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Abstract

We extend the KKMS Theorem to show that the intersecting collection of sets of the
theorem can be chosen to be both balanced and partnered. © 1998 Elsevier Science S.A.
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1. Introduction

The Knaster—Kuratowski—Mazurkiewicz Theorem, and its generalization, the
KKMS Theorem, due to Shapley (1972), are important tools in mathematics and
also in the general equilibrium theory of economic analysis. See, for example,
discussions in Kannai (1992) or Ichiishi (1983). Recall that the KKMS Theorem
states that, under certain conditions on a family of subsets of the simplex, the
intersection of a ‘balanced’ family of subsets in the collection is nonempty. In this
paper we show that the balanced family can be chosen to be ‘partnered’. We also
show that if the intersection of each balanced and partnered collection contains at
most countably many points, then at least one of these balanced collections is
‘minimally’ partnered.
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The notion of partnership arises in cooperative game theory. Let N be a finite
set (of players). A collection of subsets of N (coalitions) is partnered if each
player i in N is in some coalition in the collection and whenever i is in all the
coalitions containing j then j is in all the coalitions containing /. In models of
economies and games, the partnership property of a solution concept ensures that
there are no asvmmetric dependencies between players. A solution payoff is
partnered if whenever a player / needs another player j to realize his payoff, then
J has a symmetric need for i. Consider, for example, the two-person divide the
dollar game. Any division giving the entire dollar to one player displays an
asymmetric dependency, since the player receiving the dollar needs the coopera-
tion of the player getting nothing, but the player getting nothing can achieve this
on his own. If a solution payoff is not partnered, there is an opportunity for one
player to demand a larger share of the surplus from another player. Thus, a payoff
that is not partnered exhibits a potential for instability.

A payoff is minimally partnered if no player needs any other player in
particular. For example, consider a one-buyer, two-seller game where the sellers
each have an object that the buyer is willing to buy for a dollar and the sellers
each have a reservation value of zero for the object. The payoff that gives the
entire surplus to the buyer is minimally partnered; the buyer needs neither seller,
since from the buyer’s perspective each seller is a perfect substitute for the other.

The economic motivation for our extension of the KKMS Theorem comes from
a number of papers in the literature that have made use of the concept of
partnership. This concept was first introduced to study solution concepts for games
with transferable utility (TU) in Maschler and Peleg (1967) and Maschler et al.
(1971). Further studies of solution concepts related to partnership in TU games
appear in Albers (1979), Bennett (1983) and Reny et al. (1993). The first authors
to investigate partnership in non-transferable utility (NTU) games were Bennett
and Zame (1988). They show that a large class of NTU games possess undomi-
nated payoffs whose collection of supporting coalitions is partnered.

Partnership may significantly refine both the core and the set of competitive
payoffs. For instance, Reny and Wooders (1996a) provide an example in which
the core is a convex set containing a continuum of points, while the partnered core
consists of but one point on the core’s boundary. Reny and Wooders (1996a)
refine the result of Bennett and Zame (1988) as well as the core nonemptiness
theorem of Scarf (1967) by showing that balanced NTU games possess core
payoffs having a partnered collection of supporting coalitions. :

" To obtain the Bennett and Zame (1988) result from that of Reny and Wooders (1996a.b) simply
apply the latter result to the (not necessarily balanced) NTU game’s balanced cover. Note also that
when the given game is balanced, the result of Reny and Wooders (1996a.b) strictly strengthens that of
Bennett and Zame (1988) since it ensures the existence of a payoff that is not only undominated and
partnered, but also feasible.
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An especially important economic result is due to Bennett and Zame (1988)
who show that when preferences are strictly convex competitive payoffs are
partnered. In an Arrow-Debreu economy (with merely convex preferences),
although competitive payoffs need not be partnered, the result of Reny and
Wooders (1996a) nonetheless can be applied to show that the partnered core of the
economy is nonempty. Page and Wooders (1996) refine this result by allowing
consumption sets to be unbounded below so long as a no arbitrage condition is
satisfied. Another direction of application of partnership is taken in Reny and
Wooders (1996b), who relate partnerships to commonwealths — organizations of
not-necessarily-self-sufficient groups — through a notion of credible threats of
secession.

