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Abstract

We consider collections of games with and without side payments described
by certain natural parameters. Given the parameters 7 describing a collection
of games and a lower bound ng on the number of players, we obtain a bound
eo(m,ng) so that, for any e > go(m, ng), all games in the collection with at
least ng players have nonempty e-cores. Examples are provided in which the
bound on ¢ is met. For parameter values ensuring that there are many close
substitutes for most players and that relatively small groups of players can
realize nearly all gains to collective activities, for games with many players the

bound on € is small.
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1 Introduction.

The core, the set of feasible outcomes of a social or economic situation that cannot
be improved upon by any coalition of players, is a fundamental equilibrium concept.
If, using only their own resources, the members of some group of individuals could
improve upon an outcome of social or economic activities for themselves, then it seems
reasonable to suppose that they would do so. Except in highly stylized situations,
the core may be empty. This has motivated conditions ensuring nonemptiness of
approximate cores in economies and games with many players; see Shapley and Shubik
(1966) for nonemptiness of approximate cores of economies and, for games with and
without side payments, Wooders (1979,1983). Kannai (1992) provides a survey of
some of the subsequent literature.

In this paper we provide a new model of cooperative games, sufficiently general
to encompass a variety of social and economic situations, and show that approximate
cores are nonempty. The goodness of the approximation depends on certain natural
parameters describing the games. Examples are provided where the closeness of the
approximation cannot be improved. For choices of parameter values ensuring that
there are many close substitutes for each player and that relatively small groups of
players can realize nearly all gains to collective activities, for games with many players
the approximation is close.

Specifically, a collection of cooperative games is parameterized by (a) a number



of approximate player types and the accuracy of this approximation; (b) an upper
bound on the size of near-effective groups of players and the closeness of these groups
to being effective for the realization of all gains to collective activities; (c¢) a bound
on the supremum of per capita payoffs achievable in coalitions; and (d) a measure of
the extent to which boundaries of payoff sets are bounded away from being “flat.”
These parameters are fixed independently of the size of the game; thus the collection
may contain arbitrarily large games. A simple example of a parameterized collection
of games is the set of all games with transferable utility where, given some positive
real number K, within each game all players are identical, only two-player coalitions
are effective, and any two-player coalition can earn some payoff less than or equal to
2K. Note that the payoff to two-player coalitions may differ between different games
in the collection. Our notion of a parameterized collection of games allows games
without side payments. Except for the condition that all games in the collection are
described by the same parameters, all the games may differ.

Given the parameters m describing a collection of games and given a lower bound
ng on the number of players in each game in the collection, we obtain a bound
go(m,ng) so that, for any £ > go(m,ng), all games in the collection with at least ng
players have nonempty e-cores. Examples are provided in which the bound on ¢ is
met. Our results also imply that given any positive real number ¢ strictly greater
than the sum of (i) the bound on the measures of the difference between players of

the same approximate type and (ii) the difference of nearly effective bounded-sized



groups from being fully effective, there is a lower bound n; on the number of players
so that all games in the collection with more than n; players have nonempty e;-cores.

The motivation for this paper stems from economics, and in particular, from the
study of competition in diverse economic settings, such as those with local public
goods, clubs, production, location, indivisibilities, non-monotonicities, and other de-
viations from the classic Arrow-Debreu-McKenzie model. In the context of private
goods exchange economies, bounds on measures of differences of economic outcomes
from price-taking equilibrium outcomes has long been an ongoing theme in the gen-
eral equilibrium literature; see Anderson (1978), for example, and references therein.
Our results contribute to a line of research investigating the “market-like” proper-
ties of large games under conditions limiting returns to group size, cf. Wooders
(1983,1994a,1999). In large games the core is a stand-in for the competitive equilib-
rium. Rather than treating properties of price-taking allocations of economies, our
results provide an exact bound on the distance of approximate cores of games from
satisfying the no-improvement property of the core. Like Anderson (1978), our results
apply to given games rather than sequences of games and apply to any given game
satisfying the conditions of the Theorems. Unlike detailed models of economies, such
as those of Anderson (1978) for exchange economies or Conley (1994) for pure public
goods economies, models of large games can accommodate the entire spectrum from
games derived from private goods economies to games derived from economies with

pure public goods.



This paper contrasts with our other research on approximate cores of large games
(Kovalenkov and Wooders 1999a,b), in that in the present paper we obtain an ezact
bound on ¢ for games to have nonempty equal treatment e-cores. Also in the current
paper we use techniques that are completely different from our previous research, but
instead related to those of Scarf (1965), an earlier unpublished version of his well-
known paper, Scarf (1967), showing that balanced games have nonempty cores. (See
also Billera 1970). To obtain our results we extend Scarf’s techniques from simply
the negative and positive orthants to recession cones and their dual negative cones.
Our extension allows us to use the “sum” norm to define nearly effective groups. This
broadens the class of games covered. Moreover, as we demonstrate with an example,
the use of the sum norm may significantly decrease the bound on . Our main result,
however, depends on convexity of payoff sets, not required in Kovalenkov and Wooders
(1999a). In contrast to Kovalenkov and Wooders (1999b) our current results include
games with unlimited side payments, for example, games with transferable utility.
In fact, the results in this paper build on those for games with transferable utility.
Relationships to previous research are developed further later in the paper.

The next section of this paper presents our model. Section 3 provides results
and examples. Section 4 gives the sketch of the proof. Related literature, possible
applications and further motivation are presented in the concluding section of the
paper. We note here only that our work is related in spirit to the “least e-core,”

introduced by Maschler, Peleg, and Shapley (1979), since we obtain a lower bound



on ¢ ensuring that the e-core is nonempty.

2 Definitions.

2.1 Cooperative games: description and notation.

Let N = {1,...,n} denote a set of players. A nonempty subset of N is called a
coalition. For any coalition S let RS denote the |S|-dimensional Euclidean space
with coordinates indexed by elements of S. For x € R¥, 25 will denote its restriction
to R®. To order vectors in R® we use the symbols >>, > and > with their usual
interpretations. The non-negative orthant of R® is denoted by Ri and the strictly
positive orthant by Ri +- Let A, denote the simplex in RY, that is let A, :=
{)\ eRY: TN N\ = 1} . For A C R¥, co(A) denotes the convex hull. We denote by
Ig the vector of ones in RS, that is, Ig = (1,...,1) € R®. Each coalition S has a
feasible set of payoff vectors or utilities denoted by Vg C R®. By agreement, V = {0}
and V(; is nonempty, closed and bounded from above for any ¢. In addition, we will
assume that

max{x:xev{i}}:()for any ¢ € N,

this is by no means restrictive since it can always be achieved by a normalization.

It is convenient to describe the feasible utilities of a coalition as a subset of RY.



For each coalition S let V(S), called the payoff set for S, be defined by

V(S) ::{xGRN:xSEVgandxa:()foragéS}.

A game without side payments (called also an NTU game or simply a game)
is a pair (N,V) where the correspondence V : 2¥ — R is such that V(S) C

{w eRYN:z,=0fora¢ S } for any S C N and satisfies the following properties :
(2.1) V(S) is nonempty and closed for all S C N.

(2.2) V(S) NRY is bounded for all S C N, in the sense that there is a real number

K > 0 such that if z € V(S) NRY, then z; < K for all i € S.
(2.3) V(S1) + V(S2) C V(S1US2) for any disjoint S1,S2 C N (superadditivity).

We next introduce the uniform version of strong comprehensiveness assumed for
our results. Informally, if one person can be made better off (while all the others
remain at least as well off), then all persons can be made better off. Roughly, this
notion dictates that payoff sets are both comprehensive and uniformly bounded away
from having level segments in their boundaries. Consider a set W C R°. We say
that W is comprehensive if x € W and y < x implies y € W. The set W is strongly
comprehensive if it is comprehensive, and whenever z € W, y € W, and x < y there
exists z € W such that x << z. This property has also been called “nonleveledness.”

Given (i) z € RY, (ii) 4,5 € S, (iii) 0 < ¢ < 1 and (iv) ¢ > 0, define a vector



z!.(¢) € R, where
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(i;(0)i = x—¢,
($?,j(¢))j = x; +q¢, and

(x];(0)k = ax for k€ S\ {i,j}.

The set W is q-comprehensive if W is comprehensive and if, for any = € W, it holds
that (zf;(¢)) € W for any i,j € Sand any ¢ > 0. (See Figure 1 below.) This
condition places a lower bound of ¢ on the degree of side paymentness and, for ¢ > 0,
uniformly bounds the slopes of the Pareto frontier of payoff sets away from zero. Note
that for ¢ = 0, 0-comprehensiveness is simply comprehensiveness. Also note that if a
game is g-comprehensive for some ¢ > 0 then the game is ¢’-comprehensive for all ¢/

with 0 < ¢ <q.
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Figure 1.

