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Partitions

Partitions mod 2 and 3

Theorem (Ramanujan’s Congruences 1919; Hardy-Ramanujan)

p(5n + 4) ≡ 0 (mod 5), p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

Theorem (Ahlgren-Boylan (2003))

5, 7, and 11 are the only primes with “nice” congruences like this.

Congruences exist for other primes, but they look like this:

p(1074 · 31k + 30064597) ≡ 0 (mod 31) Ono, 2000.

Theorem (Radu (2012))

No linear congruences exist for partitions modulo 2 or 3.
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Partitions mod 2 and 3 (continued)

Conjecture (Subbarao (1966))

Every arithmetic progression contains infinitely many odd and
infinitely many even partition values.

Theorem (Ono,Radu)

Subbarao’s conjecture is true.

Question

Are these infinitely sets of even or odd values actually density 1/2?
Can one even show that the density of all even or odd partition

numbers is even positive? (Fundamental barrier: X
1
2
+ε odd/even

values up to X ). What can one say about partitions mod 3?
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A combinatorial realization?

Definition (Dyson 1944)

rank(λ) = largest part λ1 −# of parts k.

This is a measure of “failure of symmetry.” Namely, for
reflecting Young diagram’s across the line y = −x .

λ=5+4+3+1
( rank =1) → λ′=4+3+3+2+1

( rank =−1)

N(m, n) := #{ptns of n with rank m},
N(m, q; n) := #{ptns of n with rank ≡ m (mod q)}.
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Dyson’s Conjecture

Theorem (Conjecture of Dyson 1944, proven by Atkin and
Swinnerton-Dyer in 1954)

We have

N(0, 5; 5n + 4) = N(1, 5; 5n + 4) = . . . = N(4, 5; 5n + 4).

Similarly for ranks mod 7 for partitions of 7n + 5.

This “explains” Ramanujan’s congruences mod 5 and 7 using
a combinatorial object.
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What about mod 11?

Dyson: there may be a “crank function” explaining all of
Ramanujan’s congruences.

Definition (Andrews-Garvan, 1988)

crank(λ) :=

{
largest part of λ if no 1’s in λ,

(# parts larger than # of 1’s)− (# of 1’s) else.

Theorem (Andrews-Garvan)

Cranks “explain” Ramanujan’s congruences mod 5, 7, and 11.
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Reframing the combinatorial proofs

Elementary Fact

The equidistribution for cranks mod ` on a progression `n + β is
equivalent to

Φ`(ζ)|[q`n+β]C (z ; τ).

Here, Φ` is the `-th cyclotomic polynomial, and divisibility is as
Laurent polynomials.
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A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can
we find a direct bijection?

Stanton first notes the divisibility Φ`(ζ)|[q`n+β]R/C (z ; τ).

If the quotient had positive coefficients, he suggested they
may count something important.

This doesn’t work directly.
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Stanton’s Conjecture

Definition (Stanton)

The modified rank and crank are:

rank∗`,n(ζ) := rank`n+β + ζ`n+β−2 − ζ`n+β−1 + ζ2−`n−β − ζ1−`n−β,

crank∗`,n(ζ) := crank`n+β(ζ) + ζ`n+β−`− ζ`n+β + ζ`−`n−β− ζ−`n−β,

where β := `− `2−1
24 .

Conjecture (Stanton)

All of the following are Laurent polynomials with non-negative
coefficients:

rank∗5,n(ζ)

Φ5(ζ)
,

rank∗7,n(ζ)

Φ7(ζ)
,

crank∗5,n(ζ)

Φ5(ζ)
,

crank∗7,n(ζ)

Φ7(ζ)
,

crank∗11,n(ζ)

Φ11(ζ)
.
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Result for cranks

Theorem (Bringmann, Gomez, Rolen, Tripp, 2021)

The crank part of Stanton’s Conjecture is true.

Question

What about for ranks? What do the positive numbers mean for
cranks? How does this generalize?
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Modulo 9 Kanade-Russell conjectures

Conjecture (Kanade-Russell, 2015)

One of the Kanade-Russell conjectures is

# {λ ` n : λi ≡ ±1,±3 (mod 9)}

= #
{
λ ` n : λi−λi+1≤1 ⇒ λi+λi+1≡0 (mod 3)

λi−λi+2≥3

}
.

The associated q-series identity is

∑
m,n≥0

qm
2+3mn+3n2

(q; q)m(q3; q3)n
=

1

(q, q3, q6, q8; q9)∞
.