The literature noted above motivates our interest in the mathematics underlying
the partnered core and thus motivates our extension of the KKMS Theorem. The
motivation for our result on minimal partnership also stems from economics, since
it is a natural outcome in certain economic environments. For example, from the
Bennett and Zame (1988) result it follows that all competitive equilibria of replica
exchange economies with strictly convex preferences are minimally partnered.

2. Preliminaries

Let N={1,2,...,n} and let 22 be a collection of subsets of N. For each i in N
let

P ={Sep:.icS}.

We say that % is partnered if for each i in N the set %, is nonempty and for
every i and j in N the following requirement is satisfied: *

if P, CP; then P, CP;;

i.e., if all subsets in & that contain i also contain j then all subsets containing j
also contain i. Let #[i] denote the set of those j € N such that 2, =37’,. We say
that % is minimally partnered if it is partnered and for each i €N, Alil={i}.
Let .# denote the set of nonempty subsets of N. For any S €.#" let ¢ denote
the vector in R” whose ith coordinate is 1 if / € § and 0 otherwise. For ease in
notation we denote ¢! by e’
Let A denote the unit simplex in R". For every S € .#" define

A'=cole': i€ S},

* The concept of a partnered collection of sets was introduced in Maschler and Peleg (1966, 1967)
and further studied in Maschier et al. (1971). They used the term ‘separating collection’ rather than
*partnered collection’. Our use of **partnered’” stems from Bennet (1983).
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and

e s
R

m’=—
N
Let & be a collection of subsets of N. The collection is balanced if there exist
nonnegative weights {A')}s. , such that
Z AeS = eV,
se#
Observe that the collection # is balanced if and only if

m" € co{m*: S €5},

Our objective is to prove the following two theorems, the first of which extends
the KKMS theorem (see, for instance, Shapley and Vohra, 1991).

Theorem 2.1. Let {C*: S € .4} be a collection of closed subsets of A such that

Uc 24", forallTe.r. (2.1)
ScT
Then there exists x* € A such that F(x")={S€ ¥ : x" € C% is balanced and
partnered.

Theorem 2.2. Let {C*: S €47} be a collection of closed subsets of A satisfying
(2.1). If the set of x™ € A such that #(x") is balanced and partnered is at most
countable, then at least one x" € A renders #(x*) balanced and minimally
partnered.

Remark 0. The countability requirement cannot merely be dispensed with. On the
other hand, stimulated by the present result, Kannai and Wooders (1996) have
shown that countability can be replaced by the weaker condition that the set in
question be zero dimensional. The arguments of Kannai and Wooders (1996)
require more sophisticated tools as they depend on degree theory. Whether it is
possible that under our assumptions the set of points in the partnered core is either
countable or zero-dimensional but not finite is an open question.

3. Proofs
3.1. Proof of Theorem 2.1

It should be noted that our method of proof makes substantial use of the elegant
and powerful techniques developed in Shapley and Vohra (1991), and also relies
on an ingenious construction found in Bennett and Zame (1988). A related
argument can be found in Reny and Wooders (1996a).

The following lemma plays a central role in the proof of Theorems 2.1 and 2.2.
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Lemma 3.1. Let {C°: S .4} be a collection of closed subsets of A such that

Ucia4a’, forallTewrs. (3.1)
ScT

Suppose that for every i and j in N there is a continuous function ¢;;: A > R,
such that for all S € .7,

c,; is identically zero on C3, wheneveri & Sandj€ES. (3.2)

Then there exists x™ € A such that (x*)={Se . x* € C%} is balanced and
such that for all i €N,

Z(Cij(X*)—C/i(X*))ZQ

jEN

Remark 1. Putting c,; identically equal to zero yields the KKMS Theorem.