Let Vs C R? be a payoff set for S C N. Given ¢, 0 < ¢ < 1, let W& C R® be the
smallest g-comprehensive set that includes the set Vs. For V(S) C RY let us define

the set ¢,(V'(5)) in the following way:
c,(V(9)) := {x eRY :z5€ Wi and z, =0 for a ¢ S}.

Notice that for the relevant components — those assigned to the members of S — the
set ¢,(V(5)) is g-comprehensive, but not for other components. With some abuse
of the terminology, we will call this set the g-comprehensive cover of V(S). When
q > 0 we can think of a game as having some degree of “side-paymentness” or as
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allowing transfers between players, but not necessarily at a one-to-one rate. This is

an eminently reasonable assumption for games derived from economic models.

Remark 1. The notion of g-comprehensiveness can be found in Kaneko and Wood-
ers (1996). For the purposes of the current paper, g-comprehensiveness can be re-
laxed outside the individually rational payoff sets. Note that in the definition of
g-comprehensiveness, g places a lower bound on the degree of transferable utility for
all coalitions S. Note also that, for a g-comprehensive game (N, V'), within some
coalitions, at some points on the upper boundary of the payoff set V(S), by taking
one unit of payoff away from one player we may be able to increase the utility of
another player by more than one unit. This cannot hold uniformly however. For if it
did, payoff sets would not be bounded above. Thus, property (2.2) of a game rules out
g-comprehensive games with ¢ > 1. Note also that for ¢ > 0, g-comprehensiveness

implies strong comprehensiveness.

2.2 Parameterized collections of games.

To introduce the notion of parameterized collections of games we will need the concept
of Hausdorff distance. For every two nonempty subsets F and F of a metric space
(M, d), define the Hausdorff distance between E and F (with respect to the metric d

on M), denoted by dist(E, F'), as

dist(E,F):=1inf{# € (0,00) : E C By(F) and F C By(F)},

11



where By(FE) :={z € M : d(z, F) < 0} denotes a §-neighborhood of E.

Since payoft sets are unbounded below, we will use a modification of the concept
of the Hausdorff distance so that the distance between two payoft sets is the distance
between the intersection of the sets and a subset of Euclidean space. Let m* be a
fixed positive real number. Let M* be a subset of Euclidean space RY defined by
M* .= {x cRY:2,>-m*foranyac N } For every two nonempty subsets £ and
F of Euclidean space R let H,[E, F'] denote the Hausdorff distance between ENM*
and F' N M* with respect to the metric ||z — y||, := max; |z; — y;| and let H[E, F]

denote the Hausdorff distance between ENM* and F'NM* with respect to the metric

lz —yll, =X, |2 — vil-

The concepts defined below lead to the definition of parameterized collections
of games. To motivate the concepts, each is related to analogous concepts in the
pregame framework (see, for example, Wooders 1983,1994a or Wooders and Zame
1984). Recall that a pregame is a specification of a set of player types — a finite set
or, more generally, a compact metric space of player types — and a worth function
ascribing a payoff set to any group of players, where the group is described by the

number of players of each type in the group.

O0—substitute partitions. In our approach we approximate games with many players,

all of whom may be distinct, by games with finite sets of player types. Observe that

for a compact metric space of player types, given any real number 6 > 0 there is a
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partition (not necessarily unique) of the space of player types into a finite number
of subsets, each containing players who are “6-similar” to each other. Parameterized
collections of games do not restrict to a compact metric space of player types, but do

employ the idea of a finite number of approximate types.

Let (N, V) be a game and let 6 > 0 be a non-negative real number. A é-substitute
partition is a partition of the player set N into subsets with the property that any
two players in the same subset are “within ¢” of being substitutes for each other.
Formally, given a set W C R and a permutation 7 of N, let o (W) denote the set
formed from W by permuting the values of the coordinates according to the associated
permutation 7. Given a partition {N [¢t] : ¢t =1,..,T} of N, a permutation 7 of N is
type — preserving if, for any ¢ € N, 7(i) belongs to the same element of the partition
{N [t]} asi. A §-substitute partition of N is a partition {N [t] : ¢t = 1,..,T} of N with

the property that, for any type-preserving permutation 7 and any coalition S,

Hee [V(S), o7 (V(7(8))] < &

»oT

Note that in general a é-substitute partition of N is not uniquely determined.
Moreover, two games may have the same partitions but have no other relationship to

each other (in contrast to games derived from a pregame).

(6,T)- type games. The notion of a (§,T)-type game is an extension of the notion of

a game with a finite number of types to a game with approximate types. This is
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significantly less restrictive than the extension of a finite set of types to a compact

metric space.

Let 6 be a non-negative real number and let 7" be a positive integer. A game (N, V)
is a (6, T)-type game if there is a T-member 6-substitute partition {N [¢t]: ¢t =1,..,T}
of N. The set N [t] is interpreted as an approzimate type. Players in the same element

of a d-substitute partition are 6-substitutes. When 6 = 0, they are exact substitutes.

per capita boundedness. Boundedness of average payoffs — in the case of games with

side payments, simply finiteness of the supremum of average payoff — has a long history
in the study of large games. Here, to keep our framework as simple as possible, we
use a very transparent form of the assumption. Let C' be a positive real number. A

game (N, V) has a per capita payoff bound of C' if, for all coalitions S C N,

>z, < C|S| for any z € V(S).

a€esS

weakly [-effective B-bounded groups. Informally, groups of players containing no more

than B members are weakly [-effective if, by restricting coalitions to having fewer
than B members, the loss per player is no more than . This notion formulates the
idea of small effective groups in the context of parameterized collections of games.
Let (N,V) be a game. Let 8 > 0 be a given non-negative real number and let

B be a given positive integer. For each group S C N, define a corresponding set

14



V(S; B) C RY in the following way:

V(S;B) =/ lz V(S¥): {S’“} is a partition of S, Sk‘ <B
k

The set V(S; B) is the payoff set of the coalition S when groups are restricted to
have no more than B members. Note that, by superadditivity, V(S; B) C V(S)
for any S C N and, by construction, V(S;B) = V(S) for |S| < B. Define the
q-comprehensive cover of V(S; B), denoted by c,(V(S; B)), analogously to the set
¢,(V(S)); we might think of ¢,(V(S; B)) as the payoff set to the coalition S when
groups are restricted to have no more than B members and transfers are allowed
between groups in the partition. If the game (N, V) has g-comprehensive payoff sets
then ¢,(V(S;B)) C V(S) for any S C N. The game (NN,V) with ¢-comprehensive

payoft sets has weakly 3-effective B-bounded groups if, for every group S C N,

Hy [V(S),¢(V(S; B))] < BS].

When = 0, weakly 0O-effective B-bounded groups are called strictly effective B-

bounded groups.

Remark 2. Our previous papers (Kovalenkov and Wooders 1999a,b) used a more
demanding notion of small group effectiveness ((-effective B-bounded groups). We
discuss the advantages of the present approach in the next section. Note also, as
in our other papers and in Wooders (1983), since our proofs proceed by considering

equal treatment payoff vectors — those that treat players of the same approximate
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type symmetrically — the conditions of per capita boundedness and small group ef-
fectiveness may be relaxed to hold only for payoff vectors with the equal treatment

property. We choose the current forms of the conditions for ease of statement.

Remark 3. The definition of weakly effective g-effective B-bounded groups may
appear more restrictive than it actually is. In particular, groups of size B may not

be able to exhaust gains to group size. Consider, for example, the collection of TU

games where, for any game in the collection, n players can realize the payoff n — %
Note that there are ever-increasing returns to the size of the total player set. Yet, for

each positive integer B and 3 = %, every game in the collection has weakly 3-effective

B-bounded groups.

parameterized collections of games G{((6,T),C, (8, B)). With the above definitions in

hand, we can now define parameterized collections of games. Let T and B be positive
integers and let C, 8, 3, and ¢ be non-negative real numbers. Let G{((6,T),C, (3, B))
be the collection of all (6, T')-type games that have g-comprehensive payoff sets, have

per capita bound of C', and have weakly [-effective B-bounded groups.

