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VOoLUME 52 NOVEMBER, 1984 NUMBER 6

APPROXIMATE CORES OF LARGE GAMES
By MYRNA HoLTz WOODERS AND WILLIAM R. ZAME'

The core of a game, which is an abstraction of the core or set of cooperative equilibrium
states of an economy, is a fundamental notion of social equilibrium. However, except for
games derived from special kinds of economic situations or satisfying restrictive (balanced-
ness) conditions, the core is usually empty. In contrast, this paper shows that, with mild
and economically natural assumptions, large games always have non-empty approximate
cores. The game-theoretic framework is sufficiently general to cover a wide variety of
economic situations.

1. INTRODUCTION

THE CORE IS A FUNDAMENTAL CONCEPT of social and economic equilibrium.
However, except in idealized situations or with special assumptions (such as
balancedness), the core may well be empty. In the study of private goods exchange
economies, this problem has been addressed by the introduction of concepts of
approximate cores and the derivation of conditions ensuring approximate cores
are non-empty; the structure of private goods exchange economies, is itself,
however, special. Relatively little work of this sort has been done on other kinds
of economies.’

In this paper, we establish the non-emptiness of approximate cores for a wide
diversity of large economies with weak and natural economic assumptions (no
balancedness is assumed). The framework we adopt is that of games in characteris-
tic function form. This framework is sufficiently general to accommodate, not
only private goods economies, but also economies with pure and local public
goods, with coalition production, with hedonic coalitions, and with heterogeneous
and/or indivisible goods. In this framework, our results establish the non-empti-
ness of approximate cores for large games (i.e., games with many players) and
show that the “approximation” can be made arbitrarily good as the games grow
large. Moreover, there always exist payoffs with the property that agents who are
“scarce”” and hence, “in demand,” can command all the excess profits from
formation of coalitions. (It is gratifying that this intuitive economic idea has a
valid formal statement in such a general framework.)

To model large games, we introduce the notion of a pregame with attributes.
This formalizes a situation in which the value of a coalition depends only on the
attributes of its members, and changes only slightly if some members are replaced
by others with similar attributes. (If the space of attributes is finite, this reduces
to a situation in which each game has a finite number of types of players, and

! We are indebted to the National Science Foundation and the Social Sciences Research Council
of Canada for financial support and to Donald Brown, John Geanakoplus, and Mark Walker for
several helpful discussions.

2 We discuss the literature in more detail in Section 2.
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players having the same type are identical.) Our formalization is thus analogous
to ones used for large private goods exchange economies, where an agent is
characterized by his endowment and preferences (which would here simply
represent a point in attribute space). We stress that our framework is, in most
respects, more general than that of private goods exchange economies, and our
techniques are quite different than those usually used to study such economies.
In particular, the convexifying effect of large numbers plays no role in our work.
Indeed, Bewley [5] has shown that the usual techniques used in private goods
exchange economies have limited applicability in other economic situations.
Another example illustrating this point for economies with local public goods is
in Shubik and Wooders [3, Appendix]. In that example agents are ‘“‘divisible,”
preferences and production possibilities are convex, yet the core may well be
empty; this occurs because of congestion effects—a ‘“local public bad.”

In this paper, we restrict our attention to games with sidepayments. Although
the framework of games without sidepayments would be more general, many
economic situations are already covered by the framework of games with sidepay-
ments and this framework is more easily understood and applied. We plan to
treat the more general framework in a later paper, but that treatment will require
rather different (and more complicated) assumptions and techniques and, of
necessity, yield somewhat different results. In particular, the exact analogs of our
results for games with sidepayments are simply not valid for games without
sidepayments.

Detailed applications of our results are too lengthy for this paper. We intend
to give a number of diverse examples, including ones with local public goods
and with production of differentiated commodities, in subsequent work. Here,
we briefly note a few additional applications; many others are possible. In fact,
the results of this paper have already been applied to a spatial model by Cremer,
de Kerchove, and Thisse [9]. Currently, they are being applied by Berliant and
the authors to a model of an economy with land, developed by Berliant [3] and
Berliant and Dunz [4]. For models in the literature on assignment-type problems
(cf. Kaneko [14] and Crawford and Knoer [8]), our results can be used to obtain
existence of approximate equilibria without some of the restrictions required for
existence of (exact) equilibria. Finally, we remark that our results can be applied
to economies with “‘club structures”’—ones where agents may belong to different
clubs for the purposes of consumption and/or production of different goods
(public or private).

The remainder of this paper is organized as follows. In the next section, we
discuss the relationship of our work to the literature. The third (short) section
reviews some well-known game theoretic concepts, including the e-core, and
introduces the individually rational e-core. A motivating example is provided in
Section 4. Section 5 contains the formal framework of our model and a statement
of results. We then provide a set of examples illustrating the necessity of our
various hypotheses. Although this section could be skipped by the uninterested
reader, we feel it provides insights into the mechanisms of the proofs. The detailed
proofs themselves are presented in the last section.



APPROXIMATE CORES 1329
2. RELATIONSHIPS TO THE LITERATURE

The concept underlying the core was introduced by Edgeworth [11] to describe
the set of states of an economy upon which no group of agents can improve.
Edgeworth called this set the “contract curve” although it is now frequently
called the “core of the economy.” The term “core” was introduced in the
game-theoretic framework by Gillies [12]. These two notions were related by
Shubik [27] who showed that, for private goods economies with transferable
utility, states in the core of an economy correspond to payofis in the core of the
game generated by the economy.

The notion of balancedness was introduced independently by Bondareva [6, 7]
and Shapley [22], who showed that a game (with sidepayments) is balanced if
and only if it has a non-empty core. A number of classes of games are known
to be balanced and thus have non-empty cores, including market games (Shapley
and Shubik [24]), assignment games (Shapley and Shubik [26]), and convex
games (Shapley [23]). Kaneko and Wooders [15] introduced the notion of par-
titioning games, generalizing assignment games, and determined which such
games have non-empty cores. Numerous particular games are known to have
non-empty cores; however, numerous examples are known which illustrate that,
even for games derived from natural economic models, the core may well be
empty (cf. Shapley and Shubik [25], Wooders [35], Shubik [28], and Kaneko and
Wooders [15]).

