Characters, Schemes and q-series

Antun Milas, SUNY-Albany

100 Years of Mock Theta Functions (Vanderbilt) May 2022

This talk

This talk

Part I: q-series (identities) from graphs and commutative algebras.

This talk

Part I: q-series (identities) from graphs and commutative algebras.
Part II: q-series from Schur's indices of $4 \mathrm{~d} \mathcal{N}=2$ SCFTs.

This talk

Part I: q-series (identities) from graphs and commutative algebras.
Part II: q-series from Schur's indices of $4 \mathrm{~d} \mathcal{N}=2$ SCFTs.

Part III: (Time permitting) Generalized multiple q-zeta values

This talk

Part I: q-series (identities) from graphs and commutative algebras.
Part II: q-series from Schur's indices of $4 \mathrm{~d} \mathcal{N}=2$ SCFTs.

Part III: (Time permitting) Generalized multiple q-zeta values

References

Main references:

$$
\text { A.M. arXiv } 2203.15642
$$

and joint papers:
Jennings-Shaffer- A.M. 2019,2020
Bringmann-Jennings-Shaffer-A.M. 2021
Li-A.M. 2020
Kanade A. M. Russell, 2021

Graph Series

Graph Series

Definition (Graph series)

Given an undirected simple graph Γ with r nodes. Let $E(\Gamma)$ denotes the set of edges of Γ. The q-series

$$
H_{\Gamma}(q)=\sum_{n_{1}, \ldots, n_{r} \geq 0} \frac{q^{n_{1}+\cdots+n_{r}+\frac{1}{2} \mathrm{n} C_{\mathrm{n}}{ }^{\top}}}{(q)_{n_{1}} \cdots(q)_{n_{r}}}
$$

where C is the adjacency matrix of Γ, is called graph q-series of Γ. If $(i, j) \in E(\Gamma)$ then $\frac{1}{2} \mathrm{n} C \mathrm{n}^{T}$ contributes with $n_{i} n_{j}$ in the exponent.

Examples

(i) • (single node and no edges):

$$
H_{\Gamma}(q)=\sum_{n \geq 0} \frac{q^{n}}{(q)_{n}} \stackrel{\text { Euler }}{=} \frac{1}{(q)_{\infty}}
$$

(ii)

$$
H_{\Gamma}(q)=\sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}+n_{2}+n_{1} n_{2}}}{(q)_{n_{1}}(q)_{n_{2}}}
$$

(iii) 3-cycle

$$
H_{\Gamma}(q)=\sum_{n_{1}, n_{2}, n_{3} \geq 0} \frac{q^{n_{1}+n_{2}+n_{3}+n_{1} n_{2}+n_{2} n_{3}+n_{3} n_{1}}}{(q)_{n_{1}}(q)_{n_{2}}(q)_{n_{3}}}
$$

Convergence

Convergence

Observe that for many graphs (e.g. simple graphs)

$$
\sum_{n_{1}, \ldots, n_{r} \geq 0} \frac{q^{\frac{1}{2} \mathrm{n} C_{n}^{T}}}{(q)_{n_{1}} \cdots(q)_{n_{r}}}
$$

doesn't converge inside $|q|<1$. So it is important to shift

$$
H_{\Gamma}(q)=\sum_{n_{1}, \ldots, n_{r} \geq 0} \frac{q^{\frac{1}{2} \mathrm{n} C n^{\top}+n_{1}+\cdots+n_{r}}}{(q)_{n_{1}} \cdots(q)_{n_{r}}}
$$

now convergent for all Г. Instead, we can consider

$$
H_{\Gamma}(q, x)=\sum_{n_{1}, \ldots, n_{r} \geq 0} \frac{q^{\frac{1}{2} \mathrm{n} C n^{\top}} x^{n}}{(q)_{n_{1}} \cdots(q)_{n_{r}}}
$$

Graphs series vs. Nahm's sums

Graphs series vs. Nahm's sums

Given positive definite $r \times r$ integral matrix A, and $B \in \mathbb{Z}^{r}$ (Nahm sum):

$$
f_{A, B}(q)=\sum_{n_{1}, \ldots, n_{r} \geq 0} \frac{q^{\frac{1}{2} n A n^{T}+B \cdot n}}{(q)_{n_{1}} \cdots(q)_{n_{r}}}
$$

These series are often associated to ADE type Dynkin diagrams \rightsquigarrow famous ADE q-series identities entering various combinatorial identities (e.g. Rogers-Ramanujan identities). But the quadratic form does not come from the incidence matrix but instead from (Euler/Tits quadratic form):

$$
A:=2 I_{r}-C
$$

Example. Nahm sum associated to A_{2} Dynkin diagram \bullet - \bullet is

$$
\sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}^{2}+n_{2}^{2}-n_{1} n_{2}}}{(q)_{n_{1}}(q)_{n_{2}}}
$$

Graph series from geometry

Graph series from geometry

Consider

$$
R=\frac{\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]}{\left(f_{1}, f_{2}, \ldots, f_{k}\right)}
$$

where f_{i} are homogeneous. Then R is also graded, $R=\oplus_{n \geq 0} R(n)$. We can define its Hilbert series $H_{R}(t)=\sum_{n \geq 0} \operatorname{dim}(R(n)) t^{n}$.

