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Integer Partitions

A partition of a number n is a non-increasing sequence of positive
integers whose sum is equal to n:

n = a1 + a2 + · · ·+ am, ai ≥ ai+1 > 0.

The number of partitions of n is denoted p(n).
Example: p(4) = 5:

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Theorem (Hardy-Ramanujan, 1918)

p(n) ∼ 1
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n−1
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Restricted Partitions

Let A ⊂ N with gcd(A) = 1.
pA(n) denotes the number of partitions of n with all parts in A.

Question

For which sets A can we count pA(n)?

1934 – 1969: Wright, Bateman-Erdős, Browkin, Roth-Szekeres, Kerawala

Various results for very general A
Complicated formulas, long and difficult proof methods
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Modern examples of pA(n)

Perfect kth powers:
Ak = {xk : x ∈ N}

Example: pA2
(10) = 4:

9 + 1, 4 + 4 + 1 + 1, 4 + 1 + · · ·+ 1, 1 + · · ·+ 1

Theorem (G. 2016)

pAk(n) ∼ C1 exp
(
C2n

1
k+1

)
n−

3k+1
2(k+1)

where C1, C2 are constants depending only on k.

The case k = 2 is due to Vaughan, 2014.
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Modern examples of pA(n)
Perfect kth Powers in a residue class:

Ak,(a,b) = {xk : x ≡ a (modb), x ∈ N}

Theorem (Berndt-Malik-Zaharescu, 2018)

pAk,(a,b)(n) ∼ C1 exp
(
C2n

1
k+1

)
n−

b+bk+2ak
2b(k+1)

where C1, C2 are constants depending only on k, a, and b.

Values of a polynomial: Let f be a suitable polynomial such that
f(N) ⊂ N.

Af = {f(x) : x ∈ N}

Theorem (Dunn-Robles, 2018)

pAf (n) ∼ C1 exp
(
C2n

1
d+1

)
n−

2d(1−ζ(0,α))+1
2(d+1)

where d = deg(f), C1, C2 are constants depending only on f , and
ζ(0, α) is a value of an appropriate Matsumoto-Weng ζ function.
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Modern examples of pA(n)

Primes:
A = P = {primes}

Theorem (Vaughan, 2007)

pP(n) ∼ C1 exp
(
C2 π(n)

1
2

)
n−

3
4 (log n)−

1
4

where C1, C2 are constants.

Powers of Primes:

A = Pk = {pk : p prime}

Theorem (G., 2021)

pPk(n) ∼ C1 exp
(
C2 π(n

1
k )

k
k+1

)
n
− (2k+1)k

(k+1)2 (log n)
− k2

(k+1)2

where C1, C2 are constants depending only on k.
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Sketch of the proofs

The partition function p(n) has generating function

Ψ(z) =

∞∑
n=0

p(n)zn =

∞∏
m=1

1

1− zm
,

since

∞∏
m=1

1

1− zm
=
∞∏

m=1

∑
k≥0

zmk

= (1 + z1 + z1+1 + · · · )(1 + z2 + z2+2 + · · · )(1 + z3 + z3+3 + · · · ) · · ·

Restricting parts to the set A, we get a generating function for pA(n):

ΨA(z) =

∞∑
n=0

pA(n)zn =
∏
a∈A

1

1− za
.
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Hardy-Littlewood Circle Method

ΨA(z) =

∞∑
n=0

pA(n)zn =

∞∏
a∈A

1

1− za
.

We can use Cauchy’s Theorem to extract the coefficient of zn:

pA(n) =

∫ 1

0

ΨA(ρe(α))ρ−ne(−nα) dα.

Take ρ→ 1− as n→∞. We write ρ = e−1/X with X large.
It is often more convenient to use

ΦA(z) =
∞∑
j=1

∑
a∈A

1

j
zja,

so that
ΨA(z) = exp(ΦA(z)).
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Major and Minor Arcs

If α is “close” to a rational number with “small” denominator, then we
can obtain “good” estimates for the integrand.

These regions make up the Major Arcs, and contribute to the main term.
The gaps between the major arcs are called Minor Arcs, and are absorbed
into the error term.
We divide the integral into 3 parts:

∫
M(1,0)

+
∑

1≤a<q≤Q

∫
M(q,a)

+

∫
m

↑ ↑ ↑
α close to 0 α close to a

q the rest
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The principal major arc M(1, 0)

We need a good estimate for

Φ(ρ) =

∞∑
j=1

∑
a∈A

e−ja/X

j
.

Using a Mellin transform:

Φ(ρ) =
1

2πi

∞∑
j=1

∑
a∈A

1

j

∫ c+i∞

c−i∞
Γ(s)j−sa−sXs ds.

Bringing the sum over A inside the integral, we see that we need to
study sums of the form ∑

a∈A
a−s.

We need analytic information such as zeros, poles, residues, etc.
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Special ζ-functions
What does

∑
a∈A a

−s look like for different sets A?

For kth powers: Riemann ζ function

∞∑
n=1

n−ks = ζ(ks).

For kth powers in a residue class: Hurwitz ζ function

∞∑
m=0

(m+ a/b)−ks = ζ(ks, a/b).

For polynomial values: Matsumoto-Weng ζ function

∞∑
n=1

f(n)−s = ζf (s).

For primes and prime powers: Prime ζ function∑
p prime

p−s = P (s);
∑

p prime

p−ks = P (ks).
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The contour integral

We need a good estimate for

Φ(ρ) =
1

2πi

∫ c+i∞

c−i∞
ζ(s+ 1)Γ(s)

(∑
a∈A

a−s

)
Xs ds.