The e-core was introduced by Shapley and Shubik [25]. Using an extension
of Scarf’s [21] balancedness condition (for games without sidepayments), Weber
[32] has shown that certain games with a continuum of players have non-empty
e-cores (for arbitrarily small ). The study of approximate cores of large games,
without balancedness assumptions, was initiated by Wooders [33], where the
concept of a replica game was introduced and conditions determined under which
large replica games have non-empty e-cores. Stronger forms of Wooders’ result
are obtained by Kaneko and Wooders [15] for the class of partitioning games.

The literature on private goods exchange economies is vast and we make no
attempt to survey it here. The portion which is most relevant to the present work
deals with existence and convergence questions for cores, approximate cores,
competitive equilibria and approximate competitive equilibria for large
economies; see for example Debreu and Scarf [10], Shapley and Shubik [25],
Kannai [16,17], Hildenbrand, Schmeidler, and Zamir [13], Mas-Colell [20],
Anderson [1], Khan and Yamazaki [19], Khan and Rashid [18], and Anderson,
Khan, and Rashid [2].

To explain the relationship of the present work to this literature, let us point
out that Shapley and Shubik [25] and Debreu and Scarf [10] allow only a finite
number of types of agents, and their economies ‘‘become large’ by replication.
Wooders [33] adopts a game-theoretic framework but maintains the restrictions
to a finite number of types and to replication. Our results do not require the
restriction to a finite number of types or to replication. Rather, our games ‘“‘become
large” in a manner similar to that employed by, for example, Hildenbrand,
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Schmeidler, and Zamir [13] or Anderson [1]. As we have already mentioned, our
game-theoretic framework is much more general than the framework of private
goods exchange economies, although in this paper we restrict ourselves to games
with sidepayments. (We hope to treat the more general case of games without
sidepayments in later work.)

In the non-private-goods-exchange economy literature, some results have been
obtained showing non-emptiness of approximate cores of large economies,
without balancedness assumptions. We reference Wooders [34], in which it is
shown that a class of large economies with local public goods have non-empty
approximate cores and note that, as in this paper, the results are obtained without
use of the convexifying effect of large numbers. Also, using the results in Wooders
[33], in Shubik and Wooders [29] it is shown that a more general class of
economies with local public goods has non-empty approximate cores; in Shubik
and Wooders [30,31], similar results are obtained for coalition production
economies. These papers all involve “types” and replication.

3. GAMES

A game with sidepayments or simply a game is an ordered pair (N, v) where
N is a finite set, called the set of players, and v, called the characteristic function,
maps subsets of N into the non-negative reals R with v(¢) = 0. Given a subset
S of N, the value of S is v(S). Two players i and j are substitutes if for all subsets
S of N where i¢S and j& S, we have v(Su{i})=v(Su{j}). The game is
superadditive if for all disjoint subsets S and S’ of N, we have v(S)+v(S") <
v(SU S'). A payoff for the game is a vector x =(x',...,x" ..., x") in RN where
x' is interpreted as the payoff of the ith player. A payoff x is feasible if x(N)<
v(N) where, for any subset S of N, we define x(S) =Y ,_ x'. Given a real number
=0, a payoff x belongs to the e-core of (N, v) if (a) x(N)=v(N), (b) x(S)=
v(S) — €| S| for all subsets S of N, where |S| denotes the cardinal number of the
set S. The payoff x belongs to the individually rational e-core if it belongs to the
e-core and, in addition, (c) x'=v({i}) for all i in N. When & equals zero, the
e-core is simply the core.

Less formally, the e-core for small but positive & is characterized by the
requirement that the members of every coalition S receive at least nearly the
value of that coalition—x(S) = v(S) — ¢|S|. As pointed out by Shapley and Shubik
[25], a payoff x in the e-core can be interpreted as a stable payoff given that
players are satisficing or given some organizational cost prerequisite to cooperative
action and proportional to the parameter e. We consider approximate cores with
and without the requirement of individual rationality since in some situations
this requirement may be natural whereas in others it may be unnecessarily
restrictive.

4. MOTIVATION—A PRODUCTION ECONOMY

The intuitive ideas we wish to capture in considering games with types or
attributes run along the following lines. Consider a two-sided economy with only
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firms and workers. We imagine that the firms are identical and also that the
workers are identical. If we model this economy as a game, it will have as many
players as the total of firms and workers but these players are evidently of only
two “types,” and the value of any coalition depends, not on the precise make-up,
but rather only on the number of players of each type in a coalition. More
generally, we may imagine that the firms (respectively, workers) are not identical,
but merely very similar, and the value of a coalition depends, again not on the
precise make-up, but rather only on (some of) the attributes of its members, and
that this value changes only a little with small changes in the attributes of the
members of the coalition.

It may help if we discuss in detail a very simple two-sided economy and actually
describe its e-core.

Consider an economy with a number F of identical firms and a number W of
identical workers. Neither firms nor workers can make a profit independently. A
coalition of one firm and k workers can make a profit p(k) given by

(k)—{k2 for 1<k=<10,
P 100 for k= 10.

(This represents a situation where marginal profit is linearly increasing and
positive for 1< k=10 and zero for k> 10; see Figures 1 and 2.)

We ask: For what values of F, W, and ¢ is the individually rational e-core
non-empty? Let us take € =1 and analyze the situation in detail.

p(k)

100 {—

|

|

i

!