Less formally, given non-negative real numbers C, 8, 3, and ¢, and positive integers

T and B, a game (N, V) belongs to the class G{((6,T), C, (8, B)) if:
(a) the payoff sets satisfy g-comprehensiveness;
(b) there is a partition of the total player set into T sets where each element of the

partition consists of players who are d-substitutes for each other;
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(¢) maximum per capita gains are bounded by C'; and

(d) almost all gains to collective activities (with a per capita maximum possible loss
of 3) can be realized by partitions of the total player sets into groups containing

fewer than B members.

3 The Theorem.

First, we recall some definitions.

The core and epsilon cores. Let (N,V) be a game. A payoff x is e-undominated if

for all S € N and y € V(S) it is not the case that yg >> zg + 1ge. The payoff
x is feasible if x € V(N). The e-core of a game (INV,V) consists of all feasible and

e-undominated allocations. When ¢ = 0, the e-core is the core.

The equal treatment epsilon core. Given non-negative real numbers € and 6, we will

define the equal treatment e-core of a game (N, V) relative to a partition {N [t]} of
the player set into d-substitutes as the set of payoff vectors x in the e-core with the

property that for each ¢ and all ¢ and j in N[t], it holds that z; = z;.

Let (N, V) € Gi((6,T),C, (8, B)). The following Theorem provides a lower bound
on ¢ so that for any & > &, the game (N,V') has a nonempty ¢-core. In fact, the

Theorem shows nonemptiness of the equal treatment e-core as well. The lower bound
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on ¢ is given by

_1,TC(B-1)

o((6.T).C.(8.B)) = (g + A6

Of course the only interesting cases are those where this bound is small. To avoid triv-
ialities associated with large € we restrict attention to the case ok ((6,T), C, (8, B)) <

m*, where m* is the positive real number fixed in Section 2.2.

Theorem. Let (N,V) € G{((6,T),C, (3, B)), where ¢ > 0. Assume V(N) is convex.
Let £ be a positive real number. If e > o4, ((6,T),C, (3, B)) then the equal treatment

e-core of (N, V') is nonempty.

The relationships between the lower bound on e, the parameters describing the
game, and the number of players in the total player set are immediate. The idea of
the proof of the Theorem is provided in Section 4. Several results used for this proof
are presented in appendix.

It is interesting to observe that for inessential games, which always have nonempty
cores, the Theorem gives a bound on e of zero. Let (N,V) be a game where all
coalitions are inessential and side payments are available at the rate ¢ > 0, that is,
for any coalition S C N, V(S) = ¢;(Xics V({i})). Such a game has a nonempty core.
Thus, the e-core is nonempty for any € > 0. To apply our Theorem, let C' be a per
capita bound for the game (N, V). Then (N, V) € G{((0,|N]),C,(0,1)). The lower
bound given by the expression above, %(MCU%Z + ) + 6 is zero since 6 =0, 5 =0

and (B — 1) = 0. Even in this extreme case, the bound works well.
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Now let us recall the simple example of a parameterized collection of games pre-
sented in the introduction. Consider games with transferable utility where, given
some positive real number K, within each game, all players are identical, only two-
player coalitions are effective, and any two-player coalition can earn a payoff of less
than or equal to 2K . Obviously all these games belong to the class Gi((0,1), K, (0, 2)).

1

In this case, a(TCfﬁf L4 B)+ 6= ‘—ﬁ The core is empty if the number of players

is odd. Let |[N| = 2n + 1 for some positive integer n. But we can easily determine
the least lower bound on ¢ so that the e-core is nonempty for any game (N, V') in the
collection with |N| = 2n 4+ 1. In particular, suppose we assign each of the first 2n
players up to K — ¢ and the remaining player 2ne. Suppose €* solves K — &* = 2ne*.
Then the e core is nonempty for any game in the collection for any € > €*, but may
be empty otherwise. (Take, for example, K = 1 and n = 1. Then &* = % and the

e-core is empty for any € < %) Solving for £*, we obtain

. K K

@n+1) |N|

This bound coincides with the bound given by the Theorem. Thus the bound given

in the Theorem is the best possible bound for this collection.

Remark 4. Consider again the collection of TU games of Remark 3 where, for any
game in the collection, n players can realize the payoft n — % It is apparent that given
any 3 > 0 there is a bound B so that this collection is contained in G{ ((0,1), 1, (3, B)).

Moreover, given 3 < 1 (and positive, of course) we can choose B equal to the smallest

19



integer greater than % Thus, we can make ap((0,7),1, (3, B)) = T(ﬁ\;‘l) + 3 arbi-

trarily small by choosing 3 to be small and |N| to be large. For example, suppose
we wish a},((0,1),1, (3, B)) to be smaller than —-. Setting 3 = 5% and B = 200, it

100° 200

holds that oy ((0,1),1,(8, B)) < 145 for all games in the collection with more than
200 x 199 = 39,800 players. This illustrates the remark in the introduction that
“For choices of parameter values ensuring that ... relatively small groups of players

can realize nearly all gains to collective activities, for games with many players the

approximation is close.” Example 2 below makes the same point for choices of 6 and

T.

Now let us consider formally the central case of games with side payments

3.1 (Games with side payments: Corollary 1.

A game with side payments (also called a TU game) is a game (N,V) with 1-
comprehensive payoff sets, that is V(S) = ¢;(V(S)) for any S C N. This im-
plies that for any S C N there exists a real number v(S) > 0 such that Vg =
{m eERY: Y eqwi < 1)(5)}. Since the function v : 2V — R, where v(()) := 0, uniquely
determine a TU game, a TU game is typically represented by a pair (N,v). All the
definitions that we have introduced can be stated for TU games through the function
v, called the characteristic function. Moreover some of these definitions are essentially

simpler and more straightforward than in the general case. For the purposes of the
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illustration we state below the simpler definitions for TU games:

1). A game (N,v) is superadditive if v(S) > 3, v(S*) for all groups S C N and
for all partitions {S’“} of S.

2). Let (N,v) be a game and let 6 > 0 be a non-negative real number. A 6-
substitute partition of N is a partition {N [t]:t =1,..,T} of N with the property

that, for any type-consistent permutation 7 and any coalition S,
[v(S) —v(r(S))] < 8|9].

3). Let 3 be a given non-negative real number, and let B be a given integer. A
game (N, v) has weakly [3-effective B-bounded groups if for every group S C N there

is a partition {S’“ } of S into subgroups with )S’“) < B for each k and

v(9) =Y w(s*) < B1S|.

k
4). Let C be a positive real number. A game (N, v) has a per capita bound of C

if %s%l < C for all coalitions S C N.

The case of TU games is central, since first we prove our result for these games
and then we extend the result to games without side payments. To make notations
simpler in the following sections, we denote parameterized collections of games with
side payments, Gi((6,T),C, (8, B)), by L'((6,T),C, (3, B)). For the convenience of the

reader a corollary of the Theorem corresponding to the case of TU games follows:
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Corollary 1. Let (N,v) € I'((6,T),C, (8, B)) and let € be a positive real number. If

TC(B — 1)

e > +6+p
[N

then the equal treatment e-core of (N, v) is nonempty.

Now let us state some examples. We begin our examples with the special case of

games with exact types and strictly effective B-bounded groups.

Example 1. Ezact types and strictly effective small groups. Let us consider a game
(N,v) with two types of players. Assume that any player alone can get only
0 units or less, that is v({i}) = 0 for all ¢ € N. Suppose that any coalition of
the two players of types ¢ and j can get up to 7;; units of payoff to divide. Let
Y11, Y12 = 721, and Y92 be some numbers from the interval [0,1]. An arbitrary
coalition can gain only what it can obtain in partitions where no member of the
partition contains more than two players.

We leave it to the reader to check that (N,v) € T'((0,2),3,(0,2)). Thus we

have from Corollary 1 that for ¢ > ‘—11” the equal treatment e-core of (N, v) is

nonempty. Notice that this result holds uniformly for all possible numbers 11,

Y12 = 721, and Yas.

The following example illustrates how our result can apply to games derived from
pregames with a compact metric space of player types. For brevity, our example
is somewhat informal. While the example is worded in terms of firms and workers,
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as in Crawford and Knoer (1981), for example, it could easily be modified to treat
the hospital and intern matching problem as in Roth (1984) or any such assignment

problem.

Example 2. Approximate player types. Consider a pregame with two sorts of
players, firms and workers. The set of possible types of workers is given by the
points in the interval [0,1) and the set of possible types of firms is given by the
points in the interval [1,2]. Formally, let NV be any finite player set and let £ be
an attribute function, that is, a function from N into [0,2]. If £(z) € [0,1) then

i is a worker and if £(¢) € [1,2] then 7 is a firm.

