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Mock theta functions

In 1920, Ramanujan introduced the notion of a mock theta function in his last letter
to Hardy.

A mock theta function is a function f of the complex variable q, defined by a
q-series of a particular type (Eulerian form), which converges for |q| < 1 and
satisfies certain conditions.
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Mock Theta Conjectures

Partition-theoretic interpretations of various results involving mock theta functions
have been the subject of intense study for many decades.

Andrews and Garvan reduced the proofs of ten identities for the fifth order mock
theta functions given in Ramanujan’s Lost Notebook to proving two conjectures
based on

(a) the rank of a partition,
(b) the number of partitions with unique smallest part and all other parts less than or equal

to the double (or one plus the double) of the smallest part.

These conjectures, known as Mock Theta Conjectures, were first proved by Dean
Hickerson in 1988.
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Partition-theoretic interpretations of mock theta functions

A mock theta function itself may also admit a simple and interesting combinatorial
interpretation.

Consider

q�1(q) :=
1X

n=1

qn

(1 � qn)(1 � qn+1)(1 � qn+2) · · · (1 � q2n�1)
,

where �1(q) is one of the fifth order mock theta functions of Ramanujan.

It is easy to see that it is the generating function for partitions in which parts are
less than twice the smallest part.

Similarly,

�0(q) := 1 +
1X

n=1

qn

(1 � qn+1)(1 � qn+2) · · · (1 � q2n)

can be interpreted as the generating function for partitions with unique smallest
part and the largest part at most twice the smallest part.

Few other mock theta functions also have similar partition-theoretic interpretations.
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Further examples

Watson defined the following two third-order mock theta functions in 1936. They
are also in Ramanujan’s Lost Notebook.

!(q) =
1X

n=0

q2n2+2n

(1 � q)2(1 � q3)2 · · · (1 � q2n+1)2 ,

⌫(q) =
1X

n=0

qn2+n

(1 + q)(1 + q3) · · · (1 + q2n+1)
.
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The function p!(n)

Let p!(n) denote the number of partitions of n in which each odd part is less than
twice the smallest part.

For example, consider the 11 partitions of 6, namely,

6, 5 + 1, 4 + 2, 4 + 1 + 1, 3 + 3, 3 + 2 + 1,
3 + 1 + 1 + 1, 2 + 2 + 2, 2 + 2 + 1 + 1,
2 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1.

Then p!(11) = 8.

The generating function of p!(n) is

1X

n=1

p!(n)qn =
1X

n=1

qn

(1 � qn)(qn+1; q)n(q2n+2; q2)1
.
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Notation

(a; q)0 := 1,

(a; q)n := (1 � a)(1 � aq) · · · (1 � aqn�1),

(a; q)1 := lim
n!1

(a; q)n.
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!(q) as the generating function of p!(n)

The third order mock theta function !(q) is defined by

!(q) :=
1X

n=0

q2n2+2n

(q; q2)2
n+1

.

Theorem (Andrews, Dixit, Y. (2015))
1X

n=1

qn

(1 � qn)(qn+1; q)n(q2n+2; q2)1
= q!(q).

Thus,
1X

n=1

p!(n)qn = q!(q).

Partitions associated with the Ramanujan/Watson mock theta functions !(q) and ⌫(q) (9 / 40)



!(q) as the generating function of p!(n)

The third order mock theta function !(q) is defined by

!(q) :=
1X

n=0

q2n2+2n

(q; q2)2
n+1

.

Theorem (Andrews, Dixit, Y. (2015))
1X

n=1

qn

(1 � qn)(qn+1; q)n(q2n+2; q2)1
= q!(q).

Thus,
1X

n=1

p!(n)qn = q!(q).

Partitions associated with the Ramanujan/Watson mock theta functions !(q) and ⌫(q) (9 / 40)



!(q) as the generating function of p!(n)

The third order mock theta function !(q) is defined by

!(q) :=
1X

n=0

q2n2+2n

(q; q2)2
n+1

.