Graph series from geometry

Consider

$$
R=\frac{\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]}{\left(f_{1}, f_{2}, \ldots, f_{k}\right)}
$$

where f_{i} are homogeneous. Then R is also graded, $R=\oplus_{n \geq 0} R(n)$. We can define its Hilbert series $H_{R}(t)=\sum_{n \geq 0} \operatorname{dim}(R(n)) t^{n}$.
With standard grading $\operatorname{deg}\left(x_{i}\right)=1$, we have

$$
H_{R}(t)=\frac{p(t)}{(1-t)^{n}}=\frac{h(t)}{(1-t)^{k}}
$$

k, dimension of R and $h(t), h(1) \neq 0$ is so called h-polynomial .
Example
$R=k[x, y] /(x y)$.

$$
H_{R}(t)=\frac{1-t^{2}}{(1-t)^{2}}=\frac{1+t}{1-t}
$$

Graph series from geometry

Consider

$$
R=\frac{\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]}{\left(f_{1}, f_{2}, \ldots, f_{k}\right)}
$$

where f_{i} are homogeneous. Then R is also graded, $R=\oplus_{n \geq 0} R(n)$. We can define its Hilbert series $H_{R}(t)=\sum_{n \geq 0} \operatorname{dim}(R(n)) t^{n}$.
With standard grading $\operatorname{deg}\left(x_{i}\right)=1$, we have

$$
H_{R}(t)=\frac{p(t)}{(1-t)^{n}}=\frac{h(t)}{(1-t)^{k}}
$$

k, dimension of R and $h(t), h(1) \neq 0$ is so called h-polynomial .
Example
$R=k[x, y] /(x y)$.

$$
\begin{gathered}
H_{R}(t)=\frac{1-t^{2}}{(1-t)^{2}}=\frac{1+t}{1-t} \\
0 \rightarrow k[x, y] \xrightarrow{\cdot x y} k[x, y] \rightarrow k[x, y] /(x y) \rightarrow 0
\end{gathered}
$$

m-Jet algebras/schemes and arc algebras

m-Jet algebras/schemes and arc algebras

Let f_{i} be polynomials. Consider

$$
\begin{gathered}
R=\frac{\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]}{\left(f_{1}, f_{2}, \ldots, f_{k}\right)} . \\
J_{m}(R):=\frac{\mathbb{C}\left[x_{j,(i)} \mid 0 \leq i \leq m, 1 \leq j \leq n\right]}{\left(D^{j} f_{i} \mid i=1, \ldots k, j \in \mathbb{N}\right)}, \\
D\left(x_{j,(i)}\right):= \begin{cases}x_{j,(i+1)} & \text { for } 0 \leq i \leq m-1 \\
0 & \text { for } i=m .\end{cases}
\end{gathered}
$$

called the algebra of m-jets of R. Let $X_{m}=\operatorname{Spec}\left(R_{m}\right)$. $X_{\infty}=\lim _{\overleftarrow{m}} X_{m}$ is called the arc space of $X=\operatorname{Spec}(R)$. $J_{\infty}(R):=R_{\infty}$, the arc algebra of R.

Hilbert series

Assuming $\left(f_{1}, \ldots, f_{k}\right)$ is homogeneous, letting

$$
\operatorname{deg}\left(x_{i,(j)}\right)=j+1
$$

then $J_{m}(R)$ and $J_{\infty}(R)$ are also graded and we can define Hilbert-Poincaré series

$$
H_{q}\left(J_{\infty}(R)\right)=\sum_{j \geq 0} \operatorname{dim}\left(J_{\infty}(R)\right)_{j} q^{j}
$$

Example
$R=k\left[x_{1}, \ldots, x_{n}\right]$.

Hilbert series

Assuming $\left(f_{1}, \ldots, f_{k}\right)$ is homogeneous, letting

$$
\operatorname{deg}\left(x_{i,(j)}\right)=j+1
$$

then $J_{m}(R)$ and $J_{\infty}(R)$ are also graded and we can define Hilbert-Poincaré series

$$
H_{q}\left(J_{\infty}(R)\right)=\sum_{j \geq 0} \operatorname{dim}\left(J_{\infty}(R)\right)_{j} q^{j}
$$

Example
$R=k\left[x_{1}, \ldots, x_{n}\right]$. Then
$J_{\infty}(R)=k\left[x_{1,(0)}, x_{1,(1)}, \ldots, x_{2,(0)}, x_{2,(1)}, \ldots, x_{n,(0)}, x_{n,(1)}, \ldots\right]$.