Firms can profitably hire up to three workers and the payoff to a firm i and
a set of workers W (i) C N, containing no more than 3 members, is given by
v({i} UW (i) = &(@) + Zjew) €(J). Workers and firms can earn positive payoff
only by cooperating so v({i}) = 0 for all i« € N. For any coalition S C N
define v(S) as the maximum payoff the group S could realize by splitting into
coalitions containing either workers only, or 1 firm and no more than 3 workers.
This completes the specification of the game.

We leave it to the reader to verify that for any positive integer m every game

1

derived from the pregame is a (--,2m)-type game and even a member of the

class T'((=,2m), 2, (0,4)). Then Corollary 1 implies that for any e > 3% +

1
|| m

the equal treatment e-core of (IV,v) is nonempty.
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This implies that for any € > 0 there is a positive integer N(g°) such that for

any |N| > N(£°) the game (N, v) has a nonempty equal treatment £%-core. (For

24m0 )

an exact bound take an integer m° > % and define N(¢%) > 2.

For completeness, we present a simple but formal example with nearly effective

groups.

Example 3. Nearly effective groups. Call a game (N,v) a k-quota game if any
coalition S C N of size less than k can realize only 0 units (that is, v(S) = 0 if
|S| < k), any coalition of size k can realize 1 unit (that is, v(S) = 1 if |S| = k),
and an arbitrary coalition can gain only what it can obtain in partitions where
no member of the partition contains more than k players. Let () be a collection,

across all k, of all k-quota games with player set N.

We leave it to the reader to verify that, for any positive integer m > 1, the class
@ is contained in the class I'((0,1),1, (&,m — 1)). Hence Corollary 1 implies
that for any ¢ > QTJT_? + % and for any (N, v) € @ the equal treatment e-core of
(N,v) is nonempty. This implies that for any £° > 0 there is a positive integer
N (&%) such that for any |[N| > N(c°) any game (N,v) € @ has a nonempty

equal treatment e’-core. (For an exact bound take an integer m® > E% and

define N (%) > g#)

This example also illustrates some differences between parameterized collections
of games and games derived from pregames, discussed further in Section 5. A
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pregame takes as given a topological space of player types and a single worth
function determining payoff sets for groups of players described by their types.
It is immediate that the payoff structure of a pregame is invariant in the sense
that only the size and composition of player sets can vary, not the payoff to a
given set of players described by their types. Given the player set N, the class
() consists of games generated by varying the payoff structure of the games.
Thus, the collection () cannot be described as a collection of games generated

by a pregame.

3.2 Relationships to other results: Corollary 2.

Notice that a feasible payoff is in the e-core if no coalition of players can improve
upon the payoft by at least ¢ for each member of the coalition. This suggests that
the distance of coalitions containing fewer than B-members from being effective for
the realization of all gains to group formation might most appropriately be defined
using the Hausdorff distance with respect to the sup norm, and indeed this was the
approach that we took in previous papers (Kovalenkov and Wooders 1999a,b). In this
section we re-define the notion of small group effectiveness using the sup norm and
contrast our current Theorem with our earlier results. Let us first define (-effective

B-bounded groups using the Hausdorff distance with respect to the sup norm.

B-effective B-bounded groups. The game (N, V') with g-comprehensive payoff sets has
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(B-effective B-bounded groups if for every group S C N

Hoo [V(S5),¢4(V(5; B))] < .

Notice that [-effective B-bounded groups are always weakly [-effective B-bounded
groups, but for TU games these two notions coincide. These notions also coincide in

the case when = 0.

We now introduce the definition of parametrized collections of games in our prior

research.

parameterized collections of games G4 ((6,T),C, (83, B)). Let T and B be positive in-

tegers and let C, §, 3, and ¢ be positive real numbers. Let G ((6,7T),C, (3, B)) be
the collection of all (6, T')-type games that have g-comprehensive payoff sets, have per

capita bound of C', and have (-effective B-bounded groups.

Of course G4 ((6,T),C, (8,B)) C G{((6,T),C, (53, B)), but these two classes coincide

for ¢ = 1 (games with side payments), that is GL_((6,T), C, (8, B)) =T'((6,T),C, (3, B)).

The following statement is a straightforward implication of the Theorem to the

class of parameterized games considered in our previous papers.

Corollary 2. Let (N,V) € G%.((6,T),C,(8,B)), where ¢ > 0. Assume V(N) is
convex. Let £ be a positive real number. If ¢ > a%,((6,T), C, (3, B)) then the equal

treatment e-core of (N, V') is nonempty.

26



The following example illustrates why either convexity or some degree of compre-
hensiveness is required for our result, even for games with just one exact player type.

In brief, this is required so that “left-over” players can be compensated.

Example 4. Convezxity or some positive degree of comprehensiveness. Let (N, Vp)

be a superadditive game where for any two-person coalition S = {i,j}, j # i,
Vo(S) ={z e RN : 2, <1, x; <l,and z, =0 for k # 4,5}
and for each 1 € N,
Vo({i}) ;== {z € RY :2; <0 and x; = 0 for all j # i}.

For an arbitrary coalition S the payoff set V;(.S) is given as the superadditive

cover, that is,

Vo(8)=U > Wl(9),

P(S) S'eP(S)

where the union is taken over all partitions P(S) of S in the sets with one or

two elements.

Let m be a positive integer. Let (N™, V") be a game where the number of
players in the set N™ is 2m + 1 and for any coalition S C N™ Vj™(S) := V;(S).
Thus, each game (N™, V™) has an odd number of players. It is easy to see that
the core of the game is nonempty: any payoff giving 1 to each of 2m players
is in the core. Since the total number of players is odd, at least one person
must be “left out.” In a game with side payments this player could upset the
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nonemptiness of the core. But the games of this example do not satisfy strong
comprehensiveness. Thus, a payoff giving 1 to each of 2m players cannot be
improved upon since the “left-out” player, in a coalition by himself, cannot
make both himself and a player in a two-person coalition better off — the player
in the two-person coalition cannot be given more than 1. The games, however,
can be approximated arbitrarily closely by games with strongly comprehensive
payoff sets. (See Wooders 1983, Appendix.)

Let (N™, V") be a game with strongly comprehensive payoff sets that approx-
imates the game (N™, V™). For a sufficiently close approximation, the game
(N™ V™) will have effective small groups and an empty core. This follows from
the observations that any payoff must give at least one player less than one and
the two worst-off players a total of less than two. The two worst-off players
form an improving coalition and hence the core is empty. Moreover, it can be
shown with a precise construction of (N™, V") that for a small but positive £
the e-core of (N™, V") can be empty even for a great number of players.

Our results rely on convexity and g-comprehensiveness. Since there is only one
type of player, in this example either g-comprehensiveness or convexity will suf-
fice. The role of convexity is to average payoffs over similar players. Consider

the game (N, V) where V7 is defined as the convex hull of V7. Then the

conv conv

payoff # = (522, ..., 72%) is feasible and in the e-core of (N™, V2 ) for any
£ > 2m1 —7- Now instead of convexity of the total payoff set, suppose that payoff
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sets are g-comprehensive. In this case for any payoff giving one to each of 2m
players, it is possible to take some small amount, say ¢, away from each of
2m players and “transfer” 2meq to the leftover player. Thus, for any ¢ and ¢

satisfying 2meq > 1 — € the e-core is nonempty.

A crucial feature of Example 4 is the restriction to one player type. Because of
this feature and the fact that two-player coalitions are effective, through convexity
or g-comprehensiveness we can construct equal treatment payoff vectors in approx-
imate cores. This example suggests that either convexity or g-comprehensiveness is
sufficient to get nonemptiness of the epsilon cores for large games. In fact, The-
orem 3 in Kovalenkov and Wooders (1999a) supports this intuition in the case of
g-comprehensiveness. Theorem 1 in Kovalenkov and Wooders (1999b) shows that
convexity is sufficient for nonemptiness but requires “thickness” of the player set (that
is, the condition that the proportion of any approximate player type is bounded above
zero). Neither of these papers, however, provide exact bounds. Corollary 2 shows
that with both convexity and g-comprehensiveness, an exact bound can be obtained
on ¢ for nonemptiness of the e-core. This bound is very simple and is achieved in
some examples.

Notice that in some cases our Theorem allows us to obtain a significantly smaller
bound than Corollary 2. This arises because of the use of weakly (-effective B-
bounded groups for the Theorem rather than [-effective B-bounded groups as in
Corollary 2. Our next example, continuing Example 4, demonstrates how both the
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Theorem and Corollary 2 can be applied to games without side payments and illus-

trates the advantages of the use of the Theorem.