For powers and polynomials, the ζ-function has meromorphic
continuation, and the main term comes from the double pole at
s = 0.

For primes and prime powers, we need to analyze

Φ(ρ) =
1

2πi

∫ c+i∞

c−i∞
ζ(s+ 1)Γ(s) log(ζ(ks))Xs ds.

We need to stay in the zero-free region of ζ, so we use a keyhole
contour to integrate around the singularity at s = 1

k .
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The non-principal major arcs

Now we need a good estimate for

Φ

(
ρe

(
r

q
+ β

))
=

∞∑
j=1

1

j

∑
a∈A

e

(
ajr

q

)
exp (aj(2πiβ − 1/X)) .

Splitting the sum according to residue classes, this becomes

Φ

(
ρe

(
r

q
+ β

))
=

∞∑
j=1

1

j

q∑
`=1

e

(
rj`

q

) ∑
a∈A

a≡` (mod q)

exp (aj(2πiβ − 1/X)) .

To bound this, we need to understand the distribution of A in residue
classes mod q.
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Distribution of A in residue classes

For kth powers or polynomial values:

Distribution comes from solving the polynomial mod q
Can take denominators up to a power of X
Need to analyze

S(q, a) =

q∑
`=1

e

(
r`k

q

)
For primes and prime powers:

Distribution given by Siegel-Walfisz theorem
Only valid when q ≤ (logX)B

Need to analyze

S∗(q, a) =

q∑
`=1

(`,q)=1

e

(
r`k

q

)

The goal in both cases is to save a uniform constant (1− δ) factor
over the trivial bound (q or ϕ(q)).
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For kth powers or polynomial values:

Distribution comes from solving the polynomial mod q
Can take denominators up to a power of X
Need to analyze

S(q, a) =

q∑
`=1

e

(
r`k

q

)
For primes and prime powers:

Distribution given by Siegel-Walfisz theorem
Only valid when q ≤ (logX)B

Need to analyze

S∗(q, a) =

q∑
`=1

(`,q)=1

e

(
r`k

q

)

The goal in both cases is to save a uniform constant (1− δ) factor
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Bounding the non-principal major arcs

Recall that the principal major arc yields a main term of the form:

C1 exp
(
C2 π(n

1
k )

k
k+1

)
n
− (2k+1)k

(k+1)2 (log n)
− k2

(k+1)2 .

By saving a uniform constant factor in S(q, a) or S∗(q, a), we find that
the non-principal major arcs contribution is

� exp
(

(1− δ)C2 π(n
1
k )

k
k+1

)
n
− (2k+1)k

(k+1)2 (log n)
− k2

(k+1)2

= o(Main Term).

In all cases, the only main term contribution comes from M(1, 0).

Ayla Gafni Asymptotics of Restricted Partition Functions



Bounding the non-principal major arcs

Recall that the principal major arc yields a main term of the form:

C1 exp
(
C2 π(n

1
k )

k
k+1

)
n
− (2k+1)k

(k+1)2 (log n)
− k2

(k+1)2 .

By saving a uniform constant factor in S(q, a) or S∗(q, a), we find that
the non-principal major arcs contribution is

� exp
(

(1− δ)C2 π(n
1
k )

k
k+1

)
n
− (2k+1)k

(k+1)2 (log n)
− k2

(k+1)2

= o(Main Term).

In all cases, the only main term contribution comes from M(1, 0).

Ayla Gafni Asymptotics of Restricted Partition Functions



Bounding the non-principal major arcs

Recall that the principal major arc yields a main term of the form:

C1 exp
(
C2 π(n

1
k )

k
k+1

)
n
− (2k+1)k

(k+1)2 (log n)
− k2

(k+1)2 .

By saving a uniform constant factor in S(q, a) or S∗(q, a), we find that
the non-principal major arcs contribution is

� exp
(

(1− δ)C2 π(n
1
k )

k
k+1

)
n
− (2k+1)k

(k+1)2 (log n)
− k2

(k+1)2

= o(Main Term).

In all cases, the only main term contribution comes from M(1, 0).

Ayla Gafni Asymptotics of Restricted Partition Functions



The minor arcs

Finally, we need to estimate

Φ(ρe(α)) =

∞∑
j=1

∑
a∈A

1

j
e−aj/Xe(jaα)

=

∞∑
j=1

1

j

∫ ∞
0

jX−1e−jx/X
∑
a≤x
a∈A

e(jaα) dx

So we need a good estimate for∑
a≤x
a∈A

e(jaα).
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Special exponential sums

How can we estimate
∑
a≤x
a∈A

e(jaα) for different sets A?

For kth powers or polynomial values:

Waring’s problem minor arc methods
Weyl’s inequality, Hua’s lemma

For primes:

Vinogradov’s proof of ternary Goldbach

For prime powers:

Waring-Goldbach results are less developed
There are decent upper bounds, but need to be careful about ranges
and conditions on α.
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Can we extend this to more general sets A?

Three necessary ingredients:∫
M(1,0)

+
∑

1≤a<q≤Q

∫
M(q,a)

+

∫
m

↑ ↑ ↑
α close to 0 α close to a

q the rest

ζ-function distribution of A Weyl sums∑
a∈A

a−s in residue classes
∑
a≤x
a∈A

e(aθ).

Ayla Gafni Asymptotics of Restricted Partition Functions



Thank You!
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