Open problems session

Nick Andersen and Michael Griffin

Vanderbilt University
May 23, 2022

Partitions mod 2 and 3

Theorem (Ramanujan's Congruences 1919; Hardy-Ramanujan)

$$
\begin{gathered}
p(5 n+4) \equiv 0 \quad(\bmod 5), \quad p(7 n+5) \equiv 0 \quad(\bmod 7) \\
p(11 n+6) \equiv 0 \quad(\bmod 11)
\end{gathered}
$$

Partitions mod 2 and 3

Theorem (Ramanujan's Congruences 1919; Hardy-Ramanujan)

$$
\begin{gathered}
p(5 n+4) \equiv 0 \quad(\bmod 5), \quad p(7 n+5) \equiv 0 \quad(\bmod 7) \\
p(11 n+6) \equiv 0 \quad(\bmod 11)
\end{gathered}
$$

Theorem (Ahlgren-Boylan (2003))
5,7 , and 11 are the only primes with "nice" congruences like this.

Partitions mod 2 and 3

Theorem (Ramanujan's Congruences 1919; Hardy-Ramanujan)

$$
\begin{gathered}
p(5 n+4) \equiv 0 \quad(\bmod 5), \quad p(7 n+5) \equiv 0 \quad(\bmod 7) \\
p(11 n+6) \equiv 0 \quad(\bmod 11)
\end{gathered}
$$

Theorem (Ahlgren-Boylan (2003))
5,7 , and 11 are the only primes with "nice" congruences like this.

- Congruences exist for other primes, but they look like this:

$$
p\left(107^{4} \cdot 31 k+30064597\right) \equiv 0 \quad(\bmod 31) \quad \text { Ono, } 2000
$$

Partitions mod 2 and 3

Theorem (Ramanujan's Congruences 1919; Hardy-Ramanujan)

$$
\begin{gathered}
p(5 n+4) \equiv 0 \quad(\bmod 5), \quad p(7 n+5) \equiv 0 \quad(\bmod 7) \\
p(11 n+6) \equiv 0 \quad(\bmod 11)
\end{gathered}
$$

Theorem (Ahlgren-Boylan (2003))
5,7 , and 11 are the only primes with "nice" congruences like this.

- Congruences exist for other primes, but they look like this:

$$
p\left(107^{4} \cdot 31 k+30064597\right) \equiv 0 \quad(\bmod 31) \quad \text { Ono, } 2000
$$

Partitions mod 2 and 3

Theorem (Ramanujan's Congruences 1919; Hardy-Ramanujan)

$$
\begin{gathered}
p(5 n+4) \equiv 0 \quad(\bmod 5), \quad p(7 n+5) \equiv 0 \quad(\bmod 7) \\
p(11 n+6) \equiv 0 \quad(\bmod 11)
\end{gathered}
$$

Theorem (Ahlgren-Boylan (2003))
5,7 , and 11 are the only primes with "nice" congruences like this.

- Congruences exist for other primes, but they look like this:

$$
p\left(107^{4} \cdot 31 k+30064597\right) \equiv 0 \quad(\bmod 31) \quad \text { Ono, } 2000
$$

Theorem (Radu (2012))
No linear congruences exist for partitions modulo 2 or 3.

Partitions mod 2 and 3 (continued)

Conjecture (Subbarao (1966))

Every arithmetic progression contains infinitely many odd and infinitely many even partition values.

Partitions mod 2 and 3 (continued)

Conjecture (Subbarao (1966))

Every arithmetic progression contains infinitely many odd and infinitely many even partition values.

Theorem (Ono,Radu)
Subbarao's conjecture is true.

Partitions mod 2 and 3 (continued)

Conjecture (Subbarao (1966))

Every arithmetic progression contains infinitely many odd and infinitely many even partition values.

Theorem (Ono,Radu)

Subbarao's conjecture is true.

Question

Are these infinitely sets of even or odd values actually density $1 / 2$?

Partitions mod 2 and 3 (continued)

Conjecture (Subbarao (1966))

Every arithmetic progression contains infinitely many odd and infinitely many even partition values.

Theorem (Ono,Radu)

Subbarao's conjecture is true.

Question

Are these infinitely sets of even or odd values actually density $1 / 2$?
Can one even show that the density of all even or odd partition numbers is even positive?

Partitions mod 2 and 3 (continued)

Conjecture (Subbarao (1966))

Every arithmetic progression contains infinitely many odd and infinitely many even partition values.

Theorem (Ono,Radu)

Subbarao's conjecture is true.

Question

Are these infinitely sets of even or odd values actually density $1 / 2$?
Can one even show that the density of all even or odd partition numbers is even positive? (Fundamental barrier: $X^{\frac{1}{2}+\varepsilon}$ odd/even values up to X).

Partitions mod 2 and 3 (continued)

Conjecture (Subbarao (1966))

Every arithmetic progression contains infinitely many odd and infinitely many even partition values.

Theorem (Ono,Radu)

Subbarao's conjecture is true.

Question

Are these infinitely sets of even or odd values actually density $1 / 2$?
Can one even show that the density of all even or odd partition numbers is even positive? (Fundamental barrier: $X^{\frac{1}{2}+\varepsilon}$ odd/even values up to X). What can one say about partitions mod 3?

A combinatorial realization?

Definition (Dyson 1944)
$\operatorname{rank}(\lambda)=$ largest part $\lambda_{1}-\#$ of parts k.