10 k
FIGURE 1—Profits.

p'(k)

b e

10 k

FIGURE 2—Marginal profits.
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Let us suppose first that W= 10F. In that case, we can write W =10qg +r where
q and r are non-negative integers with 0<r <10 and g < F. The most profitable
hiring profile then assigns 10 workers to each of g firms, r workers to one of the
firms, and no workers to the remaining firms (if any). The total profit is then
100q + r?; if we distribute the entire profit equally among all workers, they each
obtain (100g +r?)/(10q +r), while the firms obtain nothing. This payoff is cer-
tainly individually rational. For it to be in the individually rational e-core with
e =1, we need to know that no coalition could improve upon it by more than
one unit per member. Obviously, the most profitable coalitions consist of one
firm and ten workers (earning a total of 100 units) so we need to have

10(1:—)82—::2> =>100-11,

ie., 1000g + 10r*>=89(10g +r),
1000g +10r*>=890q +89r,

or G(r,q):=10r*—89r+110g =0.

If we minimize G(r, q) as a function of r (holding g fixed) we see that the
minimum is attained when r =89/20 and the minimum value is then

89\2 (89)?
0(20> " +110q.

In other words, G(r,q) is positive whenever ¢=3. We conclude that the
individually rational e-core (for £ =1) is non-empty whenever there are at least
30 workers and W= 10F.

On the other hand, suppose that W> 10F. Then the total profit (i.e., 100F)
can be allocated equally among the firms (who obtain 100 each); this allocation
is actually in the core, which is automatically individually rational.

We conclude that the individually rational e-core is non-empty (for £ =1)
whenever

W<I10F and W=30
or
W > 10F.

In other words, the individually rational e-core is non-empty (for € = 1) whenever
the total number of workers is at least 30.

We remark that when individual rationality is not required, the profit allocations
we have constructed in the individually rational e-core could all be altered slightly
while remaining in the e-core.

This example has a number of features we wish to stress, since they are typical
of the general situation. Most importantly, notice that non-emptiness of the &-core
depends only on the large number of firms and workers, while the distribution
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of profits for an allocation in the e-core depends strongly on the relative abund-
ance of firms and of workers. The particular shape of the profit function is .of
no importance (except to facilitate computation); its salient feature is bounded-
ness, which means that the marginal contributions of agents are bounded. We
chose a profit function for which the marginal profit function was increasing in
an interval to emphasize that the core may be empty even if the e-core is not.

5. GAMES WITH ATTRIBUTES

We need first of all to formalize the notion of a game with attributes. The
intuition we wish to capture is that the value of a coalition depends on the
attributes of its members and coalitions containing similar players have similar
values.

Let &/ be a compact metric space (the space of attributes) with distance function
d; it is convenient to assume that d(a, b)<1 for each a, b in . By the support
of a function f: s/ >Z" we mean the set supp (f) of all points a in &/ where
f(a)#0. Let F(£) denote the set of all functions from & to Z* with finite
support. Notice that () is an additive semigroup, with addition of functions
given by:

(f+g)(a)=f(a) +g(a).

The zero element of the semigroup %() is the zero function 0. For k a positive
integer, we will write kf for the sum of f with itself k times. We set |f] =) ,. ., f(a);
notice that this sum is finite since f has finite support, and can be interpreted as
the number of elements in the support of f if we count each element as many
times as its “multiplicity” f(a).

We define a distance function d on %(&f) in the following way. If f, g are in
F(A) and |f|#]g|, then d(f,g)=1. If |f|=|g|, then we list the points in the
supports of f and g, with each point a occurring as many times as its multiplicity
f(a) or g(a) (depending on which list we are considering):

supp (f) ={a,..., a},
supp (g)={by, ..., b.}.

Since |f|=|g|, these two lists are the same length; we set
d(f, g) =min max d(a;, b,;)

where the maximum extends over the indices i=1,2,..., k and the minimum
extends over all permutations 7 of the index set {1, 2, ..., k}. With this distance
function, #(f) becomes a metric space.

We will say that a function 2 : #(f) > R™ is uniformly continuous per capita if
for each £ > 0 there is a 8 > 0 such that if f, g € F(f) with |f| =|g| and d(f, g) <&
then |2(f) —2(g)| < €|g| = €| f|. (Note that we can ignore the case | f| #|g| since
any two such functions are at distance 1 from each other.) The function 2 is
superadditive if Q(f+g)=0Q(f)+02(g) for all f, g in o and 02(0)=0.
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By a pregame with attributes we mean a pair (&, £2) where & is a compact
metric space and 2:%(«)~>R" is uniformly continuous per capita and super-
additive. By an individual marginal bound for the pregame (&, 2) we mean a
real number M such that

D(f+xa)<2(NH+M

for each f in #(«) and each a in &, where x, is the function which is 1 at a
and 0 elsewhere on .

A few words of explanation seem in order. We think of the points of & as
representing attributes which may be possessed by a player in a game. Two points
of & are close together if they represent similar attributes. A function f in F(«)
represents a coalition of players, of whom f(a) possess the attribute a. Two
functions f, g in F() are close together if they represent coalitions having the
same number of players and having the same number of players with similar
attributes. The value of £ at a function f is just the value of the coalition
represented by f (so that coalitional values depend only on the attributes of the
members). Our continuity requirement is that a small change in the attributes of
members of a coalition produces a change in the coalitional value which is small
(in per capita terms). The existence of an individual marginal bound simply
means that the marginal contribution of any player to any coalition is bounded.
Note that an individual marginal bound implies what Wooders [33] and Kaneko
and Wooders [15] call a per capita bound, i.e., v(S)/|S| is bounded. The reverse
is not generally true, although it is true in the replication framework used by
Kaneko and Wooders.

To derive a game from a pregame with attributes, we assume given a finite
non-empty set N and a function a: N> & (an attribute function). For a in 4,
the cardinality |a~'(a)| of the set @~ '(a) is thus the number of players in N who
possess the attribute a. For each subset S of N, we write fs for the function in
F(s4) whose value at the attribute a is |a~'(a)|. The derived game (N, v,) is then
defined by setting

0.(8) = 2(fs)

for each subset of S of N. Superadditivity of the game (N, v,) follows easily
from superadditivity of the function (2.
Our first result can now be stated in the following way:

THEOREM 1: Let (4, 2) be a pregame with attributes which has an individual
marginal bound. Let ¢ >0 be a positive number. Then there is an integer n, such
that if N is any finite set with at least n, elements and o : N > o is any attribute
Jfunction, then the derived game (N, v,) has a non-empty e-core.