Remark

Sum-product identities

Connection to level 2 affine Lie algebra characters
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Open q-series questions of Andrews

Definition

Let

v1(q) := 1 +
∑
n≥1

q
n(n+1)

2

(−q2; q2)n
=
∑
n≥0

V1(n)qn.

Combinatorial interpretation

Let OE (n) be the number of partitions of n in which the
parity of the parts alternates and the smallest part is odd.

The rank of such a partition is even.

V1(n) is the number odd-even partitions of n with rank ≡ 0
(mod 4) minus the number with rank ≡ 2 (mod 4).
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Open q-series questions of Andrews

Conjecture (Andrews, 1986)

1 |V1(n)| → ∞ as n→∞.

2 For almost all n, V1(n),V1(n + 1),V1(n + 2), and V1(n + 3)
are two positive and two negative numbers.

3 For n ≥ 5 there is an infinite sequence
N5 = 293,N6 = 410, . . . ,N28 = 7898, . . . such that
V1(Nn),V1(Nn + 1), and V1(Nn + 2) all have the same sign.

Remark

Andrews also gives functions v2(q), v3(q), v4(q) for which similar
conjectures exist.
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Unimodal sequences

Strongly unimodal sequences with fixed rank

Definition

A sequence of positive integers {aj}sj=1 is strongly unimodal of
size n if it satisfies

1 a1 < · · · < ak−1 < ak > ak+1 > · · · > as ,

2 a1 + · · ·+ as = n.

Definition

The rank of a strongly unimodal sequence is the number of
terms after the maximal term minus the number of terms that
precede it, i.e. the rank is s − 2k + 1.

Let u(m, n) be the number of strongly unimodal sequences of
size n and rank m.
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Strongly unimodal sequences with fixed rank

Theorem (Bringmann–Jennings-Shaffer-Mahlburg-Rhoades, 2018)

For a fixed m ∈ N0,

Um(q) =
∑
n≥1

u(m, n)qn

=
q

m(m+1)
2

(q)∞

∑
n≥1

(−1)nq
n(n+1)

2
+mn

1− qn+m
(qn(n+m) − 1).

Corollary

We have the indefinite theta representation

Vm(q) = (q)∞Um(q)

=
∑

n1,n2≥0
(−1)n1+n2q

1
2(n1+m+ 1

2)
2
+ 3

2(n2+ 1
2)

2
+2(n1+m+ 1

2)(n2+ 1
2).
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Unimodal sequences

Strongly unimodal sequences with fixed rank

Open problem

Determine the (generalized) quantum modular properties of Um(q)
or Vm(q).
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Mock Maass theta functions

There is a parallel theory to the indefinite theta functions of
Zwegers’ thesis and mock modular forms.

Example from Ramanujan’s Lost Notebook studied by
Andrews-Dyson-Hickerson and Cohen:

σ(q) :=

 ∑
n+j≥0
n−j≥0

+
∑

n+j<0
n−j<0

 (−1)n+jq
3
2
(n+1/6)2−j2 .

Note: If you change signs to replace

(∑
n+j≥0
n−j≥0

+
∑

n+j<0
n−j<0

)
with

(∑
n+j≥0
n−j≥0

−
∑

n+j<0
n−j<0

)
, then get (essentially) a sixth

order mock theta function of Ramanujan.
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Mock Maass theta functions (cont.)

Zwegers gave a general construction of “mock Maass theta
functions” Φ, for these kind of indefinite theta series; when qn

is replaced by e2πiuxK0(2πivn) (this makes it have eigenvalue
1/4 under ∆0), then it is “almost” modular.

Namely, one can add a special integral to it to “complete” the
function to the modular function Φ̂. But instead of being an
eigenfunction of ∆0, applying ∆0 − 1/4 gives you stuff like
cusp forms times complex conjugates of cusp forms.

In analogy to harmonic Maass forms, “holomorphic” is
replaced by “eigenvalue 1/4”, and the period integrals are
replaced with new similar integrals.
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Mock Maass theta functions (cont.)

In special cases Φ = Φ̂ and so Φ is modular and has
eigenvalue 1

4 .

In this case results of Lewis-Zagier, Li-Ngo-Rhoades, and
Bringmann-Lovejoy-Rolen show how to explicitly take the
positive coefficients of Φ and construct a quantum modular
form Φ+. This is one way to realize σ(q) as a quantum
modular form.