A combinatorial realization?

Definition (Dyson 1944)
 $\operatorname{rank}(\lambda)=$ largest part $\lambda_{1}-\#$ of parts k.

- This is a measure of "failure of symmetry."

A combinatorial realization?

Definition (Dyson 1944)
$\operatorname{rank}(\lambda)=$ largest part $\lambda_{1}-\#$ of parts k.

- This is a measure of "failure of symmetry." Namely, for reflecting Young diagram's across the line $y=-x$.

A combinatorial realization?

Definition (Dyson 1944)

$\operatorname{rank}(\lambda)=$ largest part $\lambda_{1}-\#$ of parts k.

- This is a measure of "failure of symmetry." Namely, for reflecting Young diagram's across the line $y=-x$.

A combinatorial realization?

Definition (Dyson 1944)

$\operatorname{rank}(\lambda)=$ largest part $\lambda_{1}-\#$ of parts k.

- This is a measure of "failure of symmetry." Namely, for reflecting Young diagram's across the line $y=-x$.

- $N(m, n):=\#\{$ ptns of n with rank $m\}$, $N(m, q ; n):=\#\{$ ptns of n with rank $\equiv m(\bmod q)\}$.

Dyson's Conjecture

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)
We have

$$
N(0,5 ; 5 n+4)=N(1,5 ; 5 n+4)=\ldots=N(4,5 ; 5 n+4) .
$$

Dyson's Conjecture

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)
We have

$$
N(0,5 ; 5 n+4)=N(1,5 ; 5 n+4)=\ldots=N(4,5 ; 5 n+4)
$$

Similarly for ranks mod 7 for partitions of $7 n+5$.

Dyson's Conjecture

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)
We have

$$
N(0,5 ; 5 n+4)=N(1,5 ; 5 n+4)=\ldots=N(4,5 ; 5 n+4) .
$$

Similarly for ranks mod 7 for partitions of $7 n+5$.

- This "explains" Ramanujan's congruences mod 5 and 7 using a combinatorial object.

What about mod 11?

- Dyson: there may be a "crank function" explaining all of Ramanujan's congruences.

What about mod 11?

- Dyson: there may be a "crank function" explaining all of Ramanujan's congruences.

Definition (Andrews-Garvan, 1988)

$$
\operatorname{crank}(\lambda):=\left\{\begin{array}{ll}
\text { largest part of } \lambda & \text { if no } 1 \text { 's in } \lambda, \\
(\# \text { parts larger than } \# \text { of } 1 \text { 's })-(\# \text { of } 1 \text { 's })
\end{array} \quad \text { else. } .\right.
$$

What about mod 11?

- Dyson: there may be a "crank function" explaining all of Ramanujan's congruences.

Definition (Andrews-Garvan, 1988)

$$
\operatorname{crank}(\lambda):=\left\{\begin{array}{ll}
\text { largest part of } \lambda & \text { if no } 1 \text { 's in } \lambda, \\
(\# \text { parts larger than } \# \text { of } 1 \text { 's })-(\# \text { of } 1 \text { 's })
\end{array} \quad \text { else. } .\right.
$$

Theorem (Andrews-Garvan)
Cranks "explain" Ramanujan's congruences mod 5, 7, and 11.

Reframing the combinatorial proofs

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n+\beta$ is equivalent to

Reframing the combinatorial proofs

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n+\beta$ is equivalent to

$$
\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] C(z ; \tau)
$$

Reframing the combinatorial proofs

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n+\beta$ is equivalent to

$$
\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] C(z ; \tau)
$$

Here, Φ_{ℓ} is the ℓ-th cyclotomic polynomial, and divisibility is as Laurent polynomials.

A question of Stanton

Question (Stanton)
Ranks and cranks distribute partitions into equinumerous sets. Can we find a direct bijection?

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a direct bijection?

- Stanton first notes the divisibility $\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] R / C(z ; \tau)$.

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a direct bijection?

- Stanton first notes the divisibility $\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] R / C(z ; \tau)$.
- If the quotient had positive coefficients, he suggested they may count something important.

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a direct bijection?

- Stanton first notes the divisibility $\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] R / C(z ; \tau)$.
- If the quotient had positive coefficients, he suggested they may count something important.
- This doesn't work directly.

Stanton's Conjecture

Definition (Stanton)

The modified rank and crank are:

$$
\operatorname{rank}_{\ell, n}^{*}(\zeta):=\operatorname{rank}_{\ell n+\beta}+\zeta^{\ell n+\beta-2}-\zeta^{\ell n+\beta-1}+\zeta^{2-\ell n-\beta}-\zeta^{1-\ell n-\beta}
$$

Stanton's Conjecture

Definition (Stanton)

The modified rank and crank are:
$\operatorname{rank}_{\ell, n}^{*}(\zeta):=\operatorname{rank}_{\ell n+\beta}+\zeta^{\ell n+\beta-2}-\zeta^{\ell n+\beta-1}+\zeta^{2-\ell n-\beta}-\zeta^{1-\ell n-\beta}$,
$\operatorname{crank}_{\ell, n}^{*}(\zeta):=\operatorname{crank}_{\ell n+\beta}(\zeta)+\zeta^{\ell n+\beta-\ell}-\zeta^{\ell n+\beta}+\zeta^{\ell-\ell n-\beta}-\zeta^{-\ell n-\beta}$, where $\beta:=\ell-\frac{\ell^{2}-1}{24}$.