Hilbert series

Assuming $\left(f_{1}, \ldots, f_{k}\right)$ is homogeneous, letting

$$
\operatorname{deg}\left(x_{i,(j)}\right)=j+1
$$

then $J_{m}(R)$ and $J_{\infty}(R)$ are also graded and we can define Hilbert-Poincaré series

$$
H_{q}\left(J_{\infty}(R)\right)=\sum_{j \geq 0} \operatorname{dim}\left(J_{\infty}(R)\right)_{j} q^{j}
$$

Example
$R=k\left[x_{1}, \ldots, x_{n}\right]$. Then
$J_{\infty}(R)=k\left[x_{1,(0)}, x_{1,(1)}, \ldots, x_{2,(0)}, x_{2,(1)}, \ldots, x_{n,(0)}, x_{n,(1)}, \ldots\right]$.

$$
H_{q}\left(J_{\infty}(R)\right)=\frac{1}{(q)_{\infty}^{n}}
$$

h_{Γ}-series

h_{Γ}-series

Again, it is convenient to consider two representations

$$
H_{q}\left(J_{\infty}(R)\right)=\frac{P_{\Gamma}(q)}{(q)_{\infty}^{n}}=\frac{h_{\Gamma}(q)}{(q)_{\infty}^{k}}
$$

where k is the dimension of R.

h_{Γ}-series

Again, it is convenient to consider two representations

$$
H_{q}\left(J_{\infty}(R)\right)=\frac{P_{\Gamma}(q)}{(q)_{\infty}^{n}}=\frac{h_{\Gamma}(q)}{(q)_{\infty}^{k}}
$$

where k is the dimension of R.

Graph series and arc algebras

Let $\Gamma=(V, E)$ be a graph with no double edges and loops \rightsquigarrow edge ideal:

$$
R_{\Gamma}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left\langle x_{i} x_{j}:(i, j) \in E(\Gamma)\right\rangle
$$

Example
Node: $R=\mathbb{C}[x, y] /(x y)$. Then
$J_{\infty}(R)=\mathbb{C}\left[x_{0}, x_{1}, \ldots, y_{0}, y_{1}, \ldots\right] /\left(x_{0} y_{0}, x_{1} y_{0}+x_{0} y_{1}, x_{2} y_{0}+2 x_{1} y_{1}+x_{0} y_{2}, \ldots.\right)$

Graph series and arc algebras

Let $\Gamma=(V, E)$ be a graph with no double edges and loops \rightsquigarrow edge ideal:

$$
R_{\Gamma}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left\langle x_{i} x_{j}:(i, j) \in E(\Gamma)\right\rangle
$$

Example
Node: $R=\mathbb{C}[x, y] /(x y)$. Then
$J_{\infty}(R)=\mathbb{C}\left[x_{0}, x_{1}, \ldots, y_{0}, y_{1}, \ldots\right] /\left(x_{0} y_{0}, x_{1} y_{0}+x_{0} y_{1}, x_{2} y_{0}+2 x_{1} y_{1}+x_{0} y_{2}, \ldots.\right)$

$$
H_{q}\left(J_{\infty}\left(R_{\Gamma}\right)\right)=\sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}+n_{2}+n_{1} n_{2}}}{(q)_{n_{1}}(q)_{n_{2}}}=\frac{\frac{1}{(1-q)}}{(q)_{\infty}}
$$

An old result

A reformulation of our old result with M. Penn (2011,2012):
Theorem
For any graph 「 without multiple edges

$$
H_{\Gamma}(q)=H_{q}\left(J_{\infty}\left(R_{\Gamma}\right)\right)
$$

Moreover, this agrees with the character of a certain "principal" vertex algebra.

q-series identities from graph series

q-series identities from graph series

Many interesting identities. For instance, for path graphs A_{n}, $1 \leq n \leq 9$ we are able to simplify $H_{\Gamma_{A_{n}}}(q)$ up to a single summation.

Proposition

$$
H_{A_{7}}(q)=\frac{\sum_{m \geq 1}(-3 m+1)(-1)^{m} q^{\frac{3 m^{2}+m}{2}}+\sum_{m \leq-1}(3 m+2)(-1)^{m} q^{\frac{3 m^{2}+m}{2}}}{(1-q)(q)_{\infty}^{4}}
$$

5th order mock theta functions

5th order mock theta functions

There is also formula for $\chi_{0}(q)$.

5th order mock theta functions

There is also formula for $\chi_{0}(q)$. By Zwegers (2009)

5th order mock theta functions

There is also formula for $\chi_{0}(q)$. By Zwegers (2009)

$$
\frac{1}{(q)_{\infty}} \sum_{n \geq 0} \frac{q^{n}}{\left(q^{n+1}\right)_{n+1}}
$$

$=\frac{1}{(q)_{\infty}^{3}}\left(\sum_{k, \ell, m \geq 0}-\sum_{k, \ell, m<0}\right)(-1)^{k+\ell+m} q^{\frac{1}{2} k^{2}+\frac{1}{2} \ell^{2}+\frac{1}{2} m^{2}+2 k \ell+2 \ell m+2 k m+\frac{3}{2}(k+\ell+m)}$

5th order mock theta functions

There is also formula for $\chi_{0}(q)$. By Zwegers (2009)

$$
\frac{1}{(q)_{\infty}} \sum_{n \geq 0} \frac{q^{n}}{\left(q^{n+1}\right)_{n+1}}
$$

$=\frac{1}{(q)_{\infty}^{3}}\left(\sum_{k, \ell, m \geq 0}-\sum_{k, \ell, m<0}\right)(-1)^{k+\ell+m} q^{\frac{1}{2} k^{2}+\frac{1}{2} \ell^{2}+\frac{1}{2} m^{2}+2 k \ell+2 \ell m+2 k m+\frac{3}{2}(k+\ell+m)}$
With a PhD student we were able to interpret the RHS using algebra.