Theorem (Andrews, Dixit, Y. (2015))
1X

n=1

qn

(1 � qn)(qn+1; q)n(q2n+2; q2)1
= q!(q).

Thus,
1X

n=1

p!(n)qn = q!(q).

Partitions associated with the Ramanujan/Watson mock theta functions !(q) and ⌫(q) (9 / 40)



Main ingredients in the proof

Andrews’ four-parameter q-series identity:

1X

n=0

(B; q)n(�Abq; q)nqn

(�aq; q)n(�bq; q)n

=
�a�1(B; q)1(�Abq; q)1
(�bq; q)1(�aq; q)1

1X

m=0

(A�1; q)m

⇣
Abq

a

⌘m

�
� B

a ; q
�

m+1

+ (1 + b)
1X

m=0

(�a�1; q)m+1

⇣
� ABq

a ; q
⌘

m
(�b)m

�
� B

a ; q
�

m+1

⇣
Abq

a ; q
⌘

m+1

.

Ramanujan’s 1 1 summation formula:

1X

n=�1

(a; q)n

(b; q)n
zn =

(az; q)1(q/(az); q)1(q; q)1(b/a; q)1
(z; q)1(b/(az); q)1(b; q)1(q/a; q)1

.

Partitions associated with the Ramanujan/Watson mock theta functions !(q) and ⌫(q) (10 / 40)



Main ingredients in the proof

A relation linking ⌫(q) and !(q):

⌫(q) + q!(q2) = (�q2; q2)3
1(q2; q2)1.

The result again:

1X

n=1

p!(n)qn =
1X

n=1

qn

(1 � qn)(qn+1; q)n(q2n+2; q2)1

= q!(q).
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The function p⌫(n)

Let p⌫(n) denote the number of partitions of n in which each odd part is less than
twice the smallest part and parts are distinct.

For example, consider the 11 partitions of 6, namely,

6, 5 + 1, 4 + 2, 4 + 1 + 1, 3 + 3, 3 + 2 + 1,
3 + 1 + 1 + 1, 2 + 2 + 2, 2 + 2 + 1 + 1,
2 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1.

Then p⌫(11) = 2.

The generating function of p⌫(n) is

1X

n=1

p⌫(n)qn =
1X

n=1

qn(�qn+1; q)n(�q2n+2; q2)1.
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⌫(�q) as the generating function of p⌫(n)

The third order mock theta function ⌫(q) is defined by

⌫(q) :=
1X

n=0

qn2+n

(�q; q2)n+1
.

Theorem (Andrews, Dixit, Y.)
1X

n=0

qn(�qn+1; q)n(�q2n+2; q2)1 = ⌫(�q).

Thus,
1X

n=1

p⌫(n)qn + (�q2; q2)1 = ⌫(�q).
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Further results
Restriction on even parts:

1X

n=1

qn

(qn; q)n+1(q2n+1; q2)1
= �

1
2
�(q) +

1
(q; q2)1

1X

n=0

qn

1 + qn ,

where

�(q) :=
1X

n=0

qn(n+1)/2

(�q; q)n
.

Unique smallest part and restriction on even parts:

1X

n=1

qn

(qn+1; q)n(q2n+1; q2)1
= �1 + (�q; q)1.

Distinct parts and restriction on even parts:

1 + q
1X

n=0

qn(�qn+1; q)n(�q2n+1; q2)1 =
1 � �(q)
(�q; q2)1

+ (q2; q2)1(�q; q2)2
1,

where

�(q) :=
1X

n=0

qn2

(�q2; q2)1
.
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Euler’s pentagonal number theorem

d(n): number of partitions of n into distinct parts,

(�q; q)1 =
1X

n=0

d(n)qn.