Stanton's Conjecture

Definition (Stanton)

The modified rank and crank are:
$\operatorname{rank}_{\ell, n}^{*}(\zeta):=\operatorname{rank}_{\ell n+\beta}+\zeta^{\ell n+\beta-2}-\zeta^{\ell n+\beta-1}+\zeta^{2-\ell n-\beta}-\zeta^{1-\ell n-\beta}$,
$\operatorname{crank}_{\ell, n}^{*}(\zeta):=\operatorname{crank}_{\ell n+\beta}(\zeta)+\zeta^{\ell n+\beta-\ell}-\zeta^{\ell n+\beta}+\zeta^{\ell-\ell n-\beta}-\zeta^{-\ell n-\beta}$, where $\beta:=\ell-\frac{\ell^{2}-1}{24}$.

Conjecture (Stanton)

All of the following are Laurent polynomials with non-negative coefficients:

$$
\frac{\operatorname{rank}_{5, n}^{*}(\zeta)}{\Phi_{5}(\zeta)}, \frac{\operatorname{rank}_{7, n}^{*}(\zeta)}{\Phi_{7}(\zeta)}, \frac{\operatorname{crank}_{5, n}^{*}(\zeta)}{\Phi_{5}(\zeta)}, \frac{\operatorname{crank}_{7, n}^{*}(\zeta)}{\Phi_{7}(\zeta)}, \frac{\operatorname{crank}_{11, n}^{*}(\zeta)}{\Phi_{11}(\zeta)}
$$

Result for cranks

Theorem (Bringmann, Gomez, Rolen, Tripp, 2021)
The crank part of Stanton's Conjecture is true.

Result for cranks

Theorem (Bringmann, Gomez, Rolen, Tripp, 2021)
The crank part of Stanton's Conjecture is true.

Question
What about for ranks?

Result for cranks

Theorem (Bringmann, Gomez, Rolen, Tripp, 2021)
The crank part of Stanton's Conjecture is true.

Question

What about for ranks? What do the positive numbers mean for cranks?

Result for cranks

Theorem (Bringmann, Gomez, Rolen, Tripp, 2021)
The crank part of Stanton's Conjecture is true.

Question

What about for ranks? What do the positive numbers mean for cranks? How does this generalize?

Modulo 9 Kanade-Russell conjectures

Conjecture (Kanade-Russell, 2015)
One of the Kanade-Russell conjectures is

$$
\left.\begin{array}{l}
\#\left\{\lambda \vdash n: \lambda_{i} \equiv \pm 1, \pm 3 \quad(\bmod 9)\right\} \\
=\#\left\{\lambda \vdash n:^{\lambda_{i}-\lambda_{i+1} \leq 1} \begin{array}{l}
\Rightarrow \lambda_{i}+\lambda_{i+1} \equiv 0 \\
\lambda_{i}-\lambda_{i+2} \geq 3
\end{array} \quad(\bmod 3)\right.
\end{array}\right\} .
$$

Modulo 9 Kanade-Russell conjectures

Conjecture (Kanade-Russell, 2015)
One of the Kanade-Russell conjectures is

$$
\left.\begin{array}{l}
\#\left\{\lambda \vdash n: \lambda_{i} \equiv \pm 1, \pm 3 \quad(\bmod 9)\right\} \\
=\#\left\{\lambda \vdash n: \begin{array}{l}
\lambda_{i}-\lambda_{i+1} \leq 1 \underset{i}{\lambda_{i}+\lambda_{i+1} \equiv 0} \begin{array}{l}
\lambda_{i}-\lambda_{i+2} \geq 3
\end{array}
\end{array} \quad(\bmod 3)\right.
\end{array}\right\} .
$$

The associated q-series identity is

$$
\sum_{m, n \geq 0} \frac{q^{m^{2}+3 m n+3 n^{2}}}{(q ; q)_{m}\left(q^{3} ; q^{3}\right)_{n}}=\frac{1}{\left(q, q^{3}, q^{6}, q^{8} ; q^{9}\right)_{\infty}}
$$

Modulo 9 Kanade-Russell conjectures

Conjecture (Kanade-Russell, 2015)
One of the Kanade-Russell conjectures is

$$
\left.\begin{array}{l}
\#\left\{\lambda \vdash n: \lambda_{i} \equiv \pm 1, \pm 3 \quad(\bmod 9)\right\} \\
=\#\left\{\lambda \vdash n:^{\lambda_{i}-\lambda_{i+1} \leq 1} \begin{array}{l}
\Rightarrow_{i} \lambda_{i}+\lambda_{i+1} \equiv 0 \\
\lambda_{i}-\lambda_{i+2} \geq 3
\end{array} \quad(\bmod 3)\right.
\end{array}\right\} . .
$$

The associated q-series identity is

$$
\sum_{m, n \geq 0} \frac{q^{m^{2}+3 m n+3 n^{2}}}{(q ; q)_{m}\left(q^{3} ; q^{3}\right)_{n}}=\frac{1}{\left(q, q^{3}, q^{6}, q^{8} ; q^{9}\right)_{\infty}}
$$