We remark that the payoff vectors we construct in the e-core will have an
equal-treatment property: players whose attributes are similar will obtain the
same payoff.
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Note that in Theorem 1 we do not assert non-emptiness of the individually
rational e-core; this is not so, as can be seen by simple examples (e.g., Example
2 of Section 6). In order to guarantee non-emptiness of the individually rational
g-core, stronger assumptions need to be made. Examination of the proofs in
Section 7 should convince the reader that a sufficient requirement is that “enough”
players can effect a non-trivial profit in some coalition. One way to ensure this
is to require that “‘enough” players are similar to each other.

THEOREM 2: Let (4, 2) be a pregame with attributes which has an individual
marginal bound. Let € >0 be a positive number. Then there is an integer n, and a
positive number & such that: if N is any finite set and o : N > o is any attribute
function with the property that for each player i in N there are distinct players
Jis+ s Jn, in N such that d(a(i), a(jk)) <6 for k=1,2,..., ny, then the derived
game (N, v,) has a non-empty individually rational e-core.

Once again, the vectors we construct will have an equal-treatment property.

A special case of particular interest occurs when the space & of attributes is
finite (hence discrete). In this case, the space of functions F() is also discrete,
so every function mapping (&) into R™ is automatically uniformly continuous
per capita. In this situation it is natural to think of attributes as types; players
of the same type are exact substitutes for one another (at least insofar as coalitional
values are concerned). The example presented in Section 4 is a simple instance
of this special case.

The types case, in addition to its conceptual simplicity and economic interest,
is of particular use to us because it can be used to approximate the general
attributes case. For this reason, it is convenient to adopt a slightly different
notation. If the space of attributes is finite, we will refer to types rather than
attributes, and write T for the set of types and A:%(T)->R™ for the function
that gives coalitional values. We refer to the pair (7, A) as a pregame with types.
We call a function 7 from a finite non-empty set N to T a type function.
Superadditivity, individual marginal bounds and derived games are of course
defined just as before. It is convenient to formulate precisely the types cases of
our main results, since the general cases will be derived from these special cases.
For the statement of the following theorems we formally define the equal-
treatment property. A payoff x for a derived game (N, v,) has the equal-treatment
property if x; = x; whenever i and j are in N and 7(i) = 7(j).

TueoreM 1 (Types): Let (T, A) be a pregame with types which has an individual
marginal bound. Let € >0 be a given positive number. Then there is an integer n,
such that if N is any finite set with at least n, elements and v: N > T is any type
Junction then the derived game has a non-empty e-core containing a payoff with the
equal-treatment property.

THeEOREM 2 (Types): Let (T, A) be a pregame with types which has an individual
marginal bound. Let € >0 be a given positive number. Then there is an integer n,
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such that if N is any finite set and v: N> T is any type function for which the
cardinality of 77'(s) is either 0 or ct least n, for each s in T (so these are either
no players of a given type or at least n,), then the derived game (N, v.) has a
non-empty individually rational e-core containing a payoff with the equal treatment

property.

6. COUNTER-EXAMPLES

In this section, we present four simple counter-examples. They show that: the
requirement of an individual marginal bound cannot be relaxed to a per capita
bound (in Theorem 1); that the requirement that there be enough players of each
type cannot be relaxed to enough players in total (in Theorem 2); that the integer
n, in the theorems depends on the pregame; and that uniform continuity per
capita cannot be replaced by continuity. We present these counterexamples not
only because we are concerned with the sharpness of our results, but also because
we feel they provide additional insight into the underlying structure.

ExAMPLE 1: A pregame with types which has a per capita bound (but no
individual marginal bound) for which arbitrarily large derived games have empty
g-cores.

Consider aset T ={1, 2, 3, 4} of 4 elements and a function A : #(T) > R™" defined
as follows:

A(f)=n? if f=nx,+nx,+n’x,,
or f=ny, +ny; +n’x,,
or f=ny,+ny; +n’x,,

A(NH=0 otherwise.

This function A is obviously not superadditive, but we can define its superaddtive
cover function A : #(T)->R™ by setting:

A(f)=sup [A(fi) +A(f) +- - - +A(fi)]

where the supremum extends over all finite sets of functions f}, ..., f, in F(T)
such that f=f, +- - - +f.. It is easily checked that (T, A) is a pregame with types
which has a per capita bound (to wit A(f)=</|f]|) but no individual marginal
bound. We can easily produce many large derived games with empty &-cores (for
small €). For example, if N is a set of 3n+2n? elements, where there are n
elements of type 1, n elements of type 2, n elements of type 3, and 2n” elements
of type 4, then the derived game (N, v) has an empty &-core for each & <75. (To
the reader familiar with Wooders [33] we point out that in the framework used
in that paper, individual marginal bounds and per capita bounds coincide.)

ExXAMPLE 2: A pregame with types which has an individual marginal bound
and for which large derived games have empty individually rational e-cores.



APPROXIMATE CORES 1337

This is nearly trivial. Consider a set T ={1, 2} of two types with payoff function
A:F(T)->R" given by:

A(N=1 iff(1)=2,
A(f)=0 otherwise

(so that players of type 2 are dummies).

As in the previous example, the function A is not superadditive so we pass
to its superadditive cover function A : #(T) > R"™ to obtain a pregame with types
(T, A) which has an individual marginal bound. If we consider a set of N of
3 +n players: 3 of type 1 and n of type 2, we easily see that the derived game
(N, v) has an empty individually rational e-core for any € <3 (no matter what
n is). (Of course, it has a non-empty -core if (1/2n) < &; we simply allocate 3
to each player of type 1 and —1/2n to each player of type 2.)

ExaMPLE 3: A sequence of pregames (7, A,) where each game in the sequence
has the same individual marginal bound and where ng (the integer in Theorem
1), goes to infinity as k goes to infinity.

Let T ={1, 2, 3}. Given a positive integer k, consider the function A, : #(T) >R"
defined as follows:

M(f)=n—k if f=ny, +ny,,
or f=nx,+nxs,
or f=ny,+nys,

A(f)=0 otherwise.