(q; q)1 =
1X

n=0

(de(n)� do(n))qn.

de(n): number of partitions of n into an even number distinct parts,
do(n): number of partitions of n into an odd number distinct parts,

(q; q)1 =
1X

n=�1
(�1)nqn(3n�1)/2.
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Analogues of Euler’s pentagonal number theorem

Theorem (Andrews, Dixit, and Y.)
1X

n=1

qn

(�qn; q)n+1(�q2n+2; q2)1
=

1X

j=0

(�1)jq6j2+4j+1(1 + q4j+2).

1X

n=0

qn(qn; q)n+1(q2n+2; q2)1 =
1X

j=0

(�1)jq3j2+2j(1 + q2j+1).
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Combinatorial interpretation of !(q)

weight 1
weight 2

Figure: ⇡ : 11 + 21 + 19 + 15 + 15 + 13 + 13 + 11 + 7 + 7 + 5.

1X

d=1

q2d2�2d+1

(1 � q)2(1 � q3)2 · · · (1 � q2d�1)2 = q!(q).
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Bivariate generalizations

Theorem (Andrews and Y. (2019))
1X

n=1

qn

(zqn; q)n+1(zq2n+2; q2)1
=

1X

n=1

zn�1qn

(q; q2)n
=

X

n�0

znq2n2+2n+1

(q; q2)n+1(zq; q2)n+1
. (1)

Set z = �1 in (1). Then

1X

n=1

qn

(�qn; q)n+1(�q2n+2; q2)1
=

1X

n=1

(�1)n�1qn

(q; q2)n

=
1X

j=0

(�1)jq6j2+4j+1(1 + q4j+2).
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Theorem (Andrews and Y. )

X

n�0

qn(�zqn+1; q)n(�zq2n+2; q2)1 =
X

n�0

znqn2+n

(q; q2)n+1
,

X

n�0

(zq; q2)n(�q)n =
X

n�0

znqn2+n

(�q; q2)n+1
.
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Generalizations

Andrews (1966):

!(z, q) :=
X

n�0

znq2n2+2n

(q; q2)n+1(zq; q2)n+1
=

X

n�0

znqn

(q; q2)n+1
,

⌫(z, q) :=
X

n�0

qn2+n

(�zq; q2)n+1
=

X

n�0

(q/z; q2)n(�zq)n.

Choi (2011):

!̃(↵, z, q) :=
X

n�0

q2(n�1)2�6↵2nz4(n+1)

(z2/q; q2)n+1(↵2z2/q3; q2)n+1
,

⌫̃(↵, z, q) :=
X

n�0

qn(n�1)z2n

(�↵2z2/q3; q2)n+1
.
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Identities leading to bijective proofs

Li–Yang:

!(y, z, q) :=
X

n�0

ynznq2n2+2n

(yq; q2)n+1(zq; q2)n+1
,

⌫(y, z, q) :=
X

n�0

ynznqn2+n

(yq; q2)n+1
.

!(y, z, q) = z�2!(
p

yq/
p

z,
p

zq, q),

⌫(y, z, q) = ⌫(iq/
p

z,
p

yzq; q).

Theorem (Li–Yang (2019))

!(y, z, q) =
X

n�0

ynqn

(zq; q2)n+1
=

X

n�0

znqn

(yq; q2)n+1
,

⌫(y, z, q) =
X

n�0

(�zq; q2)n(yq)n.
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The work of Garthwaite–Penniston, Lovejoy, and Waldherr

Define a!(n) by
!(q) =

X

n�0

a!(n)qn.

Sharon Garthwaite and David Penniston showed that for any M such that
(M, 6) = 1, there are infinitely many arithmetic progressions An + B, none of which
is contained in another, so that

a!(An + B) ⌘ 0 (mod M).