Remark

- Sum-product identities

Modulo 9 Kanade-Russell conjectures

Conjecture (Kanade-Russell, 2015)
One of the Kanade-Russell conjectures is

$$
\left.\begin{array}{l}
\#\left\{\lambda \vdash n: \lambda_{i} \equiv \pm 1, \pm 3 \quad(\bmod 9)\right\} \\
=\#\left\{\lambda \vdash n:^{\lambda_{i}-\lambda_{i+1} \leq 1} \begin{array}{l}
\Rightarrow \lambda_{i}+\lambda_{i+1} \equiv 0 \\
\lambda_{i}-\lambda_{i+2} \geq 3
\end{array} \quad(\bmod 3)\right.
\end{array}\right\} . .
$$

The associated q-series identity is

$$
\sum_{m, n \geq 0} \frac{q^{m^{2}+3 m n+3 n^{2}}}{(q ; q)_{m}\left(q^{3} ; q^{3}\right)_{n}}=\frac{1}{\left(q, q^{3}, q^{6}, q^{8} ; q^{9}\right)_{\infty}}
$$

Remark

- Sum-product identities
- Connection to level 2 affine Lie algebra characters

Open q-series questions of Andrews

Definition

Let

$$
v_{1}(q):=1+\sum_{n \geq 1} \frac{q^{\frac{n(n+1)}{2}}}{\left(-q^{2} ; q^{2}\right)_{n}}=\sum_{n \geq 0} V_{1}(n) q^{n} .
$$

Open q-series questions of Andrews

Definition

Let

$$
v_{1}(q):=1+\sum_{n \geq 1} \frac{q^{\frac{n(n+1)}{2}}}{\left(-q^{2} ; q^{2}\right)_{n}}=\sum_{n \geq 0} V_{1}(n) q^{n}
$$

Combinatorial interpretation

- Let $O E(n)$ be the number of partitions of n in which the parity of the parts alternates and the smallest part is odd.

Open q-series questions of Andrews

Definition

Let

$$
v_{1}(q):=1+\sum_{n \geq 1} \frac{q^{\frac{n(n+1)}{2}}}{\left(-q^{2} ; q^{2}\right)_{n}}=\sum_{n \geq 0} V_{1}(n) q^{n}
$$

Combinatorial interpretation

- Let $O E(n)$ be the number of partitions of n in which the parity of the parts alternates and the smallest part is odd.
- The rank of such a partition is even.

Open q-series questions of Andrews

Definition

Let

$$
v_{1}(q):=1+\sum_{n \geq 1} \frac{q^{\frac{n(n+1)}{2}}}{\left(-q^{2} ; q^{2}\right)_{n}}=\sum_{n \geq 0} V_{1}(n) q^{n}
$$

Combinatorial interpretation

- Let $O E(n)$ be the number of partitions of n in which the parity of the parts alternates and the smallest part is odd.
- The rank of such a partition is even.
- $V_{1}(n)$ is the number odd-even partitions of n with rank $\equiv 0$ $(\bmod 4)$ minus the number with rank $\equiv 2(\bmod 4)$.

Open q-series questions of Andrews

Conjecture (Andrews, 1986)
(1) $\left|V_{1}(n)\right| \rightarrow \infty$ as $n \rightarrow \infty$.

Open q-series questions of Andrews

Conjecture (Andrews, 1986)
(1) $\left|V_{1}(n)\right| \rightarrow \infty$ as $n \rightarrow \infty$.
© For almost all $n, V_{1}(n), V_{1}(n+1), V_{1}(n+2)$, and $V_{1}(n+3)$ are two positive and two negative numbers.

Open q-series questions of Andrews

Conjecture (Andrews, 1986)
(1) $\left|V_{1}(n)\right| \rightarrow \infty$ as $n \rightarrow \infty$.
© For almost all $n, V_{1}(n), V_{1}(n+1), V_{1}(n+2)$, and $V_{1}(n+3)$ are two positive and two negative numbers.

- For $n \geq 5$ there is an infinite sequence $N_{5}=293, N_{6}=410, \ldots, N_{28}=7898, \ldots$ such that $V_{1}\left(N_{n}\right), V_{1}\left(N_{n}+1\right)$, and $V_{1}\left(N_{n}+2\right)$ all have the same sign.

Open q-series questions of Andrews

Conjecture (Andrews, 1986)
(1) $\left|V_{1}(n)\right| \rightarrow \infty$ as $n \rightarrow \infty$.
© For almost all $n, V_{1}(n), V_{1}(n+1), V_{1}(n+2)$, and $V_{1}(n+3)$ are two positive and two negative numbers.

- For $n \geq 5$ there is an infinite sequence $N_{5}=293, N_{6}=410, \ldots, N_{28}=7898, \ldots$ such that $V_{1}\left(N_{n}\right), V_{1}\left(N_{n}+1\right)$, and $V_{1}\left(N_{n}+2\right)$ all have the same sign.

Remark

Andrews also gives functions $v_{2}(q), v_{3}(q), v_{4}(q)$ for which similar conjectures exist.

Strongly unimodal sequences with fixed rank

Definition

A sequence of positive integers $\left\{a_{j}\right\}_{j=1}^{s}$ is strongly unimodal of size n if it satisfies
(1) $a_{1}<\cdots<a_{k-1}<a_{k}>a_{k+1}>\cdots>a_{s}$,
(2) $a_{1}+\cdots+a_{s}=n$.

Strongly unimodal sequences with fixed rank

Definition

A sequence of positive integers $\left\{a_{j}\right\}_{j=1}^{s}$ is strongly unimodal of size n if it satisfies
(1) $a_{1}<\cdots<a_{k-1}<a_{k}>a_{k+1}>\cdots>a_{s}$,
(2) $a_{1}+\cdots+a_{s}=n$.