More complicated graphs

This is the first example in an infinite family of graphs with $3 k+2$ vertices, $k \geq 1$ for which we can express h_{Γ} as the generating series of certain sums of power of divisors.

Further q-series identities: D series

Further q-series identities: D series

Theorem (Bringmann-Jennings-Shaffer-A.M.)
We have

$$
\begin{aligned}
& H_{D_{4}}(q)=\frac{\sum_{n, m \geq 0}(-1)^{m+n}(2 n+1) q^{\frac{3}{2} m^{2}+\frac{5}{2} m+\frac{1}{2} n^{2}+\frac{3}{2} n+2 m n}}{(q)_{\infty}^{4}} \\
& H_{D_{5}}(q)=\frac{\left(\sum_{n, m \geq 0}-\sum_{n, m<0}\right)(-1)^{n}(n+1)^{2} q^{\frac{n^{2}+3 n}{2}+3 m n+3 m^{2}+4 m}}{(q)_{\infty}^{5}}
\end{aligned}
$$

Both numerators are indefinite theta series of signature $(1,1)$. They are both mixed mock modular forms.

Multiple edges

B_{2} graph:

$$
H_{B_{2}}(q)=\sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}+n_{2}+2 n_{1} n_{2}}}{(q)_{n_{1}}(q)_{n_{2}}}
$$

Proposition

$$
H_{B_{2}}(q)=\frac{1}{(q)_{\infty}} \sum_{n \geq 1} \chi(n) q^{\frac{n^{2}-49}{120}}
$$

where $\chi(n)=(-1)^{\left[\frac{n}{30}\right]}$ if $n^{2} \equiv 49 \bmod 120$ and zero otherwise.
This is a famous q-series appearing in Lawrence-Zagier's work on WRT invariants of $\Sigma(2,3,5)$.

Modular properties of graph series

What kind of q-series can we get out of $q^{a} H_{\Gamma}(q)$?

- (mixed) quantum modular forms
- inside $\mathcal{Q M}:=\mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right]$
- (mixed) mock theta functions
- modular? asymptotic behavior?

Modular properties of graph series

What kind of q-series can we get out of $q^{a} H_{\Gamma}(q)$?

- (mixed) quantum modular forms
- inside $\mathcal{Q M}:=\mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right]$
- (mixed) mock theta functions
- modular? asymptotic behavior?

Example
Some graph series (modulo Euler products) whose modularity properties are unknown:

$$
\begin{aligned}
& \sum_{n \geq 1} q^{n}(q)_{n}^{3} \\
& \sum_{n, m \geq 1} q^{m n+m+n}(q)_{m}(q)_{n} \\
& \sum_{n, m \geq 1} \frac{q^{m n}}{(q)_{m+n+1}}
\end{aligned}
$$

Generalizations

Generalizations

Graphs with loops:

Single node with loops \rightsquigarrow "fat" point $R=\mathbb{C}[x] /\left(x^{n}\right) \rightsquigarrow J_{\infty}(R) \rightsquigarrow$ Andrews-Gordon series:

Feigin-Stoyanovsky, Feigin-Frenkel 1993
Capparelli-Lepowsky-A.M. 2005., Bruschek-Mourtada-Schepers 2011
More complicated ideals (not coming from graphs): Very few examples are known

Heluani-van Ekeren 2018, Andrews-Heluani-van Ekeren 2021
Li 2020 Li. A.M 2020

4d/2d dualities and Schur's index

Physics:

4d/2d dualities and Schur's index

Physics:

4d/2d dualities and Schur's index

Physics:

$4 \mathrm{~d} \mathcal{N}=2$ QFT is connected with many important developments in mathematics. If QFT is SCFT \rightsquigarrow superconformal index.

4d/2d dualities and Schur's index

Physics:

4d $\mathcal{N}=2$ QFT is connected with many important developments in mathematics. If QFT is SCFT \rightsquigarrow superconformal index.

Connection with q-series and vertex algebras:

4d $\mathcal{N}=2$ SCFT \rightsquigarrow superconformal index \rightsquigarrow Schur's index $\mathcal{I}(q)$
4d/2d
$\xrightarrow{\mu d}$ character (Hilbert series) of a vertex algebra.
Beem-Lemost-Liendo-Peelaers-Rastelli-van Rees 2013

4d/2d dualities and Schur's index

Physics:

$4 \mathrm{~d} \mathcal{N}=2$ QFT is connected with many important developments in mathematics. If QFT is SCFT \rightsquigarrow superconformal index.