Example 5. The advantage of the Theorem in decreasing the bound on €. Recall
the game (N, Vp) defined in Example 4. Now let us define a game (IV, V%) in
the following way. For any S C N let V%(S) be the %—comprehensive cover of

the convex cover of the payoff set V;(.S); that is,

Vi (S) = e1 (co(Vo(S))).

3

Obviously the game (N, V%) has %—comprehensive convex payoff sets, one player
type, and per capita bound of 1. We leave it to the reader to verify that for any
positive integer m > 3 the game (N, V%) has %—effective m-bounded groups.

1
m

1
Thus the game (N, V}) is a member of the class G((0,1),1, (;;,m)). Since

(m-1)
||

Vi (N) is convex, Corollary 2 states that for any ¢ > 3( + ) the equal

treatment e-core of (N, V%) is nonempty. This implies that for any €° > 0 there
is a positive integer V(”) such that for any [N| > N(°) the game (N, V}) has
a nonempty equal treatment °-core. (To obtain an exact bound take an integer
m® > & and define N(£0) > ﬂ%})

We leave it to the reader to verify that the game (N, V%) has weakly |—§]|—

effective 2-bounded groups. Therefore the game (N, V%) is a member of the

class QI%((O, 1),1, (ﬁﬂ)) Recall that V%(N) is convex. Then the Theorem

states that for any & > 3(‘—111| + ﬁ) = |—f]| the equal treatment e-core of (N, V%)
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is nonempty which is much better then the bound provided by Corollary 2.
(The bound of the Theorem implies that for any €° > 0 and for any |N| > 5

the game (N, V1 ) has a nonempty equal treatment £’-core.)

4 A sketch of the proof of the Theorem.

We provide here only the main argument. In appendix we present proofs for several
results used in this section. Our proof starts from the central case of TU games,
then we consider a symmetric case, and finally we deal with the general case with no

additional restrictions.

[A) The TU case. We start our chain of proofs by first addressing a special case of
Corollary 1 (Lemma 1); this case considers games (N, v) from the class I'((0,7"), C, (0, B)).
Given a partition {N [t]}L; of N into types, for S C N define the profile of S, denoted

by prof(S), by its components
prof(S)y = [SN N[t

for t = 1,...,T. A profile describes a group of players in terms of the numbers of
players of each type in the group. For any profile m € RT, let ||m]|| denote the
number of players in a group described by m, that is, [|[m| = S, m;. Also, for any

profile m € RT, define v(m) = v(S) for any coalition S C N with prof(S) = m.

The idea of the proof for the TU case. The intuition for Lemma 1 is the follow-
ing: The possible emptiness of the core can be viewed as a consequence of the feature
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of cooperative games that coalitions are not allowed to operate at levels of intensity
between zero and one. (Another, but less apt, interpretation, is that coalitions can not
operate part-time. The difficulties with this interpretation are discussed in Garratt
and Qin 2000.) For games with strictly effective B-bounded groups, we can restrict
attention to coalitions containing no more than B members, or, in other words, to
coalitions with profiles m satisfying the condition that ||m|| < B. Let {m’“}]C denote
the collection of profiles with Hm’“H < B for each m”* and let f denote the profile of
N. Define v*(N) as the total payoff to the grand coalition if coalitions were allowed

to operate at levels of intensity between zero and one. More formally, define

v’(N) = max »_ wyo(m")
{“‘)k} k

where

Zwkmk = f and, for each k, wy > 0
k

(so that the constraint given by the composition of the total player set is satisfied). Let
{w;} be the positive weights achieving the maximum, that is, v°(N) = 3, wiv(mF).

If the weights wj are integers then, from superadditivity, the game (V, v) will have
a nonempty core; players can be partitioned into “optimal coalitions” with no left-
overs. There exist nonnegative integers 7y such that wy > r, and hy := wr — 1, < 1

for each k. The smaller the expression

V'(N) —o(N) _ Eilwpp(m®) — ro(m?)) 5 hiv(m?)
[NV - [NV [NV
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the closer the game is to having a nonempty core. Since the number of profiles in the
set {my} is bounded and since each hy is less than one, it is clear that for sufficiently
large | N| the above expression can be made arbitrarily small. To obtain our bound,
we appeal to the Caratheodory theorem, showing that we can restrict the number of
elements in the set {w}} to be no more than T and to the fact that 3" hym* must be
a vector of integers and, coordinate by coordinate, strictly smaller than a vector of

integers 3", m*. Therefore, since ||my|| < B for each k,

et < 2] -7 <
(B — 1)T. Using the per capita bound of C, we obtain the stated lower bound on &
for the case of & = 0 and 3 = 0. These completes the proof of Lemma 1.

The Corollary 1 follows by approximation techniques. It appears, that for positive
6 and 3 we must add both these numbers to the bound. We present the formal proofs

of Lemma 1 and of Corollary 1 in Step I of appendix. B

Remark 5. In effect, Bondareva (1962) and Shapley (1967) showed that a TU game
has a nonempty core if and only if v*(N) = v(N). Wooders (1983) (and earlier SUNY-
Stony Brook Department of Economics Working Papers for TU games, especially
#184 — published in part in Wooders 1992) developed the approach discussed above
for sequences of games with a fixed distribution of player types. The observation
that with bounded effective groups and a finite number of types, the emptiness of
the core arises from the presence of left overs (a set of players with profile 3, hym*)
already appeared in these papers. This approach has now been extended in a number
of papers, most recently to parameterized collections of games in Wooders (1994b)
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and Kovalenkov and Wooders (1999a,b). The calculation of an exact bound on &
for nonemptiness of e-cores of large games is new to our reseach on parameterized

collections of games.

[B) The symmetric case| We continue the proof of the Theorem by first treating

games where all players of the same type are exact substitutes of each other. We
introduce the following terminology: A set W C RY is symmetric across substitute
players if for any player type the set W remains unchanged under any perturbations
of the values associated with players of that type.

Formally let us assume that (N, V) € G{((0,7),C, (3, B)). Note that in this case
all payoff sets of the game (NN,V') are symmetric across substitute players. Let us
prove that for any ¢ > a%((0,7),C, (83, B)) the equal treatment e-core of (N, V) is

nonempty.

The idea of the proof for the symmetric case. In the proof for the symmetric
case we will use the following definitions. Let A C R™. A recession cone corresponding

to A, denoted by cone(A), is defined as follows:

cone(A) :={y e R™: x4+ yec Aforall A\ >0and x € A}.

The scalar product of z,y € R™ is denoted by x-y. The negative dual cone of P C R™

is denoted by dual(P) and defined as follows:

dual(P):={z€ R™: z-y <0 foranyy € P}.
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A bound on the required size of the parameter € for our result in the symmetric
case is obtained by constructing a family of “A-weighted transferable utility” games
(N, V) corresponding, in a certain way, to the initial game (N, V). Next we consider
only those values of \ in a set L*, defined as the intersection of the equal treatment
payoff vectors in the simplex with the negative dual cone of the recession cone of the
modified game. (See Figure 2.) For each A there is corresponding TU game (N, v,).

We give the formal construction of (N, v,) in Step 2 of appendix.

2 A

.
A
N \6\.}\
™,
y .
1 i,
B .
™.
N
Figure 2.

In Step 8 of appendix we prove Lemma 2, that, for some parameters C’ and

g, any game (IV,v,) is a member of the parameterized collection of TU games
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r'(0,7),C", (8, B)). This allows us to use Corollary 1 proved in Step 1 of appendix.
In Lemma 3 we relate approximate cores of the game (IV,v,) to approximate cores
of the NTU game (NN, V)). Using the fact that we consider only values of A in L*,
we obtain an exact bound on ¢ for the initially given parameters C' and  for non-
emptiness of the equal treatment e-core for all games (N, V)). This result will give
us exactly the bound that we need to deduce for the conclusion of Theorem for the
symmetric case.