Definition

- The rank of a strongly unimodal sequence is the number of terms after the maximal term minus the number of terms that precede it, i.e. the rank is $s-2 k+1$.

Strongly unimodal sequences with fixed rank

Definition

A sequence of positive integers $\left\{a_{j}\right\}_{j=1}^{s}$ is strongly unimodal of size n if it satisfies
(1) $a_{1}<\cdots<a_{k-1}<a_{k}>a_{k+1}>\cdots>a_{s}$,
(2) $a_{1}+\cdots+a_{s}=n$.

Definition

- The rank of a strongly unimodal sequence is the number of terms after the maximal term minus the number of terms that precede it, i.e. the rank is $s-2 k+1$.
- Let $u(m, n)$ be the number of strongly unimodal sequences of size n and rank m.

Strongly unimodal sequences with fixed rank

Theorem (Bringmann-Jennings-Shaffer-Mahlburg-Rhoades, 2018)
For a fixed $m \in \mathbb{N}_{0}$,

$$
\begin{aligned}
U_{m}(q) & =\sum_{n \geq 1} u(m, n) q^{n} \\
& =\frac{q^{\frac{m(m+1)}{2}}}{(q)_{\infty}} \sum_{n \geq 1} \frac{(-1)^{n} q^{\frac{n(n+1)}{2}+m n}}{1-q^{n+m}}\left(q^{n(n+m)}-1\right)
\end{aligned}
$$

Strongly unimodal sequences with fixed rank

Theorem (Bringmann-Jennings-Shaffer-Mahlburg-Rhoades, 2018)
For a fixed $m \in \mathbb{N}_{0}$,

$$
\begin{aligned}
U_{m}(q) & =\sum_{n \geq 1} u(m, n) q^{n} \\
& =\frac{q^{\frac{m(m+1)}{2}}}{(q)_{\infty}} \sum_{n \geq 1} \frac{(-1)^{n} q^{\frac{n(n+1)}{2}+m n}}{1-q^{n+m}}\left(q^{n(n+m)}-1\right)
\end{aligned}
$$

Corollary

We have the indefinite theta representation

$$
\begin{aligned}
V_{m}(q) & =(q)_{\infty} U_{m}(q) \\
& =\sum_{n_{1}, n_{2} \geq 0}(-1)^{n_{1}+n_{2}} q^{\frac{1}{2}\left(n_{1}+m+\frac{1}{2}\right)^{2}+\frac{3}{2}\left(n_{2}+\frac{1}{2}\right)^{2}+2\left(n_{1}+m+\frac{1}{2}\right)\left(n_{2}+\frac{1}{2}\right)} .
\end{aligned}
$$

Strongly unimodal sequences with fixed rank

Open problem
Determine the (generalized) quantum modular properties of $U_{m}(q)$ or $V_{m}(q)$.

Mock Maass theta functions

- There is a parallel theory to the indefinite theta functions of Zwegers' thesis and mock modular forms.

Mock Maass theta functions

- There is a parallel theory to the indefinite theta functions of Zwegers' thesis and mock modular forms.
- Example from Ramanujan's Lost Notebook studied by Andrews-Dyson-Hickerson and Cohen:

$$
\sigma(q):=\left(\sum_{\substack{n+j \geq 0 \\ n-j \geq 0}}+\sum_{\substack{n+j<0 \\ n-j<0}}(-1)^{n+j} q^{\frac{3}{2}(n+1 / 6)^{2}-j^{2}}\right.
$$

Mock Maass theta functions

- There is a parallel theory to the indefinite theta functions of Zwegers' thesis and mock modular forms.
- Example from Ramanujan's Lost Notebook studied by Andrews-Dyson-Hickerson and Cohen:

$$
\sigma(q):=\left(\sum_{\substack{n+j \geq 0 \\ n-j \geq 0}}+\sum_{\substack{n+j<0 \\ n-j<0}}(-1)^{n+j} q^{\frac{3}{2}(n+1 / 6)^{2}-j^{2}}\right.
$$

- Note: If you change signs to replace $\left(\sum_{\substack{n+j \geq 0 \\ n-j \geq 0}}+\sum_{\substack{n+j<0 \\ n-j<0}}\right)$ with $\left(\sum_{\substack{n+j \geq 0 \\ n-j \geq 0}}-\sum_{\substack{n+j<0 \\ n-j<0}}\right)$, then get (essentially) a sixth order mock theta function of Ramanujan.

Mock Maass theta functions (cont.)

- Zwegers gave a general construction of "mock Maass theta functions" Φ, for these kind of indefinite theta series; when q^{n} is replaced by $e^{2 \pi i u x} K_{0}(2 \pi i v n)$ (this makes it have eigenvalue $1 / 4$ under Δ_{0}), then it is "almost" modular.

Mock Maass theta functions (cont.)

- Zwegers gave a general construction of "mock Maass theta functions" Φ, for these kind of indefinite theta series; when q^{n} is replaced by $e^{2 \pi i u x} K_{0}(2 \pi i v n)$ (this makes it have eigenvalue $1 / 4$ under Δ_{0}), then it is "almost" modular.
- Namely, one can add a special integral to it to "complete" the function to the modular function $\hat{\phi}$. But instead of being an eigenfunction of Δ_{0}, applying $\Delta_{0}-1 / 4$ gives you stuff like cusp forms times complex conjugates of cusp forms.