Connection with q-series and vertex algebras:

4d $\mathcal{N}=2$ SCFT \rightsquigarrow superconformal index \rightsquigarrow Schur's index $\mathcal{I}(q)$ $4 d / 2 d$
$\xrightarrow{\mu} \leadsto$ character (Hilbert series) of a vertex algebra.

Quantum dilogarithm

Quantum dilogarithm

Physicists proposed computation of $\mathcal{I}(q)$ using wall-crossing technology (after Kontsevich and Soibelman 2010, and Ceccotti-Neitzke-Vafa 2009). This computation is based on quantum dilogarithm:

$$
E_{q}\left(X_{i}\right)=\prod_{i \geq 1}\left(1+q^{i-1 / 2} X_{i}\right)^{-1}
$$

(here X_{i} are non-commutative variables!)
Conjecture: Very roughly speaking:
Quiver (oriented graph) $\Gamma \rightsquigarrow$ product of quantum dilogarithms \rightsquigarrow constant term $\rightsquigarrow q$-series representation for $\mathcal{I}(q)$

Cordova, Shao, Gaiotto 2016,2018

Toy case

- (single node and no edges). There is only one variable X so everything is commutative.

Toy case

- (single node and no edges). There is only one variable X so everything is commutative.
We have (after Ramanujan, Rogers,...)

$$
\begin{gathered}
\mathcal{I}_{\Gamma}(q):=\operatorname{CT}_{X} E_{q}(X) E_{q}\left(X^{-1}\right)=\operatorname{CT}_{X} \frac{1}{\prod_{n \geq 1}\left(1+X q^{n-1 / 2}\right)\left(1+X^{-1} q^{n-1 / 2}\right)} \\
=\sum_{n \geq 0} \frac{q^{n}}{(q)_{n}^{2}}=\frac{\sum_{n \in \mathbb{Z}} \operatorname{sgn}(n) q^{2 n^{2}+n}}{(q)_{\infty}^{2}}
\end{gathered}
$$

Double graph series

For certain quivers same type of computation (with non-commutative variables!) gives

Definition (Graph series with "double poles")

Everything as before but with double poles

$$
\sum_{n_{1}, \ldots, n_{r} \geq 0} \frac{q^{n_{1}+\cdots+n_{r}+\frac{1}{2} \mathrm{n} C \mathrm{n}^{T}}}{(q)_{n_{1}}^{2} \cdots(q)_{n_{r}}^{2}}
$$

where C is the adjacency matrix of the underlying graph. Up to Euler's factors this is supposed to agree with the Schur's index (or character) $\mathcal{I}(q)$.

Basic identity

Pentagon identity:
With $X_{1} X_{2}=q X_{2} X_{1}$, we have

$$
E_{q}\left(X_{1}\right) E_{q}\left(X_{2}\right)=E_{q}\left(X_{2}\right) E_{q}\left(X_{1} X_{2}\right) E_{q}\left(X_{1}\right)
$$

Quiver theories

ADE quiver diagram with orientation: \leftarrow and \rightarrow (sink and sources).
"Non-commutative Jacobi form":

$$
\prod_{J^{\prime} \in S o u} E_{q}\left(X_{-\gamma_{J^{\prime}}}\right) \prod_{I^{\prime} \in S i n k} E_{q}\left(X_{-\gamma_{J}}\right) \prod_{J \in \text { Sou }} E_{q}\left(X_{\gamma_{J}}\right) \prod_{I \in \text { Sink }} E_{q}\left(X_{\gamma_{l}}\right)
$$

Quiver theories

ADE quiver diagram with orientation: \leftarrow and \rightarrow (sink and sources).
"Non-commutative Jacobi form":

$$
\prod_{J^{\prime} \in S o u} E_{q}\left(X_{-\gamma_{J^{\prime}}}\right) \prod_{I^{\prime} \in S i n k} E_{q}\left(X_{-\gamma_{J}}\right) \prod_{J \in \text { Sou }} E_{q}\left(X_{\gamma_{J}}\right) \prod_{I \in \text { Sink }} E_{q}\left(X_{\gamma_{l}}\right)
$$

Quivers of type $A_{2 k}$

It is known that the index $\mathcal{I}_{A_{2 k}}(q)$ is given by

$$
\prod_{\substack{i \geq 1 \\ i \neq 0, \pm 1(2 k+3)}} \frac{1}{\left(1-q^{i}\right)}
$$

Quivers of type $A_{2 k}$

It is known that the index $\mathcal{I}_{A_{2 k}}(q)$ is given by

$$
\prod_{\substack{i \geq 1 \\, \pm 1(2 k+3)}} \frac{1}{\left(1-q^{i}\right)}
$$

Famous product side in (one of) the Andrews-Gordon identities. In particular for $k=1$,

Quiver of type A_{2} : Rogers-Ramanujan series

Example

$$
\begin{array}{rl}
\mathcal{I}(q) \stackrel{?}{=}(q)_{\infty}^{4} & \mathrm{CT}\left[E_{q}\left(X_{-\gamma_{1}}\right) E_{q}\left(X_{-\gamma_{2}}\right) E_{q}\left(X_{\gamma_{1}}\right) E_{q}\left(X_{\gamma_{2}}\right)\right] \\
& =(q)_{\infty}^{4} \sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}+n_{2}+n_{1} n_{2}}}{(q)_{n_{1}}^{2}(q)_{n_{2}}^{2}}
\end{array}
$$

It is not hard to see that the RHS is $\frac{1}{\prod_{n \geq 1}\left(1-q^{5 n+2}\right)\left(1-q^{5 n+3}\right)}$.

