delta} \equiv 0(\bmod \ell)$.

Type	δ	Condition A	Condition B	Function
1a	0	$\ell=r+4$	$\ell \equiv 1(\bmod 6)$	η^{3}
1b	0	$\begin{gathered} \text { Condition C } \\ b(r, \ell) \leq \frac{3}{2} \\ r \ell \equiv-3(\bmod 2(\ell-1)) \end{gathered}$	$r \equiv-3 \ell(\bmod 24)$	η^{3}
1c	-1	$\begin{gathered} \ell^{2}=r+4 \\ f_{r, \ell, 0} \equiv 0(\bmod \ell) \\ \text { Condition C } \end{gathered}$	$r \equiv-3(\bmod 24)$	η^{3}
2	0	$\begin{gathered} \text { Condition C } \\ b(r, \ell) \leq 1 / 2 \\ r \equiv \ell-2(\bmod 2(\ell-1)) \end{gathered}$	$r \equiv-\ell(\bmod 24)$	η
3	0	$\begin{gathered} \text { Condition C } \\ \ell \leq 53 \\ r \equiv-1(\bmod 2(\ell-1)) \end{gathered}$	$r \equiv-1(\bmod 24)$	η^{ℓ}
4	-1	$\begin{gathered} \ell^{2}=r+2 \text { or } r+26 \\ t_{r, \ell, 0} \equiv \alpha \eta^{\ell}(\bmod \ell) \\ \text { Condition } \mathrm{C} \end{gathered}$	$r \equiv-1(\bmod 24)$	$\eta^{\ell^{2}}-\eta$

Type 2 Examples

For odd $r<501, \ell \leq 1223$, we have 86 Type 2 examples.
ell

Type 2 Data

$-r(\bmod \ell)$	\# of Type 2 examples found with $\ell \geq 20$
4	20
6	12
8	3
10	1
12	4

Future work

- Show there are no theta-type congruences when $r=1$.

Future work

- Show there are no theta-type congruences when $r=1$.
- Prove our conjecture for $r>1$.

Future work

- Show there are no theta-type congruences when $r=1$.
- Prove our conjecture for $r>1$.
- Find alternative descriptions of these families that offer explanations for some of the patterns we've observed.

Future work

- Show there are no theta-type congruences when $r=1$.
- Prove our conjecture for $r>1$.
- Find alternative descriptions of these families that offer explanations for some of the patterns we've observed.
- Determine whether there are theta-type congruences other than those in our table.

Future work

- Show there are no theta-type congruences when $r=1$.
- Prove our conjecture for $r>1$.
- Find alternative descriptions of these families that offer explanations for some of the patterns we've observed.
- Determine whether there are theta-type congruences other than those in our table.
- Is there another way to prove these congruences?

Generalizations?

- Other eta-quotients and weakly holomorphic modular forms.

Generalizations?

- Other eta-quotients and weakly holomorphic modular forms.
- Mock theta functions and other mock modular forms.

The End

Thanks for listening!