Mock Maass theta functions (cont.)

- Zwegers gave a general construction of "mock Maass theta functions" Φ, for these kind of indefinite theta series; when q^{n} is replaced by $e^{2 \pi i u x} K_{0}(2 \pi i v n)$ (this makes it have eigenvalue $1 / 4$ under Δ_{0}), then it is "almost" modular.
- Namely, one can add a special integral to it to "complete" the function to the modular function $\hat{\phi}$. But instead of being an eigenfunction of Δ_{0}, applying $\Delta_{0}-1 / 4$ gives you stuff like cusp forms times complex conjugates of cusp forms.
- In analogy to harmonic Maass forms, "holomorphic" is replaced by "eigenvalue $1 / 4$ ", and the period integrals are replaced with new similar integrals.

Mock Maass theta functions (cont.)

- In special cases $\Phi=\hat{\Phi}$ and so Φ is modular and has eigenvalue $\frac{1}{4}$.

Mock Maass theta functions (cont.)

- In special cases $\Phi=\hat{\Phi}$ and so Φ is modular and has eigenvalue $\frac{1}{4}$.
- In this case results of Lewis-Zagier, Li-Ngo-Rhoades, and Bringmann-Lovejoy-Rolen show how to explicitly take the positive coefficients of Φ and construct a quantum modular form Φ^{+}. This is one way to realize $\sigma(q)$ as a quantum modular form.

Mock Maass theta functions (cont.)

- In special cases $\Phi=\hat{\Phi}$ and so Φ is modular and has eigenvalue $\frac{1}{4}$.
- In this case results of Lewis-Zagier, Li-Ngo-Rhoades, and Bringmann-Lovejoy-Rolen show how to explicitly take the positive coefficients of Φ and construct a quantum modular form Φ^{+}. This is one way to realize $\sigma(q)$ as a quantum modular form.

Question

What else can be done with this theory?

Sample place to look

- Sample place to look: 4 families of Maass form " q-functions" from this theory in Bringmann-Lovejoy-Rolen, including:

$$
\sum_{n \geq 0}(q)_{n}(-1)^{n} q^{\binom{n+1}{2}} H_{n}(k, \ell ; 0, q)
$$

where

$$
\begin{gathered}
H_{n}(k, \ell ; b ; q):=\sum_{n=n_{k} \geq n_{k-1} \geq \ldots \geq n_{1} \geq 0} \sum_{j=1}^{k-1} q^{n_{j}^{2}+(1-b) n_{j}} \\
\times\left[\begin{array}{c}
n_{j+1}-n_{j}-b j+\sum_{r=1}^{j}\left(2 n_{r}+\chi_{\ell>r}\right]_{j+1}-n_{j}
\end{array} .\right.
\end{gathered}
$$

Explicit questions about these families of q-series

Question

These are positive coefficients of Maass forms; like $\sigma(q)$.

Explicit questions about these families of q-series

Question

These are positive coefficients of Maass forms; like $\sigma(q)$. Are there q-hypergeometric formulas for the negative coefficients?

Explicit questions about these families of q-series

Question

These are positive coefficients of Maass forms; like $\sigma(q)$. Are there q-hypergeometric formulas for the negative coefficients? Related examples of Li-Ngo-Rhoades had such a feature, and this could shed light on quantum modular properties as $q \mapsto q^{-1}$ that they noted; are there Bailey pairs that work?

Explicit questions about these families of q-series

Question

These are positive coefficients of Maass forms; like $\sigma(q)$. Are there q-hypergeometric formulas for the negative coefficients? Related examples of Li-Ngo-Rhoades had such a feature, and this could shed light on quantum modular properties as $q \mapsto q^{-1}$ that they noted; are there Bailey pairs that work?

Question

$\mathcal{U}_{k}^{(\ell)}(x ; q):=\sum_{n \geq 0} q^{n}(-x)_{n}\left(\frac{-q}{x}\right)_{n} H_{n}(k, \ell ; 0 ; q)$.

Explicit questions about these families of q-series

Question

These are positive coefficients of Maass forms; like $\sigma(q)$. Are there q-hypergeometric formulas for the negative coefficients? Related examples of Li-Ngo-Rhoades had such a feature, and this could shed light on quantum modular properties as $q \mapsto q^{-1}$ that they noted; are there Bailey pairs that work?

Question

$\mathcal{U}_{k}^{(\ell)}(x ; q):=\sum_{n \geq 0} q^{n}(-x)_{n}\left(\frac{-q}{x}\right)_{n} H_{n}(k, \ell ; 0 ; q)$. These are analogous to Hikami-Lovejoy's functions

$$
U_{k}^{\ell}(x ; q):=q^{-k} \sum_{n \geq 1} q^{n}(-x q)_{n-1}\left(\frac{-q}{x}\right)_{n} H_{n}(k, \ell ; 1 ; q) .
$$

Explicit questions about these families of q-series

Question

These are positive coefficients of Maass forms; like $\sigma(q)$. Are there q-hypergeometric formulas for the negative coefficients? Related examples of Li-Ngo-Rhoades had such a feature, and this could shed light on quantum modular properties as $q \mapsto q^{-1}$ that they noted; are there Bailey pairs that work?