Now we need only prove that if, given some e, the equal treatment e-core of
(N,V,) is nonempty for all A € L*, then the equal treatment e-core will be nonempty
for both the modified and initial games as well. With the help of Lemma 4, Lemma
5, and a theorem about excess demand considered in Step 4, all in appendix, we

complete the proof in the symmetric case. B

Remark 6. The initial approach in this proof is similar to that introduced in Scarf
(1965) and usually used in proofs of the nonemptiness of the exact core for strongly
balanced NTU games (for a definition of strong balancedness and for an example
of this technique see Hildenbrand and Kirman 1988, Appendix to Chapter 4). But
our proof departs from the typical approach in that we construct games (N, V) and
(N, vy) not for all A in the simplex as usual, but only for A belonging to a specific
subset L* of the simplex. The set L* is the intersection of the equal treatment payoft
vectors in the simplex with the dual negative cone to the recession cone of the payoff
set for the grand coalition in the modified game. Later we use the structure of the set
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L* and g-comprehensiveness to complete the proof. (The usual technique is applied
for T = N and to games having —RY as the recession cone of the payoff set V(N).
The negative dual cone to —RY is RY. Then A, C RY, so the relevant intersection

is the simplex itself.)

|C) The general case.| Now let us consider the general case with no additional re-

strictions. We first modify the game (N,V). For any S C N define VO(S) :=
No'(V(7(S))), where the intersection is taken over all type-preserving permuta-
tions 7 of the player set N. Then from the definition of V°(S) it follows that
VO(S) c V(S). (Informally, taking the intersection over all type-preserving per-
mutations makes all players of each approximate type no more productive than the

least productive members of that type.) From the definition of 6-substitutes, it follows

that Hoo[V°(S),V(S)] < 6 for any S C N. Moreover,
(N, V%) e G{((0,T),C, (B, B)) and V°(N) is convex.

Therefore, we can apply the result proved in the symmetric case and conclude that
the game (NN, V°) has some payoff = in the equal treatment %(w + [3)-core. Now

N

define a payoff vector y by
y({i}) :=x({i}) — 6 for each i € N.

The payoff y will be feasible and (%(MC“%Z +3) + 5)—undominated in the initial
game (N,V). Obviously, y has the equal treatment property. Therefore for ¢ >
a4 ((6,T),C, (8, B)) the equal treatment e-core of (N, V) is nonempty. B
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5 Relationships to the literature and conclusions.

Recall that Shapley and Shubik (1966), applying the convexifying effect of large num-
bers to preferences, showed that large exchange economies with replicated player sets
and with quasi-linear utility functions (transferable utility) have nonempty approx-
imate cores. Wooders (1983) showed that per capita boundedness, given ¢ > 0 all
sufficiently large games in a sequence with a fixed distribution of player types have
nonempty e-cores containing payoff vectors with the equal treatment property. A
key result is that under a somewhat less restrictive condition than strictly effective
B-bounded groups, all payoff vectors in the core of an NTU game have the equal
treatment property (Wooders (1983, Theorem 3)). Moreover, under the same condi-
tion there is a replication number ry with the property that for all positive integers ¢
the froth game has a nonempty equal treatment core. Since then, a number of further
results have been obtained for both TU and NTU games, cf., Kaneko and Wooders
(1982,1996), Wooders and Zame (1984) and Wooders (1992, 1994a). These results,
however, are all obtained in the context of pregames.

A pregame specifies a topological space of player types and a payoff set for every
possible coalition in any game induced by the pregame. More precisely, given a
compact metric space of player “types” or “attributes” (possibly finite), the payoff
function of a pregame assigns a payoff set to every finite list of player types, repetitions

allowed. Given any finite player set and an attribute function, assigning a type to
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each player in the player set, the payoft function of the game is determined by the
payoft function of the pregame. Thus, the payoff set to any collection of players
having a certain set of attributes is independent of the total player set in which it
is embedded. In addition, this has significant economic consequences. In particular,
widespread externalities are ruled out. Moreover, the pregame structure itself has
hidden consequences. For example, within the context of pregame with side payments,
there is an equivalence between per capita boundedness, finiteness of the supremum of
average payoff, and small group effectiveness, the condition that all or almost all gains
to collective activities can be realized by groups bounded in size (Wooders 1994a,
Section 5). No such consequences can be hidden within parameterized collections
of games since there is no necessary relationship between any of the games in the
collection (other than that they are all described by the same parameters).

To study large games generally, without the structure and implicit assumptions
imposed by a pregame, Wooders (1994b) introduced the model of parameterized
collections of games with side payments and obtained a bound. In the current paper,
Corollary 1 significantly improves on the bound. Kovalenkov and Wooders (1999a,b)
introduce the concept of parameterized collections of games without side payments
and show nonemptiness of approximate cores. With the additional assumption of
convexity of the total payoff set, in the current paper Corollary 2 gives an exact bound
for the nonemptiness result of Kovalenkov and Wooders (1999a). In addition, the

Theorem applies more broadly than Corollary 2 and the bound given by the Theorem
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is superior to that of Corollary 2. The main result of Kovalenkov and Wooders (1999b)
is that all payoff vectors in approximate cores have the equal treatment property. No
such result holds for the current model. The nonemptiness result of Kovalenkov and
Wooders (1999b) does not require that g-comprehensiveness for ¢ > 0. Note, however,
that the form of small group effectiveness in that paper is more restrictive than the
form in Kovalenkov and Wooders (1999a) and the current paper; this has implications
for the class of games covered. Moreover, no explicit bound on the required size of
the games is provided in Kovalenkov and Wooders (1999b) and the dependence of the
required size on the parameters is not exactly demonstrated. In the current paper, we
require both the assumptions of convexity of payoff sets and g-comprehensiveness for
q > 0, but use a significantly less demanding notion of small group effectiveness than
in our prior papers. Using new techniques, we are able to demonstrate an explicit
bound on ¢ for nonemptiness of e-cores.

A very important literature to which our model and results apply is the assign-
ment or matching literature as in Crawford and Knoer (1981) and Roth (1984), for
example. In these problems, there seems to be especially natural parameterizations.
For example, in the assignment of interns to hospitals game, the parameter B would
be the maximum number of places in a hospital for interns plus one (for the hospital
itself), 8 would be zero, the criteria for selection of interns and rankings of hospitals
would determine the number of types 7" and the closeness of approximate types 6.

If side payments are permitted, ¢ would equal one. The per capita bound C' could
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be set. Our results would then straightforwardly apply. It would be interesting to
fit parameters to the model and empirically test whether observed outcomes are in
approximate cores. For such a test, it appears necessary to have an exact bound on
¢ to enable testing as well as prediction of the model.

We conclude by noting that the results of this work may have application in
economies with local public goods and/or coalition production (see, for example,
Conley and Wooders 1995) and other sorts of situations with coalitions. A possible
very exciting application is to economies with differential information, as in Allen
(1994,1995), Forges and Minelli (1999), or Forges, Heifetz, and Minelli (1999), among
others. It may be possible, for example, to derive a bound on the extent of the

deviation of cores involving differential information from the full information core.

6 Appendix.

Step 1: Proofs for TU games. Let us first prove the following Lemma, that signifi-

cantly improves a result achieved in Wooders (1994b).

Lemma 1. Let (N,v) € I'((0,7),C, (0, B)). If ¢ > % then the equal treatment

e-core of (N, v) is nonempty.

Proof of Lemma 1. Throughout the reminder of this proof let { NV [t]} be a partition
of N into T subsets each consisting of players who are all substitutes for each other.
We will assume for simplicity that there are positive numbers of players of each of
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the T types. (Otherwise we could reduce the number of types under consideration
and obtain a better bound.) Our proof will use the notion of a balanced cover for a
game. We first recall the notions of balanced collections of subsets of N and balancing
weights. Let () denote a collection of subsets of N. The collection €2 is a balanced
collection of subsetsof N if there is a collection of non-negative real numbers (Dg/)scq,

called balancing weights, such that for each i € N,

Y Gy =1

S'eS!, S'e

Let v° be the function mapping the subsets of N to R defined by:

v (S) := v(S) for all groups S # N
and
v? (N) := maxq Y geqwsv (57),

where the maximum is taken over all balanced collections €2 of N with corresponding
balancing weights (Wg')grcq. Then (N,v%) is a game, called the balanced cover of
(N,v). Bondareva (1962) and Shapley (1967) have shown that a TU game has a
nonempty core if and only if v*(N) = v(N). Given & > 0, it follows easily from their
results that the game (NN, v) has a nonempty e-core if and only if v*(N) < v(N)+¢ |N|.
The proof proceeds by placing a bound on the difference v°(N) — v(N).

Let x belongs to the core of (NV,v%); from the preceding paragraph there is such
an x. Now consider an equal treatment payoff vector z, defined by its components

2= ‘N—l[t” Y uen[ Ta- It is immediate that z is in the core of the game (N, v’) (since
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the core of a TU game is convex, all agents of one type are exact substitutes, and
the payoff sets are unaffected by any permutation of substitute players). This vector
z will play an important role in the proof later.

Since (N, v) has strictly effective B-bounded groups, there exist a balanced col-
lection of subsets {Sé}l of N, where )Sl) < B for each S' in the collection, all corre-

sponding balancing weights (wg) are strictly positive, and
b I !
"(N) =) wgv (S) .
l

Let {mk}k denote the collection of all profiles of {Sl}l relative to the partition { N [¢]}
of N, where Hm’“” < B for each m” in the collection. Let f denote the profile of V.