Question

What else can be done with this theory?
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Sample place to look

Sample place to look: 4 families of Maass form “q-functions”
from this theory in Bringmann-Lovejoy-Rolen, including:∑

n≥0
(q)n(−1)nq(n+1

2 )Hn(k , `; 0, q),

where

Hn(k, `; b; q) :=
∑

n=nk≥nk−1≥...≥n1≥0

k−1∑
j=1

qn
2
j +(1−b)nj

×
[
nj+1−nj−bj+

∑j
r=1(2nr+χ`>r

nj+1−nj

]
q
.
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Explicit questions about these families of q-series

Question

These are positive coefficients of Maass forms; like σ(q).

Are there
q-hypergeometric formulas for the negative coefficients? Related
examples of Li-Ngo-Rhoades had such a feature, and this could
shed light on quantum modular properties as q 7→ q−1 that they
noted; are there Bailey pairs that work?

Question

U (`)
k (x ; q) :=

∑
n≥0 q

n(−x)n
(−q

x

)
n
Hn(k, `; 0; q).These are

analogous to Hikami-Lovejoy’s functions
U`
k(x ; q) := q−k

∑
n≥1 q

n(−xq)n−1
(−q

x

)
n
Hn(k , `; 1; q). These are

related to Kontsevich-Zagier “strange” functions F
(`)
k by

F
(`)
k (ζN) = U

(`)
k (−1; ζ−1N ) for roots of unity ζN . Are there

strange-type functions which relate to the U (`)
k ?
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Returning to the Um(q) functions

When applying Zwegers machinery to Vm(q), Φ is not
modular so we complete it to Φ̂.

Φ̂ no longer has eigenvalue 1
4 so the correspondence between

Maass waveforms and quantum modular forms doesn’t clearly
apply.

General open problem

In the case of Zwegers’ construction when Φ 6= Φ̂, determine the
generalized quantum modular properties of Φ+ and Φ−.
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Higher depth mock modular forms

Question

Mock modular forms fit in an infinite graded structure.

Modular
forms are the “depth 0” case, mock modular forms are the “depth
1 case.”The rough idea is that depth k + 1 objects are sent to
depth k objects under the shadow operator. Depth ≥ 2 examples
(all built from indefinite theta functions) are increasingly important
in examples from physics.
Are there nice combinatorial/q-hypergeomtric examples of higher
depth forms?
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Sums of roots of unity

Question

By studying radial limits of mock theta funtions as Ramanujan did
in his final letter to Hardy, one can find strange identities of sums
of roots of unity, like:

k−2
4∑

n=0

ζhnk (−ζhk ; ζ2hk )n

(ζhk ; ζ2hk )n+1
= i

k
2
−1∑

n=0

(−1)
n(n+1)

2 ζ
hn(n+1)
k (ζ2hk ;−ζ2hk )n

(iζhk ;−ζ2hk )2n+1

.

Can one prove this directly?
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Congruences modulo powers of 2

Ramaujan’s mock theta function:

ω(q) =
∑
n≥0

aω(n)qn :=
∑
n≥0

q2n(n+1)

(q; q2)2n+1

.

From Borcherds’ products, Bruinier-Ono define the “sieved
log-derivative” L̃ω(q) =

∑
n≥1

(n,6)=1
σ̂ω(n)qn, where

σ̂ω(n) :=
∑
d |n

(
d

3

)(
−8

n/d

)
d · aω

(
2d2 − 2

3

)
.

Theorem (Bruinier-Ono, 2010)

We have that L̃ω(q) ≡
∑

(n,6)=1 σ1(n)qn (mod 512).
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Congruences modulo power of 2 (cont.)

Question

Is there a q-series/combinatorial explanation for the role of L̃ω or
this Eisenstein congruence?

Find other interesting examples,
consequences for ω(q), and high power of 2 results.

Strongly unimodal sequences rank generating function:

U(ζ; q) :=
∑
m,n

u(m, n)ζmqn =
∑
n≥0

(−ζq)n(−ζ−1)nq
n+1.

Theorem (Bryson-Pitman-Ono-Rhoades, Chen-Garvan)

If ` ≡ 7, 11, 13, 17 (mod 24) is prime with
(
k
`

)
= −1, then for all

n, u(`2n + k`− (`2 − 1)/24) ≡ 0 (mod 4).
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Unimodal sequences (cont.)

Question

Is there interesting behavior modulo 8, or higher powers of q?

What about modulo 4 for other examples of Kontsevich-Zagier
type series/quantum modular objects. The proof uses
Hecke-Rogers series and properties of class numbers.
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