Question

$\mathcal{U}_{k}^{(\ell)}(x ; q):=\sum_{n \geq 0} q^{n}(-x)_{n}\left(\frac{-q}{x}\right)_{n} H_{n}(k, \ell ; 0 ; q)$. These are analogous to Hikami-Lovejoy's functions $U_{k}^{\ell}(x ; q):=q^{-k} \sum_{n \geq 1} q^{n}(-x q)_{n-1}\left(\frac{-q}{x}\right)_{n} H_{n}(k, \ell ; 1 ; q)$. These are related to Kontsevich-Zagier "strange" functions $F_{k}^{(\ell)}$ by $F_{k}^{(\ell)}\left(\zeta_{N}\right)=U_{k}^{(\ell)}\left(-1 ; \zeta_{N}^{-1}\right)$ for roots of unity ζ_{N}.

Explicit questions about these families of q-series

Question

These are positive coefficients of Maass forms; like $\sigma(q)$. Are there q-hypergeometric formulas for the negative coefficients? Related examples of Li-Ngo-Rhoades had such a feature, and this could shed light on quantum modular properties as $q \mapsto q^{-1}$ that they noted; are there Bailey pairs that work?

Question

$\mathcal{U}_{k}^{(\ell)}(x ; q):=\sum_{n \geq 0} q^{n}(-x)_{n}\left(\frac{-q}{x}\right)_{n} H_{n}(k, \ell ; 0 ; q)$. These are analogous to Hikami-Lovejoy's functions $U_{k}^{\ell}(x ; q):=q^{-k} \sum_{n \geq 1} q^{n}(-x q)_{n-1}\left(\frac{-q}{x}\right)_{n} H_{n}(k, \ell ; 1 ; q)$. These are related to Kontsevich-Zagier "strange" functions $F_{k}^{(\ell)}$ by $F_{k}^{(\ell)}\left(\zeta_{N}\right)=U_{k}^{(\ell)}\left(-1 ; \zeta_{N}^{-1}\right)$ for roots of unity ζ_{N}. Are there strange-type functions which relate to the $\mathcal{U}_{k}^{(\ell)}$?

Returning to the $U_{m}(q)$ functions

- When applying Zwegers machinery to $V_{m}(q), \Phi$ is not modular so we complete it to $\hat{\Phi}$.

Returning to the $U_{m}(q)$ functions

- When applying Zwegers machinery to $V_{m}(q), \Phi$ is not modular so we complete it to $\hat{\Phi}$.
- $\hat{\Phi}$ no longer has eigenvalue $\frac{1}{4}$ so the correspondence between Maass waveforms and quantum modular forms doesn't clearly apply.

Returning to the $U_{m}(q)$ functions

- When applying Zwegers machinery to $V_{m}(q), \Phi$ is not modular so we complete it to $\hat{\Phi}$.
- $\hat{\phi}$ no longer has eigenvalue $\frac{1}{4}$ so the correspondence between Maass waveforms and quantum modular forms doesn't clearly apply.

General open problem

In the case of Zwegers' construction when $\Phi \neq \hat{\Phi}$, determine the generalized quantum modular properties of Φ^{+}and Φ^{-}.

Higher depth mock modular forms

Question

Mock modular forms fit in an infinite graded structure.

Higher depth mock modular forms

Question

Mock modular forms fit in an infinite graded structure. Modular forms are the "depth 0" case, mock modular forms are the "depth 1 case."

Higher depth mock modular forms

Question

Mock modular forms fit in an infinite graded structure. Modular forms are the "depth 0" case, mock modular forms are the "depth 1 case." The rough idea is that depth $k+1$ objects are sent to depth k objects under the shadow operator.

Higher depth mock modular forms

Question

Mock modular forms fit in an infinite graded structure. Modular forms are the "depth 0" case, mock modular forms are the "depth 1 case." The rough idea is that depth $k+1$ objects are sent to depth k objects under the shadow operator. Depth ≥ 2 examples (all built from indefinite theta functions) are increasingly important in examples from physics.

Higher depth mock modular forms

Question

Mock modular forms fit in an infinite graded structure. Modular forms are the "depth 0" case, mock modular forms are the "depth 1 case." The rough idea is that depth $k+1$ objects are sent to depth k objects under the shadow operator. Depth ≥ 2 examples (all built from indefinite theta functions) are increasingly important in examples from physics.
Are there nice combinatorial/q-hypergeomtric examples of higher depth forms?

Sums of roots of unity

Question

By studying radial limits of mock theta funtions as Ramanujan did in his final letter to Hardy, one can find strange identities of sums of roots of unity, like:

$$
\sum_{n=0}^{\frac{k-2}{4}} \frac{\zeta_{k}^{h n}\left(-\zeta_{k}^{h} ; \zeta_{k}^{2 h}\right)_{n}}{\left(\zeta_{k}^{h} ; \zeta_{k}^{2 h}\right)_{n+1}}=i \sum_{n=0}^{\frac{k}{2}-1} \frac{(-1)^{\frac{n(n+1)}{2}} \zeta_{k}^{h n(n+1)}\left(\zeta_{k}^{2 h} ;-\zeta_{k}^{2 h}\right)_{n}}{\left(i \zeta_{k}^{h} ;-\zeta_{k}^{2 h}\right)_{n+1}^{2}}
$$

Sums of roots of unity

Question

By studying radial limits of mock theta funtions as Ramanujan did in his final letter to Hardy, one can find strange identities of sums of roots of unity, like:

$$
\sum_{n=0}^{\frac{k-2}{4}} \frac{\zeta_{k}^{h n}\left(-\zeta_{k}^{h} ; \zeta_{k}^{2 h}\right)_{n}}{\left(\zeta_{k}^{h} ; \zeta_{k}^{2 h}\right)_{n+1}}=i \sum_{n=0}^{\frac{k}{2}-1} \frac{(-1)^{\frac{n(n+1)}{2}} \zeta_{k}^{h n(n+1)}\left(\zeta_{k}^{2 h} ;-\zeta_{k}^{2 h}\right)_{n}}{\left(i \zeta_{k}^{h} ;-\zeta_{k}^{2 h}\right)_{n+1}^{2}}
$$

Can one prove this directly?