Define a characteristic function ¥ mapping profiles into Rf by
v(m) :=v(M), for any group M with profile m.

Now let us aggregate balancing weights wq across coalitions with the same profiles.
That is, let us consider weights wy = > wgq, where the summation is taken across
all groups S! that have the same profile m*. Then from balancedness it holds that
SrwpmF = f and we get
V" (N) =" win(m”).
k
Now let us recall the equal treatment payoff z in the core of the game (N, v?). It

holds that z - m* > w(mF) for any m”* and z - f = v*(N). Thus we get
V'(N) =D w(m®) <Y wp(z-m*) =z O wem®) = 2+ f =0°(f).
k k k
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But, since wy, > 0 for any m* in the collection, this implies that

z-m" = v(m") for each m* in the collection.

Now notice that the condition Y, wym® = f implies that a vector f € RY belongs
to the convex cone generated by the set of vectors {m*}. It follows immediately from
the Caratheodory Theorem (Theorem 1.22 in Valentine 1964) that we can select
T* < T vectors from the set {m"*} so that the vector f will belong to the convex cone

of these T* vectors. Let us renumber the vectors m” if necessary, so that the selected

k T* . k T*
vectors are {m }k_l. Since f belongs to the convex cone of the vectors {m }k—1

there exist nonnegative weights {wj, };;F:l such that

T*
f= Zw,’;mk, T <T.
k=1

It follows that

T* T* T*
VN)=z-f=z- O wim®) = wi(z-m*) = wiv(m”
k=1 k=1 k=1
We can write each wj as an integer plus a fraction, say w; = ry + hg, where

hi, € [0,1). Since the game (N, v) satisfies superadditivity it holds that

ZTW ) < v(N).

Now
T T T
V(N)—o(N) < Y wio(m®) = > ro(m®) =3 (w — re)v(m")
k=1 k=1 k=1

T* T* T*
= X ) < O3 [t = € ||Z iy’
k=1 k=1 k=1
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Notice that, since both S5, wim® and "], mm” are vectors of integers, S"1_, hpm*

k

. . * . . .
is also a vector of integers. Moreover >7_, m” is a vector of nonnegative integers.

Now let h* = maxj<x<r+(hy). Obviously h* < 1 and thus
T* ™ ™
> hemF < By mF << > mk
k=1 k=1 k—1
which implies that

< ~T<BT*-T.

.
> m"
k=1

T
Z hkmk
k=1

Thus, since T < T, it holds that
v’(N) —o(N) < TC(B - 1).

Hence, for any ¢ > ucu%l, the e-core of (I, v) is nonempty. But note that, similarly
to the argument before for the core, if some payoff =’ belongs to the e-core then 2z’
defined by its components z; := \N_l[t]\ Y aen|y Ty, also belongs to the e-core. (Like the

core, the e-core of a TU game is convex). Therefore, the equal treatment e-core of

(N,v) is nonempty. W
Now we will prove Corollary 1.

Proof of Corollary 1: Let (N,v) € I'((6,T),C, (8, B)) and let € be a positive real
number. We first construct another game with strictly effective groups bounded in
size by B. From the definition of strictly effective groups, for any S C N there exists
a partition {S’“} of S, )S’“) < B for each k, such that v(S) — 3, v(S*) < 815]. Let
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us define w(S) := maxgey > v(S*) where the maximum is taken over all partitions
{S} of 8 with |S*| < B for each k. Then (N,w) € I'((8,T),C, (0, B)) and 85| >
v(S) —w(S) >0 for any S C N.

Next we construct a related game by identifying all players of the same approx-
imate type. First, for the game (N, w) let {N[t]} be a é-substitute partition of N.

Given a group S C N let s denote the profile of S. Define
w*(S) := max {w(S’) : " has profile s} .

Define w® as the superadditive cover of w*, i.e. for any S C N,

where the maximum is taken over all partitions of S. Then (N, w¢) € T'((0,7),C, (0, B))
and
61S] > w(S) —w(S) >0 for each S C N.

TC(B-1)

-core. Let
[N

By Lemma 1 the game (N, w®) has a nonempty equal treatment

x belong to the equal treatment ucu%l—core of (N, w®). Hence

Z:L‘a < w(N) and Z%—I—w

S| > we(S).
aEN acS |N|

Now define a payoff vector y by

y({i}) = a({i}) =6
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for each 7 € N. Then

Zya = Zxa_6|N|

acN aeEN

< wi(N) - 8|N] < w(N) < u(N)
and for any group S it holds that

D Yat

a€eS

TC(B - 1) - TO(B - 1)
(T‘i‘éﬂLﬁ) S| = ZxﬁT!SHﬁ!S!

> w(S) + B|S]| > w(S) + B|S| = v(S).

It follows that y is in the e-core for any £ > ucu%l—i-& +0. Since y has equal treatment

property by construction, the equal treatment e-core of (N, v) is nonempty. B

Step 2: Construction of the TU games. Let us first modify the game (N, V) to avoid

boundary problems. Consider the set
K::{wERN: va—sforanyaEN}.
Define
K*:=K ﬂ V(N)

and observe that set K* is a compact set. Let Y (V(V), K) be the smallest closed
cone such that
V(N)Cc K*+Y(V(N), K).
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Now let us define a modified game (N, V') so that
(a) VH(S) : =V(S) for S # N and
(b) VH(N) : =K*'+Y(V(N),K).
Notice that Y (V(N), K) is the recession cone of V1(N); that is,
cone(VI(N)) =Y (V(N), K).

Looking ahead, we are going to prove that there exists an equal treatment e-core
payoff z* for the modified game (N,V1). Since V(S) C VI(S) for any S, z* will
be e-undominated in the game (N,V). Thus z* € KONVYN) = K* C V(N). So
the payoff z* will be feasible in the game (N, V). It will follow that z* is an equal
treatment e-core payoff for (N, V).

Define
C::co{wERN:EIZ',jGN, x; =—qz; >0, 1 =0, k;«é@',j}

and observe that C is a cone. Since V(N) is g-comprehensive and convex, the cone
cone(V!(N)) will include C but will not be more than a half-space. Hence the negative
dual cone to the recession cone dual(cone(V1(N))) will be closed, nonempty and

included in the cone dual to C:

T SN
dual(C) = {x eRY, :1¢< i— < P VZ,J}U{O}-
J
Now let us consider the simplex in RY:
N
JANIRE {)\ERf:Z)\izl}.

i=1
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Define

L := dual(cone(V'(N))) [ L.

Given a partition {N [t]} of the player set into T" types of d-substitutes, the set of

equal treatment allocations is denoted by ET and defined as follows:
ET .= {xERN:wi:xj foranytandanyz’,jEN[t]}.

Now define

L*:=LNnET.

Observe that L* is a compact and convex set.

For any A € L* there exists a tangent hyperplane to the set V' (NN) with normal A
such that the whole set V' (V) is contained in a closed half-space, and at least one point
of the set V(N) lies on the hyperplane. Moreover, since the game is superadditive,
for any A € L* and any S C N there exists a hyperplane in R® that has normal
parallel to A\g and that is tangent to Vg. Thus, for a fixed A € L* there is a finite real

number

vA(S) := max {Z Mg i T € V(S)} .

a€esS

The pair (N, v,) is a TU game. We construct a “A-weighted transferable utility”

game (N, V)) by defining, for each coalition S C N:

Wi(S) == {:1: cR" :z,=0fora¢ S and Z)\ama < v)\(S)}.

a€S
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Step 3: Nonemptiness of the epsilon core for the game (N, V)).

Consider a fixed A € L*. Define A\, := max {\;} and A, := min {\;}.

Lemma 2. Let (N,V) € G{((0,7T),C, (5, B)). Then

(N, 02) € T((0,T), CAmas; (BAmax, B))-

Proof of Lemma 2:

1). We will prove that the (0,7)-partition {N [t]} of the game (N,V) is a (0,7)-
partition of the game (NN, v,). We must check that for any type-consistent permuta-

tion 7 of N and any coalition S it holds that v, (S) = vA(7(S)). But we have:

oA(T(S))

max{ > Aaa:z € V(T(S))}

aeT(S)

= max{z Ar(@)Tq T € V(S)}

a€esS

= max{z Aoy X € V(S)} = v,(9).

acsS
The second equality follows from the fact that V(7(S)) = V(95), since {N [t]} is a
(0, T)-partition of the game (NN, V). The third equality holds since, by construction

of L* and 7, for any a we have A\, = A\r(q).
2). To show that the number A\,.xC' is a per capita bound for the TU game (N, v,),
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A (S)
S|

it is necessary to show that < AmaxC for each coalition group S. Observe that

by the definition of v,(S), for some z, € Vs it holds that

7)/\(5) EaGS )‘axa EaGS La
5] 5]

S )\max— =~
N

The last inequality follows from per capita boundedness of the game (N, V).