Define the superadditive cover of A,, A, as in Example 1.

Now consider what number of players we need for a non-empty g-core; if we
have 4k players of each type in the player set, the most the coalition of the whole
can earn is 3k (or § per capita) while 4k players of each of two types can also
earn 3k (3 per capita). Thus we cannot be assured of a non-empty g-core unless
the number of the players is greater than 4k- 3 = 12k. Note that an individual
marginal bound is 1 (this is independent of k) and ng must be greater than or
equal to 12k.

Taking k=1,2,... gives a sequence of pregames with 3 types and the same
individual marginal bounds such that the smallest integer ng that works for the
kth pregame blows up.

We note that, for replications of a given game, Kaneko and Wooders [15] show
that there is an r, such that for all replication numbers greater than r,, the e-core
of the replicated game is non-empty independently of the characteristic function
of the original game. The example above shows that no such uniformity result
is possible, without further restrictions, outside the replication framework.

EXAMPLE 4: A pair (&, 2) for which the function 2 is continuous, but not
uniformly continuous per-capita, whose derived games have empty &-cores.
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For o take ({1/n: ne Z*}u0}) x{1, 2, 3}. For {2 take the superadditive cover
of the function which, for each ke Z*, agrees with the function A, of Example
3 on F({1/k}x{1,2,3}) and is zero elsewhere. This £ is continuous, but not
uniformly continuous per-capita, and, as in Example 3, arbitrarily large derived
games may have empty g-cores.

7. PROOFS OF THE THEOREMS

Before beginning the proofs of the theorems, we recall some facts about
balancedness and the balanced cover of a game.

Let (N, v) be a superadditive game. A collection {B;} of subsets of N is said
to be balanced if there exist non-negative real numbers B, called balancing weights,
such that for each j in N,

Z ﬂiU}(Bi) =1

where 8;(B;)=1 if je B; and §;(B;) =0 if j& B;. The collection {B;} is minimal
balanced if it is balanced and contains no proper balanced subcollection. If {B;}
is minimal balanced, then the balancing weights are unique, strictly positive, and
rational. Since there are only a finite number of minimal balanced collections of
subsets of N, there is a least positive integer D, which we will call the depth of
N, such that DB is an integer for every balancing weight 8 of every minimal
balanced collection of subsets of N.

The balanced cover (N, ©) of (N, v) is the game with the same set of players,
and with the characteristic function given by:

0(S)=v(S) for Sg N,
o(N)=max }, Bv(B;),

where the maximum extends over all minimal balanced collections { B;} of subsets
of N, and the coefficients B; are the associated balancing weights. The game
(N, v) is balanced if © = v. Note that the balanced cover (N, ?) is always balanced;
by a fundamental result of Bondareva [6, 7] and, independently, Shapley [22],
the game (N, 0) has a non-empty core.

Since the proofs are rather long and complicated, it seems useful to give an
overview of the strategy before embarking on the technical details.

As we mentioned previously, the results for general pregames with attributes
are obtained from the special case of pregames with types by an approximation
argument. The heart of the argument is thus in pregames with types. This is in
fact one of the reasons for introducing pregames with types.

The proof of Theorem 1 (types) proceeds by induction on the number of types.
If Theorem 1 were false (for a given prégame with types), we would have a
sequence {(N,, v,)} of derived games with empty &-cores, where the number of
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players |N,| tends to infinity. We look at the fraction of players of each type;
passing to a subsequence if necessary we assume these fractions approach limits
as n tends to infinity. If none of these limits is zero, we show that the games
(N,, v,) are approximately balanced (for large n); this leads to a payoft vector
in the e-core. If one or more of these limits is zero, we construct a reduced game,
use the inductive hypothesis to construct a payoff vector in the (£/2)-core of the
reduced game, and adjust this payoff vector to produce a payoff vector in the
e-core of the game (N, v,), for large n.

In Theorem 2 (types) much greater care must be exercised to assure that we
obtain an individually rational payoff vector, but the principles are the same.

We now turn to the detailed proofs.

Proor oF THEOREM 1 (Types): The proof is by induction on the cardinality
|T| of T}, i.e., the number of types. If | T| =0, the result is vacuous, so there is
nothing to prove. Let us therefore assume the Theorem to be valid for every
positive ¢ and for every pregame, with fewer than ¢ types, which has an individual
marginal bound. Fix a pregame (7, A) with |T|=t and an individual marginal
bound of M, and fix a positive &. Write T={1,2,..., t}.

Suppose that the theorem were false for this pregame (T, A) and this . Then
there would be a sequence {(N,, 7,)} of finite sets and type functions such that
|N,| >0 and the derived games (N, v, ) all have empty e-cores. We are going
to derive a contradiction. The argument will fall into two cases, depending on
the relative abundance of players of each type.

For each integer n and each j in T, write

_ml Gl
pj(n) - |Nn| s

so p;(n) is the fraction of players in the nth derived game who are of type j. Note
that 0 < p;(n) <1; by passing to a subsequence if necessary, we may assume that
lim, ,, p;(n) = p; exists for each j in T. Note that }; p;(n) =1 for each n, so that
2; p; = 1. Henceforth, we will write v, for v, .

We now separate the argument into two cases:

Cask 1: All the numbers p; are strictly positive.

Let (N,, 0,) be the balanced cover of the nth derived game. Since (N, 0,,) is
balanced, it has a non-empty core. We are going to use the core of (N, 7,) to
construct a point in the e-core of (N, v,).

Our first task is to estimate 0,(N,). By definition, there is a minimal balanced
collection {B;} of subsets of N, with balancing weights B8; such that

ﬁn(Nn) =Z ﬂivn(Bi)'



1340 M. H. WOODERS AND W. R. ZAME

Since (N, v,) is derived from the pregame ( 7, A) which has an individual marginal
bound of M, we see that

5n(Nn)=Z Bivn(Bi)
SZ B:M|B,|
=M Z ﬁilBi|

=MzBi Z am(Bl)

me N,

=M 2 Z Bism(Bi)-

meN, i

Since the coeflicients B; are balancing weights, the inner sum in the last expression
is 1 for each m in N,. We thus obtain the estimate we need:

0,(N,)< M|N,|,
and hence

0, (Nn)

=M.
| Nl

Now, by passing to a subsequence if necessary, we may assume that

. 0,(N,)
lim ———==1L
[N
exists; evidently L < M. We make the following claim.