Congruences modulo powers of 2

- Ramaujan's mock theta function:

$$
\omega(q)=\sum_{n \geq 0} a_{\omega}(n) q^{n}:=\sum_{n \geq 0} \frac{q^{2 n(n+1)}}{\left(q ; q^{2}\right)_{n+1}^{2}}
$$

Congruences modulo powers of 2

- Ramaujan's mock theta function:

$$
\omega(q)=\sum_{n \geq 0} a_{\omega}(n) q^{n}:=\sum_{n \geq 0} \frac{q^{2 n(n+1)}}{\left(q ; q^{2}\right)_{n+1}^{2}} .
$$

- From Borcherds' products, Bruinier-Ono define the "sieved log-derivative" $\widetilde{L}_{\omega}(q)=\sum_{\substack{n \geq 1 \\(n, \overline{6})=1}} \widehat{\sigma}_{\omega}(n) q^{n}$, where

$$
\widehat{\sigma}_{\omega}(n):=\sum_{d \mid n}\left(\frac{d}{3}\right)\left(\frac{-8}{n / d}\right) d \cdot a_{\omega}\left(\frac{2 d^{2}-2}{3}\right) .
$$

Congruences modulo powers of 2

- Ramaujan's mock theta function:

$$
\omega(q)=\sum_{n \geq 0} a_{\omega}(n) q^{n}:=\sum_{n \geq 0} \frac{q^{2 n(n+1)}}{\left(q ; q^{2}\right)_{n+1}^{2}} .
$$

- From Borcherds' products, Bruinier-Ono define the "sieved log-derivative" $\widetilde{L}_{\omega}(q)=\sum_{\substack{n \geq 1 \\(n, \overline{6})=1}} \widehat{\sigma}_{\omega}(n) q^{n}$, where

$$
\widehat{\sigma}_{\omega}(n):=\sum_{d \mid n}\left(\frac{d}{3}\right)\left(\frac{-8}{n / d}\right) d \cdot a_{\omega}\left(\frac{2 d^{2}-2}{3}\right) .
$$

Theorem (Bruinier-Ono, 2010)

We have that $\widetilde{L}_{\omega}(q) \equiv \sum_{(n, 6)=1} \sigma_{1}(n) q^{n}(\bmod 512)$.

Congruences modulo power of 2 (cont.)

Question

Is there a q-series/combinatorial explanation for the role of \tilde{L}_{ω} or this Eisenstein congruence?

Congruences modulo power of 2 (cont.)

Question

Is there a q-series/combinatorial explanation for the role of \tilde{L}_{ω} or this Eisenstein congruence? Find other interesting examples, consequences for $\omega(q)$, and high power of 2 results.

Congruences modulo power of 2 (cont.)

Question

Is there a q-series/combinatorial explanation for the role of \tilde{L}_{ω} or this Eisenstein congruence? Find other interesting examples, consequences for $\omega(q)$, and high power of 2 results.

- Strongly unimodal sequences rank generating function:

$$
\mathcal{U}(\zeta ; q):=\sum_{m, n} u(m, n) \zeta^{m} q^{n}=\sum_{n \geq 0}(-\zeta q)_{n}\left(-\zeta^{-1}\right)_{n} q^{n+1}
$$

Congruences modulo power of 2 (cont.)

Question

Is there a q-series/combinatorial explanation for the role of \tilde{L}_{ω} or this Eisenstein congruence? Find other interesting examples, consequences for $\omega(q)$, and high power of 2 results.

- Strongly unimodal sequences rank generating function:

$$
\mathcal{U}(\zeta ; q):=\sum_{m, n} u(m, n) \zeta^{m} q^{n}=\sum_{n \geq 0}(-\zeta q)_{n}\left(-\zeta^{-1}\right)_{n} q^{n+1}
$$

Theorem (Bryson-Pitman-Ono-Rhoades, Chen-Garvan)

If $\ell \equiv 7,11,13,17(\bmod 24)$ is prime with $\left(\frac{k}{\ell}\right)=-1$, then for all $n, u\left(\ell^{2} n+k \ell-\left(\ell^{2}-1\right) / 24\right) \equiv 0(\bmod 4)$.

Unimodal sequences (cont.)

Question

Is there interesting behavior modulo 8, or higher powers of q ?

Unimodal sequences (cont.)

Question

Is there interesting behavior modulo 8, or higher powers of q? What about modulo 4 for other examples of Kontsevich-Zagier type series/quantum modular objects.

Unimodal sequences (cont.)

Question

Is there interesting behavior modulo 8, or higher powers of q ? What about modulo 4 for other examples of Kontsevich-Zagier type series/quantum modular objects. The proof uses Hecke-Rogers series and properties of class numbers.