Quivers of type $A_{2 k}$

Similar computation gives

$$
\mathcal{I}_{A_{2 k}}(q) \stackrel{?}{=}(q)_{\infty}^{2 k} \sum_{n_{1}, n_{2}, \ldots, n_{2 k} \geq 0} \frac{q^{\sum_{i=1}^{2 k-1} n_{i} n_{i+1}+\sum_{i=1}^{2 k} n_{i}}}{(q)_{n_{1}}^{2}(q)_{n_{2}}^{2} \cdots(q)_{n_{2 k}}^{2}}
$$

Cordova-Shao 2016

General case

Of course, physicists are always right.
Theorem
For $k \geq 1$,

$$
\prod_{\substack{i \geq 1 \\ 0, \pm 1 \\ 0,12 k+1)}} \frac{1}{\left(1-q^{i}\right)}=(q)_{\infty}^{2 k} \sum_{n_{1}, n_{2}, \ldots, n_{2 k} \geq 0} \frac{q^{\sum_{i=1}^{2 k-1} n_{i} n_{i+1}+\sum_{i=1}^{2 k} n_{i}}}{(q)_{n_{1}}^{2}(q)_{n_{2}}^{2} \cdots(q)_{n_{2 k}}^{2}}
$$

This is very different compared to Andrews-Gordon identities.

Quivers of $A_{2 k+1}$ type

Theorem (Jennings-Shaffer-A.M.)
For $k \geq 1$,

$$
\begin{aligned}
& \frac{\sum_{n \in \mathbb{Z}} \operatorname{sgn}(n) q^{(k+1) n^{2}+k n}}{(q)_{\infty}} \\
& =(q)_{\infty}^{2 k-1} \sum_{n_{1}, n_{2}, \ldots, n_{2 k-1} \geq 0} \frac{q^{\sum_{i=1}^{2 k-2} n_{i} n_{i+1}+\sum_{i=1}^{2 k-1} n_{i}}}{(q)_{n_{1}}^{2}(q)_{n_{2}}^{2} \cdots(q)_{n_{2 k-1}}^{2}}
\end{aligned}
$$

Quivers of $A_{2 k+1}$ type

Theorem (Jennings-Shaffer-A.M.)
For $k \geq 1$,

$$
\begin{aligned}
& \frac{\sum_{n \in \mathbb{Z}} \operatorname{sgn}(n) q^{(k+1) n^{2}+k n}}{(q)_{\infty}} \\
& =(q)_{\infty}^{2 k-1} \sum_{n_{1}, n_{2}, \ldots, n_{2 k-1} \geq 0} \frac{q^{\sum_{i=1}^{2 k-2} n_{i} n_{i+1}+\sum_{i=1}^{2 k-1} n_{i}}}{(q)_{n_{1}}^{2}(q)_{n_{2}}^{2} \cdots(q)_{n_{2 k-1}}^{2}}
\end{aligned}
$$

For $k=1$ this gives Ramanujan's formula discussed earlier.

Quivers of D type

The relevant double pole q-series is:

$$
\sum_{n_{1}, n_{2}, \ldots, n_{k+1} \geq 0} \frac{q^{\sum_{i=1}^{k-1} n_{i} n_{i+1}+n_{k-1} n_{k+1}+\sum_{i=1}^{k+1} n_{i}}}{(q)_{n_{1}}^{2}(q)_{n_{2}}^{2} \cdots(q)_{n_{k+1}}^{2}}
$$

This again alternates between modular and rank two false theta series (with some extra Euler factors).

Multiple edges

Multiple edges

Quivers with multiple edges, e.g

$$
\sum_{n_{1}, n_{2} \geq 0} \frac{q^{n_{1}+n_{2}+2 n_{1} n_{2}}}{(q)_{n_{1}}^{2}(q)_{n_{2}}^{2}}=\frac{\sum_{n \geq 0} q^{n^{2}+n}}{(q)_{\infty}^{2}}
$$

Half-characteristic theta q-series

Half-characteristic theta q-series

New examples:
Theorem (Jennings-Shaffer-A.M.)
For $k \geq 2$,

$$
\begin{aligned}
& (q)_{\infty}^{k} \sum_{n_{1}, n_{2}, \ldots, n_{k} \geq 0} \frac{q^{n_{1} n_{2}+n_{2} n_{3}+\cdots+n_{k-1} n_{k}+n_{1}+n_{2}+\cdots+n_{k}}\left(-q^{\frac{1}{2}}\right)_{n_{1}}}{(q)_{n_{1}}^{2}(q)_{n_{2}}^{2} \cdots(q)_{n_{k}}^{2}} \\
& \quad=\frac{\left(-q^{\frac{1}{2}}\right)_{\infty}}{(q)_{\infty}}\left(\sum_{n \geq 0}+(-1)^{k} \sum_{n<0}\right)(-1)^{(k+1) n} q^{\frac{(k+2) n^{2}+(k+1) n}{2}} .
\end{aligned}
$$

This again alternates between false and modular identities (essentially Andrews-Bressoud series).