CLAIM:

. v.(N,) . U.(N,)
lim ———=L=1lim ————.
n->00 INnI n->co |Nn| :

Leaving the proof of this claim aside for the moment, we complete the argument
in Case 1.

Set p=min (p,,...,p,)>0. In view of the claim, we may choose an integer n,
such that for n=n,,

5u(Ny)  0a(N,)
INd NG

and
pi(n)>p/2 for each j.
Since (N,, ©.) is balanced, it has a non-empty core (for each n). Fix an integer

n=n, and a payoff vector x in the core of (N, 0,). We are going to perturb x
to obtain an equal-treatment payoff in the e-core of (N, v,).
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Let I" be the set of permutations 7 of N, for which 7,(#(i)) = 7,(i) for each
iin N, (i.e., 7w leaves types fixed). For each 7 in I, define the vector x™ by
X7 =X, for each i in N,. Since (N,, v,) is derived from the pregame (T, A),
the value of any coalition depends only on the types of its members, and the
same is true for (N, 0,). In particular, x™ belongs to the core of (N, ©,) for each
7 in I. Since the core of a game is convex, the vector

X= L x™
|F| mel’
also belongs to the core of (N,, 7,), and it is evidently an equal-treatment payoff.
Define® the vectors y, j by

yi=max (X; — &, v,(i)) for i in N,;
_vu(Nw)
TS

Evidently, y is an equal-treatment payoff; we show that it is in the (individually
rational) e-core of (N,, v,).

We need first of all to estimate y(N,). Let A={ie N,: Xx,—e=v,(i)}, B=
N, — A. Then, by construction of y and since X belongs to the core,

y(Nn)=I§ Vi =§y.~ +§y,~

for i in N,.

=§ (% —¢) +§ v (i)

< x(A)—¢|A|+v,(B)

< X%(N,)—¢|A|

=0,(N,) —¢l|Al.
If A= J, then y; = v,(i) for each i so we certainly have y(N,,) =Y v,(i) < v,(N,)
(because v, is superadditive). On the other hand, if A# J then the facts that x

is an equal-treatment payoff and p;(n) = p/2 for each j allow us to conclude that
|A|=3p|N,|, whence

- - N,
5N el < 5N -2l < (),
In either case, we then obtain y(N,)<uv,(N,).
It now follows that j; =y, for each i€ N, and in particular that y;= v, (i) for
each i. Moreover, since X is in the core of (N,, 7,), if S is any proper subset of
N,, then

7(8)=y(8)= 5,(S) — &|S| = v,(S) —¢|S]|.

3 For ease in notation, we use v, (i) for v,({i}) and later, given a payoff y, we will use y(i) for y({i}).
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Finally, since y(N,)=1v,(N,), we conclude that y is an equal-treatment payoft
in the (individually rational) e-core of (N, v,), as desired.

(In the context of Theorem 1 we did not need to show that j is individually
rational, but this will greatly simplify the argument in Theorem 2.)

It remains to establish the Claim. We are going to show that for all large
integers m and all sufficiently large (in terms of m) integers n, the game (N, v,)
contains a large multiple of the balanced cover (N, 0,,) of the game (N, v,,)-
This will enable us to obtain the inequality we require between v,(N,) and
Om(Ny,).

To this end, fix a large positive integer R and an integer m so large that for
n=m we have for each j in T:

L 10)]
p;

(This is possible since p;(n)-> p; #0.) Let D be the depth of N, and choose any
integer n = m so large that

|N,|>|N,.|DR>.

Now, there is a unique positive integer g, which is necessarily at least as large
as R, such that

q4|N,|DR<|N,| <(q+1)|Nn| DR.

1
1 <l+—.
R

Since n = m, we obtain from the estimate on p;(n)/p;.

2 Pj(") 2 .
—— <<+ for each j.
R pi(m) R J

Hence, for each j we have a lower bound:

1

7 DI=p NS> (1-3) pemIN

2
T —

=(R-2)p;(m)q|N,.|D
=(R-2)gD|7.'(j)l-

In other words, for every player of type j in N, there are at least (R —2)qD
distinct players of type j in N, »

Let us now look at ©,,,( N,,). By definition, there is a minimal balanced collection
B,, ..., Bx of subsets of N,,, with balancing weights B,, ..., Bx such that

6m(Nm) = z Bkvm(Bk)'

Since D is the depth of N,,, the numbers B, D are all integers, and Y., B«6;(Bi)D =
D for each player j in N,,. Since there are so many players of every type in N,
we can choose functions ¢4: N,, > N,, (for 1<d <D, 1<I<(R-2)q) such that:
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(a) for each d and [, and for each player i in N, the player ¥4(i) has the same
type as i; (b) Yh(i) # ¢ (i) unless i=i', d=4d’, and I=1I'"" We now define
coalitions Ck,s in N,,, where 1=<I=< (R 2)q, Isk=<K, and 1<s=<pB,D, by first
wrltlng o(k)= Xu 1 B.D and setting Ci ks = (,Ifc,(k)ﬂ(Bk) Notice that the coalitions
C; ks are disjoint from each other. Moreover, since the functions Yl preserve
types and both (N,,, v,,) and (N,, v,) are derived from the same pregame (T, A),
vn(C;c,s) = vm(Bk)'
Finally, we can now estimate v,(N,):

vn(Nn)B% 0.(Cls)
=Y. BiDv,(Bx)
Lk
=D Zl %‘. BrVm(B)
=DY 0u(Ny)
1

= D(R —2)q0,(Np).
Hence

vn(N) D(R —2)q0,,(Npm)

| Na| | Nal
(g +1)|N,,|DR

)0

Since R was arbitrary (but as large as we like) and g = R, we see that

o o U(NW) o Om(N)
lim inf =1im =L
o m | Nl

al

On the other hand, since ©,(N,)=v,(N,), we also have

Ua(No) _ . O (Nm)
11m =L
| Nl | Nom|

lim sup

Combining the lim sup and lim inf estimates establishes the Claim and completes
the proof of Case 1.