Remark 2. The following functions, introduced by Bennett and Zame (1988),
satisfy (3.2) and are particularly useful for the proofs of our theorems. For each
pair of distinct 7,/ in N, define the function ¢;;: 4 - R by

c;;(x) =n~1§ilndist( x,C%),

-
JjES

where dist is Euclidean distance. Note that since the distance from a closed set to a
point depends continuously on the point, c¢;; is a continuous function. For
convenience set ¢, {x) =0 for each i and all x.

Remark 3. In the TU game case, where ¢(S) denotes the value of the coalition §,
the lemma can be interpreted as yielding an existence result for a kernel-like
solution. Indeed, for each x define ¢, j(.x) as follows:

+
¢ (%) =min( Y ox - L‘(S)) ,

S Mres

¢S

jEeS
where a* = max(0,a) for all « € R. While the lemma does not guarantee an x
such that for all i and J, ¢;,(x) = ¢;(x) as is (essentially) required for x to be in
the kernel, it does guarantee that this condition hold for each player ‘on average
across all other players’. Consequently, Lemma 3.1 may help in establishing the
existence of an NTU kernel-type solution.

Proof of Lemma 3.1. We break the proof into three steps.
Step 1. [Find x*, a candidate for satisfying the conclusion of Lemma 3.1]
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For any S€.#" and x € A, let
Z[Clj(x)“c,'i(x)], if ieS§

n’i( x) —_ jes E
v, if €S

and let 7°(x) denote the vector in R" whose ith coordinate is 1°5(x).
Let

7= max|n( x)| (3.3)
Se ¥
xed
ieEN
and define
.Q={w€R":Zwi=0and|wils77|,Vi}, (3.4)
i=1
n
X={xeR":Zx,.=1and x,-z—l,Vi}. (3.5)
i=1

Observe that {2 and X are compact and convex. Let 4: X — A be defined by
h(x) = (max[ x,,0]) /(L"_, max[ x;,0]) for each i € N.
Define the continuous function f: X X A X 2— X by

(1/n) —p;— w,
[ LY &) Eh +—-——-_—:——— 3‘
filxpw) =hlx) 1+7 (3.6)
for each i € V.
Define the correspondence, F: X — A X {2 by
F(x) = {(m%, n°(h(x)): h(x) € C* and x,> 0, Vi< S}, (3.7)

Observe that for each x € 4, F(x) is nonempty by virtue of (3.1). In addition, F
is upper-hemicontinuous since #(x) and n3(#( x)) are continuous functions.

Consider the correspondence fX coF: XX AX 2 - XX AX . Since
fX coF is nonempty-valued, convex-valued and upper-hemicontinuous, by Kaku-
tani’s theorem it admits a fixed point, (x",p",@* ). Consequently,

(p*.0")eco{(m' ., n*(h(x*)):h(x*)E€C*, and x/ >0,ViES),
(3.8)

and

*

(1/n) —p — o
+ —
1+7

x; =h(x")

(3.9)

for all i € N.
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By (3.8) there exist nonnegative real numbers ((a ). , satisfying

Z ag=1,

Se. v
o' =3 am’(h(x")), (3.10)
Ses”
pT = am’, (3.11)
Ses
and
a5>0=>h(x*)EC5, and x >0,Yi€Ss. (3.12)

Let x* € X be the desired candidate. (We will later show that x~ is in fact an
element of A.)

Step 2. [Show that w;” < 0 for some { minimizing p;".]