Matthias Waldherr proved the first explicit congruences for a!(n) found through
some computations done by Jeremy Lovejoy:

p!(40n + 28) ⌘ 0 (mod 5),
p!(40n + 36) ⌘ 0 (mod 5).
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Theorem (Andrews, Passary, Sellers and Y. (2017))

p!
✓

22k+3n +
11 · 22k + 1

3

◆
⌘ 0 (mod 4),

p!
✓

22k+3n +
17 · 22k + 1

3

◆
⌘ 0 (mod 8),

p!
✓

22k+4n +
38 · 22k + 1

3

◆
⌘ 0 (mod 4).

p⌫
✓

22k+4n +
11 · 22k+1 � 1

3

◆
⌘ 0 (mod 4),

p⌫
✓

22k+4n +
17 · 22k+1 � 1

3

◆
⌘ 0 (mod 8),

p⌫
✓

22k+5n +
38 · 22k+1 � 1

3

◆
⌘ 0 (mod 4).
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Further congruences

Bruinier and Ono (2011): For p � 5 prime,

a!
✓

2p2 � 2
3

◆
⌘

8
><

>:

� p
3

�
(mod 512) if p ⌘ 1, 3 (mod 8),

� p
3

�
(1 + 2p255) (mod 512) if p ⌘ 5, 7 (mod 8).

Question: Any combinatorial explanation for the fact that a!
⇣

2p2�2
3

⌘
⌘ ±1

(mod 512) for the half of the primes which satisfy the congruence p ⌘ 1, 3
(mod 8)?

Xia (2018): Let p � 5 be a prime and p ⌘ 3 (mod 4). For ↵, n � 0 with n 6= p,

p!
✓

8p2↵+1n +
17p2↵+2 + 1

3

◆
⌘ 0 (mod 16).
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Overpartitions

An overpartition is a partition in which the first occurrence of a part may be
overlined.
Example.

4 = 4 = 4

= 3 + 1 = 3 + 1 = 3 + 1 = 3 + 1

= 2 + 2 = 2 + 2

= 2 + 1 + 1 = 2 + 1 + 1 = 2 + 1 + 1 = 2 + 1 + 1

= 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1

The overpartition function p(n) counts the number of overpartitions of n.

p(4) = 14.
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The overpartition analogue p!(n)

Define
1X

n=1

p!(n)q
n =

1X

n=1

qn(�qn+1; q)n(�q2n+2; q2)1
(1 � qn)(qn+1; q)n(q2n+2; q2)1

.

Bringmann, Jennings-Shaffer, Mahlburg (2018):

The generating function of p!(n) can be completed as a harmonic Maass form.

Theorem (Andrews, Dixit, Schultz and Y. (2017))

p!(4n + 3) ⌘ 0 (mod 4),
p!(8n + 6) ⌘ 0 (mod 4).
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Further congruence

Cui, Gu, and Hao: For ↵, n � 1,

p!(2
2↵+3n + 3 · 22↵+1) ⌘ 0 (mod 4).
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Analogue of Euler’s pentagonal number theorem for p!(n)

Theorem (Wang and Y. (2019))
1X

n=1

qn(qn+1; q)n(q2n+2; q2)1
(�qn; q)n+1(�q2n+2; q2)1

=
1X

n=1

X

|m|<n

(�1)mqn2+m2
.
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Andrews’ spt-function

In 2008, Andrews defined the smallest parts function spt(n) as the total number of
appearances of the smallest parts in all of the partitions of n.

Example: The five partitions of 4 are

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

Hence spt(4) = 10.

Andrews proved three surprising congruences for spt(n) mod 5, 7 and 13:

spt(5n + 4) ⌘ 0 (mod 5)
spt(7n + 5) ⌘ 0 (mod 7)

spt(13n + 6) ⌘ 0 (mod 13).
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The generating function for spt(n)

spt(n) has the following generating function:

1X

n=1

spt(n)qn =
1X

n=1

qn

(1 � qn)2(qn+1; q)1
.

This generating function has an alternative representation coming through the
second derivative of Watson’s q-analogue of Whipple’s theorem.

This allowed Andrews to prove that spt(n) is related to the partition function p(n)
and the second Atkin–Garvan rank moment N2(n) by

spt(n) = np(n)�
1
2

N2(n).