Cask 2: Some of the limiting ratios p,, p,, . . . , p, are zero.

Set T\,={je T: p;#0}; T, is a proper subset of T and is non-empty (since
Ypi= l) Every function f: T, > Z* may be extended to a function f T->Z" by
settmgf(]) fgj) ifje T, andf(]) 0if j & T,. If we then define A,: #(T,)>Z"
by A,(f)=A(f), it is clear that (T}, A,) is a pregame with fewer than ¢ types,
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so our inductive hypothesis can be applied: there is an integer n, such that if N
is any set with at least n; elements and 7: N - T, is any type function then the
derived game (N, v,) has an equal treatment vector in its (&g/2)-core.

We now return to our sequence (N, v,). Using the definition of T, we see
that we can choose an integer n, so that for n=n,,

|7';1(T1)|> ni,
and
[T (T=T)|_ &
|T;1(T|)[ 2M’
where M is the individual marginal bound for (T, A). If we write N, = 7,'(T})
and 7, =,|N}|, then our inductive hypothesis enables us to choose an equal-

treatment payoft x in the (¢/2)-core of the game (N, v,.) derived from (T, A,).
Set

M (T =Tl +u(Nw) = 0a(Na) _e
|T;1(Tl)| 2

and define the vector y by
yi=M  foriin 7,'(T—T));
yi=x;—o  foriin 7,'(T)).

It is easily checked that y is an equal-treatment payoff in the e-core of the derived
game (N, v,). (Note that, unlike the situation in Case 1, y need not be individually
rational.) This completes the proof of Theorem 1 (types).

Proor orF THEOREM 2 (Types): We proceed exactly as before, using induction
on the number of types. If the result is false for ¢ types, we find a sequence
{(N,, 7,)} of sets and type functions such that |7, '(j)| is either zero or at least n
(for each j in T) but the derived games (N,, v,) do not have equal-treatment
vectors in their individually rational e-cores. By passing to a subsequence if
necessary, we may assume that the same types occur in all the games, and by
discarding types which do not occur we may assume that all types do occur. That
is, there is no loss of generality in assuming that |7,'(j)| > co for each j in T. We
form the ratios p;(n) and their limits p; and consider the same two cases. In the
first case (where none of the limiting ratios are zero), the previous argument goes
through verbatim since we were careful to construct an individually rational
payoff vector.

In the second case, however, a problem arises: the perturbation used to produce
the payoff vector y from the payoff vector x need not preserve individual
rationality. In order to deal with this difficulty, we will need to be more careful
about the relative scarcity of players.

So, we pick up the proof of Theorem 1 (types) at the beginning of Case 2:
some of the limiting ratios are zero. There is no loss of generality (since we may
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renumber the set T of types and pass to a subsequence of the games (N, v,) if
necessary) in assuming that for each #,

I (D=2 @)= - < ()]

Form the ratios g;(n) =|7."()|/|72" (/)| = p.(1)/Pa(j), so that 1 = g,(n) = g2(n) =

- -=q,(n). As before, we may assume that q;= lim, g;(n) exists for each j. Since
some of the limiting ratios p; are zero, there is an mteger K, 1< K <t such that
l=q,=>¢,> - =gx>qxn="""=¢=0. Write ={1,2,...,K}, T'=
{K +1,...,t}; players whose type is in T° are scarce, otherq are relatively
abundant For a function f in F(Th), let f again denote its trivial extension to
T and define A'(f) = A(f) as before we see that (T', A') is a pregame with
types and has an individual marginal bound. We now distinguish two subcases;
since we are, in effect, already discussing Case 2, we call the first of these Case
2A.

Cask 2A: There is a function F in %(T") such that A (F)>Z F()A'(x))-

Validity of this inequality simply means that the pregame (T, A" ) is not trivial;
or put another way, that some coalition of abundant players can obtain a payoft
which is strictly greater than the sum of their individual payoffs. Write

w=A'F)=% F()A'(x).

Consider the game (N,, v,) for large n (to be determined). If we set N, =7,,'(T"),
and let v, be the restriction of v, to N, then the game (N}, v}) is derived from
the pregame (T', A'). We can then apply the induction hypothesis (for large n)
to select a payoff vector x in the individually rational (e/2)-core of (N}, vb).
We assert that, for sufficiently large n, we can find a type j in T' and a positive
number o such that the payoff vector y given by:

yi=M  foriin 7, (T°%;
yi=x  foriin 7, (T'-{j});
yi=xi—o  foriin 7,'(j)
is in the individually rational e-core of (N, v,).
Analogously to Case 2 of Theorem 1, set
vn(N ) = va(N,) + M| 7, (T%)
72" ()
so that y(N,) = v,(N,). Since T° consists of scarce types while j is an abundant
type, and v,(N})—v,(N,) is negative, o will be less than /2 if n is large. This
shows that y is in the e-core of (N, v,), for any choice of j, and leaves us to
deal with individual rationality.
Since x is an individually rational equal-treatment payoff, the difference x(i) —

v,(i) is nonnegative and constant on each of the sets 7,'(k), for k in T'. Let j
be a type in T' for which this difference is as large as possible; we show that
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for this choice of j, the payoff vector y is individually rational; that is,
o=<x(i)—v,(i) for i in 7, '(j).

Combining with the definition of o yields
72 (DI(x(i) = 04 (i) = 0, (N ) = 02 (N,)) + M7 (T°)].