Let yv* =h(x")€ dandlet M={m: p, =min{p }}. Now if p >p_, then
by Eq. (3.11) there exists a5 > 0 such that j&€§ and m & S. But (3.12) then
implies that v* € C5. Hence, ¢, (v*)=0. Therefore for each m € M. for all

mj
Ser,

m(r) = E [en(y) = enlx)]

j€Ss

= Z [ij( ¥ ' ) - cjm( y ’ )] + Z [ij( y ’ ) - ij( y ’ )]
JES jES
P =P P> P

= X [en(3)=cu(3)] = X euly),
jes jes
P =P 75> P

so that
Yy )= X m(y)
memMm m=MnNS

L L ey —euy))]

m=MNS jeMNS

- Z E ij(yx)

meMns jeS\M

- Z Z ij(yx)

meMns jeS\M

<0,

where the first equality follows since 1°(v*) =0 whenever i & S, and the final
inequality follows since each term in the sum is nonnegative.
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Now from Egq. (3.10)
w = T agm(y").
N2
Hence,
Y ow,= 2 ag ) m(y) <0
meM Se ¥ meM

Consequently w,. < 0 for some m' € M.

Step 3. [Show that x " satisfies the conclusion of Lemma 3.1.]

We first show that yv* = x*. To obtain this result, by the definition of 4, it
suffices to show that x” > 0 for all i. So, suppose by way of contradiction that
x;} <0 for some i. Therefore A(x")=0 and by (3.12) a;=0 for all §
containing {. Consequently, Eq. (3.10) implies that w,” = 0, and Eq. (3.11) implies
that p;* = 0. But Eq. (3.9) then yields x” =(1/n)/(1 +7) > 0, a contradiction.
Hence, x* =h(x")=y* € A

We may now conclude from Eq. (3.9) that

1
w' =——p', forallieN.
n

However, by Step 2, there exists an i €.# for which o <0 and p; < p,” for all
i. Thus we have

I 1
02w =-—p;=2——p', foralli€eN.
n n

But since p~ € A this implies that p,* = 1 /n for all i € N and therefore also that
w, =0forall i€ N.

Since p* =(/n1/n,...,1/n), 3.8) and x" =h(x")€ A imply that {S €
A1 x" € C5} is balanced. It remains to show that n(x ") =0 for all i € N. But
this follows from the equalities below which hold for all i € N.

0=w'
= Z aSnis(X*), by (310) and y)'( =x*
Se
= ¥ as X [e(x7) = ep(x0)]
Ses JES

= Z }: ag [Cij("‘*) _C,/['(X*)]

jeN\ser
jes
1 . ) . 1 |
= Y [C,-,-(x ) —ci(x )],by (3.11)since p~ = e
JEN
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Proof of Theorem 2.1. Define c,; as in Remark 2. By Lemma 3.1 there is a
payoff x* € A such that (x ) is balanced and 7*(x*) =0 for all i € N. But as
shown in Bennett and Zame (1988) (see the proof of their lemma), for these
choices of the ¢,;, 7*(x*) =0 for all i €N implies that (x *) is partnered. * O

Proof of Theorem 2.Z. Again let the functions ¢;; be as in Remark 2 of the
preceding subsection. Let x'.x*,... denote the (at most) countably many points
such that for each k, (") is balanced and partnered. By Theorem 2.1, there is at
least one such point. It suffices to show that for some &

¢, (x*)=0 foralli,jEN.
Let

A(x) = {ae RY, :forall i€ N, Y (a;c;(x) — a,c;(x)) :O},

JEN

Since for every a € R",, a;;¢; () satisfies (3.2), the lemma implies that for
some x" with (x") balanced, a belongs to A(x"). But as in the proof of
Theorem 2.1, this implies that #(x~) is partnered. Hence, for every a € R" _,
there is a & such that

ae A(xY).

Consequently,
UA(x*) =R
k=1

The Baire Category Theorem (see, for instance, Friedman, 1982, p. 106, Theorem
3.4.2) then implies that there exists a k such that A(x*) is somewhere dense in
R" .. Consequently, the closure of A(x*) contains an open set A". For all i € N
and all @ € A°, we have £, . y(a,;c, (x*) — a;;c; (x*)) = 0. But this implies that

¢;{x*) =0 for all pairs i and j. O
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