What about other ABG-type series?

What about other ABG-type series?

There are double pole identities for all $A B$ and $A G$ series and all related false theta series, but formulas are more complicated. For instance, for AG series

What about other ABG-type series?

There are double pole identities for all AB and AG series and all related false theta series, but formulas are more complicated. For instance, for AG series

Theorem (Kanade, A.M., Russell)
For $k \geq 1$, and $1 \leq i \leq k$

$$
\prod_{\substack{n \geq 1 \\ n \neq 0, \pm i(2 k+1)}} \frac{1}{\left(1-q^{i}\right)}=(q)_{\infty}^{2 k} \sum_{n_{1}, n_{2}, \ldots, n_{2 k} \geq 0} \frac{a_{i}(q) q^{\sum_{i=1}^{2 k-1} n_{i} n_{i+1}+\sum_{i=1}^{2 k} n_{i}}}{(q)_{n_{1}}^{2}(q)_{n_{2}}^{2} \cdots(q)_{n_{2 k}}^{2}}
$$

where

$$
a_{1}=1, a_{2}=2-q^{n_{1}}, a_{3}=2-2 q^{n_{1}}+q^{n_{2}}, \ldots
$$

In the simplest case this was conjectured by Cordova, Gaiotto and Shao.

Circles, Triangles and Squares...

Circles, Triangles and Squares...

k-cycle quiver $(k \geq 3)$:

Circles, Triangles and Squares...

k-cycle quiver $(k \geq 3)$:

Conjecture

For $k \geq 3$,

$$
\frac{\sum_{n \geq 0}(-1)^{n k} q^{\frac{k}{2} n(n+1)}}{(q)_{\infty}^{k}}=\sum_{n_{1}, n_{2}, \ldots, n_{k} \geq 0} \frac{q^{\sum_{i=1}^{k-1} n_{i} n_{i+1}+n_{k} n_{1}+\sum_{i=1}^{k} n_{i}}}{(q)_{n_{1}}^{2}(q)_{n_{2}}^{2} \cdots(q)_{n_{k}}^{2}}
$$

$q-M Z V s$

q-MZVs

In its "standard" form, the q-MZV is usually defined as

$$
\zeta_{q}\left(a_{1}, \ldots, a_{k}\right):=\sum_{n_{1}>n_{2}>\cdots>n_{k} \geq 1} \frac{q^{\left(a_{1}-1\right) n_{1}+\cdots+\left(a_{k}-1\right) n_{k}}}{\left(1-q^{n_{1}}\right)^{a_{1} \cdots\left(1-q^{n_{k}}\right)^{a_{k}}}},
$$

where $a_{i} \in \mathbb{N}$ and $a_{1} \geq 2$.

q-MZVs

In its "standard" form, the q-MZV is usually defined as

$$
\zeta_{q}\left(a_{1}, \ldots, a_{k}\right):=\sum_{n_{1}>n_{2}>\cdots>n_{k} \geq 1} \frac{q^{\left(a_{1}-1\right) n_{1}+\cdots+\left(a_{k}-1\right) n_{k}}}{\left(1-q^{n_{1}}\right)^{a_{1} \cdots\left(1-q^{n_{k}}\right)^{a_{k}}}},
$$

where $a_{i} \in \mathbb{N}$ and $a_{1} \geq 2$.

$$
\zeta_{q}^{*}\left(a_{1}, \ldots, a_{k}\right):=\sum_{n_{1} \geq n_{2} \geq \cdots \geq n_{k} \geq 1} \frac{q^{\left(a_{1}-1\right) n_{1}+\cdots+\left(a_{k}-1\right) n_{k}}}{\left(1-q^{n_{1}}\right)^{a_{1} \cdots\left(1-q^{n_{k}}\right)^{a_{k}}},}
$$

The star symbol indicates that the summation is over non-strict summation variables.

Another model of q-MZVs

$$
\begin{aligned}
& \mathfrak{z}_{q}\left(a_{1}, \ldots, a_{k}\right):=\sum_{n_{1}>n_{2}>\cdots>n_{k} \geq 1} \frac{q^{n_{1}}}{\left(1-q^{n_{1}}\right)^{a_{1} \cdots\left(1-q^{n_{k}}\right)^{a_{k}}} .} \\
& \mathfrak{z}_{q}^{*}\left(a_{1}, \ldots, a_{k}\right):=\sum_{n_{1} \geq n_{2} \geq \cdots \geq n_{k} \geq 1} \frac{q^{n_{1}}}{\left(1-q^{n_{1}}\right)^{a_{1} \cdots\left(1-q^{n_{k}}\right)^{a_{k}}} .} .
\end{aligned}
$$

Very active area of research.
Bradley, Hoffman, Zhao, Schlesinger, Okounkov, Zudilin, Ohno,...