The left-hand side of this inequality is just x(7,'(j)) =X, va(i), which, by
choice of o and the fact that there are only ¢ types, is at least ¢ '[x(N})—
2t Ua(i)]. Since v, (N »)—v,(N,) is negative, it will suffice to verify that, for
large n,

) x(ND= T, i) > M| (T

To do this, we make use of the function F. For each n, there is a coalition
S < N, such that the function fs is an integer multiple of F; say fs = RF where
we choose S to make R as large as possible. For large values of n, the set N},
contains many players of every type in T' (abundance!) so R is large, too. In
fact, since the ratios |7,,'(T°)|/|75'(k)| can be made as small as we like (for large
values of n and for every k in T'), we see that the ratio |7,'(T°)|/R can also be
made as small as we like. On the other hand

x(N2)= 3, on(i)> Ru

so that the inequality (*) is satisfied if
Ru=tM|7,' (T

or equivalently if

w | N(TO)
tM~ R

As we have just seen, this last inequality is satisfied for large values of n, so that
inequality (*) is also satisfied for large values of n. Verification of this inequality
takes care of individual rationality of y and completes the proof of Case 2A.

Cask 2B: For every function F in F(T') we have A'(F)=Y F(j)A'(x)).

This simply means that the pregame (T', A') is trivial; or put another way, no
coalition of abundant players can obtain a payoff which is strictly greater than
the sum of their individual payofis.

We define a function A%: F(T°)>R" by

A°(f)=sup A(f—)—.ZTl FHA' (x)
je
where the supremum extends over all functions f in %(T) which agree with f

on T°. Using the individual marginal bound for A and the triviality of (T"', A"),
it is easily checked that A°(f) is indeed finite, that A° is super-additive, and that
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(T®°, A°) is a pre-game with types which has an individual marginal bound. Let
us write N =7;'(T°), and (N°, w,) for the game derived from (T°, A°).

Observe that the limiting ratios of types for the sequence of games {(N 0w}
are all different from zero, so that we can apply the arguments of Case 1 of
Theorem 1 (types). We conclude immediately that, for large n, the games (N 0 W)
have non-empty individually rational (e/2)-cores. Moreover, passing to a sub-
sequence if necessary, the ratios ¢, = w,(N?9)/|NY| approach a limit W< M. We
want to see that the ratios

_ vn(Nn) - Un(N:I)
Pr NG|
also approach the same limit W. To see this, notice first that ¢, = p, for each n
(because (T', A') is trivial and A is superadditive). Now fix a large integer m

and a positive number u. By definition, there is a function f in #(T) such that
the restriction of f to T° is just fyo (on T°) and

Wi (N) = A°(fv2)
<A L TG+
Jje
Arguing as in the claim of Case 1, Theorem 1 (types), we see that for large n,
the game (N,, v,) contains a large multiple, say R, of (N%, w,.), because the
scarce players have approximately the same distribution in N as in N, while
in N, there will be a very large number of abundant players. We can thus write

N, = Rf +g for some function g in %(T). Arguing as before we see that w,(N 9
is approximately Rw,,(N?Y,), that |N?| is approximately R|N3,|, and that

vn(Nn) - ‘D,,(N:,) = R[wm(N(r)n) _f"]

After doing a little arithmetic, we see that p,=¢,,—u so that limp,=W as
desired.

Now choose an equal-treatment payoff vector x in the individually rational
(e/2)-core of (N w,), and define the vector y by

yi=x; foriin NJ,
yi=0,(i) foriin N,.

In view of the previous discussion, y(N,) < v,(N,,) +(&/2t)|N,| if n is sufficiently
large. Proceeding as before, we can find a type k in T° and a positive number p
such that the vector y defined by

yi=yi—o ifier:’(k),
Vi=yi ifiET;l(k)

is an equal treatment payoff vector in the individually rational &-core of (N, v,).
This completes the proof of Case 2B and with it the proof of Theorem 2 (types).
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Having done the most difficult work, we now present the approximation
arguments which allow us to obtain our general results for pregames with attributes
from the special case of pregames with types.

ProOOF OF THEOREM 1: Given £ > 0, we construct a pregame with types (7T, A)
which ‘“‘approximates” (&, £2) to within £/2, and derive the desired result by
applying Theorem 1 (types) to (T, A). To this end, choose a §, 0<8<1 such
that if f, g are in () and d(f, g) <& then |2(f) —2(g)|<(e/2)|f|=(g/2)|gl-
Use the compactness of & to choose a finite subset T of & such that every point
of & is within & of some point of T. Each function f:T- Z" has an extension
f:5 > Z" defined by

f(a)=f(a) forain T;

fla)=0 foranotinT.
Now define A: %(T)->R"* by
A(N)=0(f).

It is evident that (T, A) is a pregame with types and has an individual marginal
bound (since (&, 2) does). By Theorem 1 (types) there is an integer n, such that
for any set N having at least n, elements and any type function 7: N > T, the
derived game (N, v,) has a non-empty (&/2)-core.

Now let N be any set with at least n, elements and let a: N> & be any
attribute function. Because of the way T is located in &, we can find a function
7: N - T such that d(7(i), a(i)) <6 for each i in N. Since 7 is a type function,
we have a derived game (N, v,) and we know there is a vector x in the £/2-core
of (N, v,). Set

- va(N)_ UT(N)
|N|

and define the vector y by
yi=x;—pm for each iin N.

Our choice of § guarantees that |u| < e/2. Moreover, for each subset S of N,
|0, (S) — v,(S)| < /2. Putting these facts together with the fact that x is in the
g/2-core of (N, v,), it is easy to check that y is in the e-core of (N, v,), as desired.
We note that if x was chosen to be an equal-treatment payoff, then y will have
the property that players with similar attributes obtain the same payoff.

ProOOF oF THEOREM 2: Modulo one small difficulty, this result follows from
Theorem 2 (types) in exactly the same way as Theorem 1 follows from Theorem
1 (types). The small difficulty is that in adjusting the vector x in the &/2-core of
the types game (N, v,) to produce a vector y in the e-core of the attributes game
(N, v,), we must be careful to retain individual rationality. This can be accom-
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plished in exactly the same way as in the proof of Theorem 2 (types) itself; we
leave the details to the readers.
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