He then used this to prove the above spt-congruences.
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The smallest parts function associated with p!(n)

Let spt!(n) denote the number of smallest parts in the partitions enumerated by
p!(n).

Recall that p!(n) is the number of partitions of n such that all odd parts are less
than twice the smallest part. Consider the 8 partitions of 6 enumerated by p!(n):

6, 4 + 2, 4 + 1 + 1, 3 + 3, 2 + 2 + 2,
2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1 + 1,

so that spt!(6) = 21.

This smallest parts function was also studied by Garvan and Jennings-Shaffer.
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The generating function for spt!(n)

The generating function of spt!(n) is given by

1X

n=1

spt!(n)q
n =

1X

n=1

qn

(1 � qn)2(qn+1; q)n(q2n+2; q2)1
.

An alternate representation for this generating function, crucial for establishing the
above congruences, comes from differentiating Bailey’s 10�9 transformation given
below:
As N ! 1,

10�9

2

664

a, q2pa, �q2pa, p1, p1q, p2, p2q, f , q�2N , q�2N+1

p
a, �

p
a,

aq2

p1
,

aq

p1
,

aq2

p2
,

aq

p2
,

aq2

f
, aq2N+2, aq2N+1 ; q2,

a3q4N+3

p2
1p2

2 f

3

775

=

(aq; q)1

 
aq

p1p2
; q

!

1 
aq

p1
; q

!

1

 
aq

p2
; q

!

1

1X

n=0

(p1; q)n(p2; q)n
⇣ aq

f ; q2
⌘

n
(q; q)n(aq; q2)n

⇣ aq
f ; q

⌘

n

 
aq

p1p2

!n
.
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Generating function of spt!(n) - Alternate representation

Take second derivative (with respect to z) on both sides of the above equation and
then let z = 1 to obtain

1X

n=1

spt!(n)q
n =

1X

n=1

qn

(1 � qn)2(qn+1; q)n(q2n+2; q2)1

=
1

(q2; q2)1

1X

n=1

nqn

1 � qn +
1

(q2; q2)1

1X

n=1

(�1)n(1 + q2n)qn(3n+1)

(1 � q2n)2

=
1

(q2; q2)1

1X

n=1

nqn

1 � qn �
1
2

1X

n=1

N2(n)q2n.

Let
1X

n=0

cnqn :=
1

(q2; q2)1

1X

n=1

nqn

1 � qn .

Then 5 | c5n+3 and 5 | c5n+4.
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Theorem (Andrews, Dixit, Y. (2015))
The function spt!(n) satisfies the following three congruences:

spt!(5n + 3) ⌘ 0 (mod 5),
spt!(10n + 7) ⌘ 0 (mod 5),
spt!(10n + 9) ⌘ 0 (mod 5).

Partitions associated with the Ramanujan/Watson mock theta functions !(q) and ⌫(q) (34 / 40)



Overpartition analogue of spt!(n)

Define spt!(n) to be the number of of smallest parts in the overpartitions of n
counted by p!(n).

The generating function for spt!(n) is

1X

n=1

spt!(n)q
n =

1X

n=1

qn(�qn+1; q)n(�q2n+2; q2)1
(1 � qn)2(qn+1; q)n(q2n+2; q2)1

.
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Theorem (Andrews, Dixit, Schultz and Y.)

spt!(3n) ⌘ 0 (mod 3),

spt!(3n + 2) ⌘ 0 (mod 3).
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The function spt⌫(n)

Let spt⌫(n) denote the number of smallest parts in the partitions enumerated by
p⌫(n).
It is trivial to see that spt⌫(n) = p⌫(n).
It is shown that

spt⌫(10n + 8) ⌘ 0 (mod 5).

Proof employs the relation ⌫(�q) = q!(q2) + (�q2; q2)1 (q2).
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Thank you!
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