3). To prove effectiveness of B-bounded Ap.xf-effective groups for the TU game
(N,vy) we need to show that for any S C N there exists a partition {Sg} of S

satisfying |Si| < B for each k and

0A(S) =Y ua(Sk)| < AmaxB|S] .-
k

By superadditivity
oA (S) =D vA(Sk).
k

By the definition of v, there exists a vector x such that z € V(S) and v,(S) =

> acs Aaa. Since (N, V) has weakly [-effective B-bounded groups there exists a vec-

tor y € ¢,(V(S; B)) such that

> e — za < B1S].

aesS
Then there exists a vector z € V(S; B) such that y € ¢,(z). Note that since A € L* C

dual(C) and y € ¢,(z) we have

> Aa¥a < D Aaa

a€Sy, a€Sy
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Then since z € V(S; B) we have that zg, € Vg, for some partition {Si} of S (with
|Sk| < B) and we get

> Aaza < va(Sk).

a€Sy

Hence

IN

<

un(S) — ;U(Sk)

> XaTa— D> > XaZa

a€S k a€Sg

> Aata =Y Y Mala

acsS k a€Sy

S Z)\a‘xa_ya’ S Amaxﬁ‘sy

a€esS

By 1), 2), 3) it holds that (N, vy) € T((0, T), CAmaxs (BAmax, B)). B

Lemma 3. If the equal treatment e-core of (IN,v,) is nonempty, then the equal

£
Arnin

treatment -core of (IV,V)) game is nonempty.

Proof of Lemma 3: Consider a payoff y in the equal treatment e-core of the game

(N,v,) and define z, := Aiaya. Note that = also has equal treatment property. Then

> XaTa= Y Yo < A(N);

aEN aceN

thus z is feasible for the game (N, V)). Moreover, for all S C N,

5 5
ZAG(:CGJFA )=Zya+ZAa/\ > ya+e|S] > un(9)
aesS min acesS a€esS min aesS
thus z is -*~-undominated in the game (NN, V)). Therefore, z is in the equal treatment

=—-core of (NV,V,). M

Amin
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We can now finish Step 3: Since (N,V) € G{((0,7T),C, (8, B)), by Lemma 2 we
have that

(N, 02) € T((0,T), CAmas; (BAmax, B))-

But from Corollary 1 for any game with side payments in I'((¢',7),C", (7', B))

and any % > % + & 4 3, the equal treatment £’-core is nonempty. Hence, if

€0 > Apax (L | ]f;' U 4+ ), the equal treatment %-core of (N, vy) is nonempty. From

—-core of (N,V)) is nonempty.
Thus, since

a%((0,7),C, (8, B)) = 3(% h) s iﬁ?ﬁm(@f 1)

+ 3)

C , because A € L* C dual(C)), we can conclude that if

min

€ > @%((O7T)7C7 (ﬂ7B))

the equal treatment e-core of (N, V)) is nonempty. This is exactly the bound that we

need in the symmetric case. B

Step 4: Nonemptiness of the epsilon core for the initial game. We need only to prove

that if the equal treatment e-core of (N, V) is nonempty for all A € L* then the equal

treatment e-core of (N, V') is nonempty. Define

Core.(A) := {:1; : Z Ao < UA(N Z Aa(za +) > 0a(S }ﬂET

aceN acS

the equal treatment e-core of the (N, V)) game. Note that the equal treatment e-core
of (N,V)) is nonempty for any A € L*. For any A € L* and any = € Core.()),
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x cannot be &-improved upon in the initial game (N,V) for any & > . (If a
coalition S could improve, we would have zg+¢'s € Vg and 3 c5 Aa(za +£,) > va(5),
contradicting the definition of v,(S).) Hence, it remains to show that there exists

A* € L* such that some z* € Core.()) is feasible in the initial game.

Lemma 4. The correspondence A — Core.(\) from L* to RY is bounded, convex-
valued and has a closed graph. Moreover, for any x € Core.(\) and for any player a

it holds that z, > —¢.

Proof of Lemma 4:

1). If f, g € Core.(\) then uf + (1 — p)g has equal treatment property and pf +

(1 —p)g € Core.(X) since:

(a) Y Aalpfat+ (A —p)ga) = 1Y dafat (1 —1) ) Xaga

aeEN aeN aeN

< poaA(N) + (1 — p)oa(N) = vA(N) and

b) Y Xalpfa+ A —p)gat+e) = pd Xalfate)+ 1 —p) > Aalga+e)

a€eS a€eS a€esS

> poa(S) + (1 — p)oa(S) = va(S).
2). It is straightforward to see that graph is closed since v,(S) depends continuously
on A.

3). Consider x € Core.(\). Since x is in the e-core of (N, V) game, x is e-individually

rational, that is, z, > —e.
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4). Consider x € Core.(\). By construction,

1
D Xaq < 0A(N) < =C'|N]|.
q

aeEN

Since A € L* C L C A,, there exists ¢ such that \; > ﬁ Then A € L implies

Ao = qA; > |;sz|' Therefore, using 3) above we have that

q

q
T S At < C\N\ (1- L) (—e).

V]
This proves that

[V

xa§—0|N| + (— . —1e.m

Now let us define

U(A) := Core.(\) — {x € K": > M, = max Z A za}ﬂET

aEN Z€V(N)

For A € L* both the first term and the second term of this sum are nonempty;,
bounded, convex-valued correspondences with closed graphs; this follows from Lemma
3 and the observations that (a) V() is convex and symmetric across substitute
players and (b) K* is compact. Hence the sum W(\) is also bounded, closed and
convex-valued for A € L*. By construction > ,cn 24\ < 0 for any z € W(\).

Now we can use the following theorem of excess demand, which is in fact a version

of Kakutani’s theorem. (For a proof see Hildenbrand and Kirman 1988, Lemma

AIV.1)

Theorem (Debreu, Gale, Nikaido): Let A* be a closed and convex subset of A .
If the correspondence ¥ from A* is bounded, convex-valued, has closed graph and it
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holds that for all p € A* | p- 2 <0 for all z € ¥(p), then there exists p* € A* and

z* € U(p*) such that p-z* <0 for all p € A*.

It follows, from the Debreu-Gale-Nikaido Theorem, that there exists \* € L*
and z* € ¥(A*) such that A - 2* < 0 for all A € L*. Since z* € U(A\*), z* can be
represented as z* = x* — y* with z* € Core.(\), y* € K* N ET. Therefore z* € ET.
As we argued at the beginning of this Step, x* is e-undominated in the initial game
(N,V). In addition, z* has the equal treatment property.

We now deduce that =* is feasible for the game (NN, V). Observe that «* = y* + 2%,

where y* € K*E" and A\-2* < 0 for all A € L*. Hence z* € dual(L*) N E”.

Lemma 5. Let X be a convex and symmetric across substitute players subset of

RY. Let X* := XN ET. Then dual(X*)NET C dual(X).

Proof of Lemma 5: For any z € X, let us construct 7 € R as follows: for each

1 <t<T,for any a € N [t] define

Since X is convex and symmetric across substitute players, z € X. Obviously,
7 € BT, Therefore 7 € XN ET = X*.

Now consider any y € dual(X*) N ET. For any z € X we have

y-xr = Zyﬂi: Z yt(zwi)

iEN 1<6<T ieN|t]
= Y N[ty =Dyt <0,
1<<T i€EN
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where the last inequality follows from the fact y € dual(X*) and z € X*. Hence, by

the definition of the dual negative cone, dual(X*) N ET C dual(X). &

Since V(NV) is convex and symmetric across substitute players, it follows from con-
struction of cone(V!(N)) that L = dual(cone(V(N))) N A, is convex and symmetric

across substitute players. Therefore, by Lemma 5,
z* € dual(L*)(E" C dual(L) = cone(V'(N)).

Moreover

z* € K* + cone(VY(N)) C VI(N),

that is, z* is feasible in the modified game. We also have z* € Core.(\). It follows
from Lemma 3 that z} > —e. It now follows from the definition of K and K™ that
z* € K* C V(N), that is, z* is feasible in the initial game (N,V). We have now
proven that z* is in the equal treatment e-core of the initial game; therefore the equal

treatment e-core is nonempty. W
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