Another model of $q-M Z V s$

$$
\begin{aligned}
& \mathfrak{z}_{q}\left(a_{1}, \ldots, a_{k}\right):=\sum_{n_{1}>n_{2}>\cdots>n_{k} \geq 1} \frac{q^{n_{1}}}{\left(1-q^{n_{1}}\right)^{a_{1}} \cdots\left(1-q^{n_{k}}\right)^{a_{k}}} . \\
& \mathfrak{z}_{q}^{*}\left(a_{1}, \ldots, a_{k}\right):=\sum_{n_{1} \geq n_{2} \geq \cdots \geq n_{k} \geq 1} \frac{q^{n_{1}}}{\left(1-q^{n_{1}}\right)^{a_{1} \cdots\left(1-q^{n_{k}}\right)^{a_{k}}} .} .
\end{aligned}
$$

Very active area of research.
Bradley, Hoffman, Zhao, Schlesinger, Okounkov, Zudilin, Ohno,...

$$
\lim _{q \rightarrow 1-} \text { "recovers" } \zeta\left(a_{1}, \ldots, a_{k}\right)
$$

Graphs series and $q-M Z V s$

Graphs series and q-MZVs

Theorem (A.M.)
For every choice of positive integers a_{1}, \ldots, a_{k} there is a simple graph $Z_{a_{1}, \ldots, a_{k}}$ such that

$$
H_{z_{a_{1}, \ldots, a_{k}}}(q)=\frac{q^{-1} \mathfrak{z}_{q}^{*}\left(a_{1}, \ldots, a_{k}\right)}{(q)_{\infty}^{k+a_{1}+\cdots+a_{k}}} .
$$

One can also engineer graph series involving certain generalized q-MZV type sums called brackets.

$\mathrm{q}-\mathrm{MZVs}$ associated to simple Lie algebras

q-MZVs associated to simple Lie algebras

Denote by Δ a root system of ADE type (for simplicity), Δ_{+}the set of positive roots and $\langle\cdot, \cdot\rangle$ denotes inner product normalized such that $\langle\alpha, \alpha\rangle=2$ for every root α. Then we let for $k_{\alpha} \geq 1$,

$$
\zeta_{\mathfrak{g}, q}\left(k_{1}, . ., k_{\left|\Delta_{+}\right|}\right):=\sum_{\lambda \in P_{+}} \frac{q^{\frac{1}{2} \sum_{\alpha \in \Delta_{+}} k_{\alpha}\langle\lambda+\rho, \alpha\rangle}}{\prod_{\alpha \in \Delta_{+}}\left(1-q^{\{\lambda, \alpha+\rho\rangle}\right)^{k_{\alpha}}},
$$

where the summation is over the cone of positive dominant integral weights.
Example
For $\mathfrak{g}=\mathfrak{s l}_{2}$ and $\mathfrak{g}=\mathfrak{s l}_{3}$, and $k \geq 2$,

$$
\begin{gathered}
\sum_{n \geq 1} \frac{q^{\frac{k}{2} n}}{\left(1-q^{n}\right)^{k}} \\
\sum_{n_{1}, n_{2} \geq 1} \frac{q^{\frac{k_{1}}{2}} n_{1}+\frac{k_{2}}{2} n_{2}+\frac{k_{3}}{2}\left(n_{1}+n_{2}\right)}{\left(1-q^{n_{1}}\right)^{k_{1}}\left(1-q^{n_{2}}\right)^{k_{2}}\left(1-q^{n_{1}+n_{2}}\right)^{k_{3}}}
\end{gathered}
$$

$\mathrm{q}-\mathrm{MZVs}$ and quasi-modularity

In parallel with standard $\mathrm{q}-\mathrm{MZV}$ s, we expect
Conjecture

$$
\zeta_{\mathfrak{g}, q}(2 k):=\zeta_{\mathfrak{g}, q}(2 k, 2 k, \ldots, 2 k) \in \mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right] .
$$

$\mathrm{q}-\mathrm{MZVs}$ and quasi-modularity

In parallel with standard $q-M Z V$ s, we expect
Conjecture

$$
\zeta_{\mathfrak{g}, q}(2 k):=\zeta_{\mathfrak{g}, q}(2 k, 2 k, \ldots, 2 k) \in \mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right] .
$$

A closely related q-series appeared recently in connection to Schur's indices:

$$
\mathcal{I}_{\mathfrak{g}, k}(q):=\sum_{\lambda \in P_{+}} P_{k}(\lambda) \frac{q^{\frac{1}{2} \sum_{\alpha \in \Delta_{+}} k\langle\lambda+\rho, \alpha\rangle}}{\prod_{\alpha \in \Delta_{+}}\left(1-q^{(\lambda, \alpha+\rho\rangle}\right)^{k}},
$$

It is expected that for k even $\mathcal{I}_{\mathfrak{g}, k}(q) \in \mathcal{Q} \mathcal{M}$.
Beem-Rastelli 2018, Arakawa 2018, A.M. 2022
This is known in many special cases.

