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A generalization of assignment games, called partitioning games, is introduced. Given a finite
set N of players, there is an a priori given set 7 of coalitions of N and only coalitions in 7 play
an essential role. Necessary and sufficient conditions for the nonemptiness of the cores of all
games with essential coalitions n are developed. These conditions appear extremely restrictive.
However when N is ‘large’, there are relatively few ‘types’ of players, and members of n are
‘small’ and defined in terms of numbers of players of each type contained in subsets, then
approximate cores are nonempty.
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1. Introduction

In an n-person cooperative game it may not be equally easy to form every
coalition. For example, it could be very hard to form a large coalition because of
coalition formation costs, and then only small coalitions play essential roles. If a
game has some special structure and even if all coalitions are permitted, it may still
happen that only small coalitions play essential roles, e.g., the marriage game of
Gale and Shapley (1962), the bridge game of Shubik (1971), and the assignment
games of Shapley and Shubik (1972) and Kaneko (1976, 1980).! In fact, an
assignment game has the special property that it always has a nonempty core
independently of the payoff function (see Kaneko (1980)). We introduce concepts of
partitioning games, with and without side payments, which appropriately model the
situations mentioned above and are generalizations of the above games. The
purpose of this paper is to investigate the non-emptiness of cores of partitioning
games, in particular, the special property of assignment games.

*This paper was written at the Cowles Foundation for Research in Economics at Yale University, New
Haven, CT 06520, U.S.A,
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Our first result provides necessary and sufficient conditions for the non-emptiness
of the cores of all n-person partitioning games with a given set of essential
coalitions. While these conditions generalize the results for assignment games, they
imply the strong limitation of the generalization — the property that all assignment
games have nonempty cores is very special.

Our next task is to consider the above problem from the viewpoint of the
approximate core theory recently developed by Wooders (1981). That is, the
approximate cores of the replica games of partitioning games are considered, and it
is shown in several strong forms that the approximate cores of the replica games of
partitioning games are nonempty if the number of replications is sufficiently large.
This result is in complete contrast with the first result.

2. Partitioning games with and without sidepayments

Initially we consider partitioning games with sidepayments, Let N be an arbitrary
finite number of players, N={1,2,...,n}, and let n be a class of nonempty
coalitions satisfying {/} € # for all /e N. We call S in = a basic coalition. For any
nonempty SCN, we call ps={T,..., Ty} a n-partition of § iff

T.enforallt=1,...,k and psis a partition of S. (D

Let P(S) be the set of all #-partitions of S. We call a game in characteristic function
form, (V,v), a partitioning game with sidepayments iff for some real-valued
function p on 7,
(S)= max Y. o(7) forallnonempty SCN. )
Ps€EP(S) Teps
Note that v satisfies the superadditivity property.
The core of a game (NN, v) with sidepayments is the set

{xe R™: Y x;=u(N) and Y. x;=u(S) for all nonempty SCN},
ieN ie§
where R” is the n-dimensional Euclidean space.
The basic idea of definition (2) is very simple. That is, only the basic coalitions
can play essential roles in a partitioning game. The following lemma ensures that
this definition is consistent with our initial description in Section 1.

Lemma 2.1. Let (N,v) be a partitioning game with sidepayments. Then the core
coincides with the set

{xe R”: ) %= v(N) and Y, x;zv(T) for all Te n} =

ieN

= {xe R Y x;=uN) and ¥, x; = 0(T) for all Ten].
ieT

ieN
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Proof. Obvious.

Typical examples are Shapley’s and Shubik’s (1972) assignment game and
Shubik’s (1971) bridge game.

Example 2.2 (The assignment game). Let N=JUK and JNK=6. If n=
{{i}:ieN}U{{j,k}:jeJ and keK}, then given any v on n, the game (N, )
defined by (2) is called an assighment game. Shapley and Shubik prove that every
assignment game has a nonempty core. Note that this proposition is independent of
the choice of b.

Example 2.3 (The bridge game). Let n={{i}:ie NJU{SCN: |S|=4} and let 5 be

given as
1 if |S|=4,
o(S) =
0 otherwise,

where |S| denotes the number of members in S. Then (N, v) defined by (2) is called a
bridge game. 1f n=4m for some positive integer m, then the core of (V,v) is
nonempty but otherwise the core is empty.

Every assignment game has a nonempty core independently of the choice of b.
However, the nonemptiness of the core of a partitioning game depends, in general,
upon §. Therefore the property that the nonemptiness of the core of an assignment
game is independent of 5 is very special. The purpose of this section is to clarify this
special property. Although a bridge game has a nonempty core if n=4m, our
general result implies that the nonemptiness of the core of a game with the same
essential coalitions as the bridge game depends upon o even in the case of n=4m.

For any given N and n we denote by GS(N, ) the set of all partitioning games
with sidepayments which have the set of players NV and the set of basic coalitions 7.
Later in this section we will determine necessary and sufficient conditions for every
game in GS(N, n) to have a nonempty core.

Next let us define partitioning games without sidepayments. Let NV and 7 be given,
Let ¥ be a function on 7 to a class of subsets of R” such that for all Se n:

F(S) is a closed set in R"; 3)

if xe P(S) and ye R* with y;= x;for all i € S, then y e V(S); 4)

Prog [V(S) \ Uint V({z'})] is nonempty and bounded.? &)
e§

We define (N, V) by
viS)= |J [] P(T) forall nonempty SCN. (6)

ps€P(S) Tepg

2ProgX={(x);csix€ X} for SCN and XCR",
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This game (V, V) is called a partitioning game without sidepayments. Note that
also satisfies conditions (3)—(5). Definition (6) means that when a coalition S is
formed, the players in § subdivide S into a z-partition and get the payoff sets
guaranteed by the basic coalitions. This idea is almost the same as that of
partitioning game with sidepayments.

The core of a game without sidepayments (N, V) is the set V(N)\ UScN,s:e@
interior ¥(S). Parallel to Lemma 2.1, the following lemma holds.

Lemma 2.4 Let (N, V) be a partitioning game without sidepayments. Then the core
with V(n) \ Use. int ¥(8)=V(N)\ Us., int P(5).

Proof. Obvious.

Example 2.5 (The central assignment game). Let 7 be the collection given in
Example 2.2. Then a game (N, V) defined by (6) is called a central assignment game.
Kaneko (1980) proves that every central assignment game has a nonempty core.

There is, however, a minor conceptual difference between partitioning games
with and without sidepayments. In a partitioning game with sidepayments, it is
permitted to transfer money (transferable utility) in every coalition, but in a
partitioning game without sidepayments, any transfers can only occur within basic
coalitions. This difference appears as follows. A game with sidepayments (N, v) can
be represented as a game without sidepayments (N, V) such that
V(S)={xeR": T, sx;= v(S)} for all nonempty SCN. Even if (N, v) is a partitioning
game with sidepayments, (N, V) is not a partitioning game without sidepayments,
i.e., it does not satisfy (6). But in considering the core, this difference does not
appear. To demonstrate this, we define another game without sidepayments (N, V,)
where

V,(S)= |J [) V(1) for all nonempty SCN. (7

pseP(S)Teps

Of course, (V, V,) is a partitioning game without sidepayments. Then the following
lemma holds.

Lemma 2.6. Let (N, v) be a partitioning game with sidepayments. Then the core of
(N, v) coincides with the cores of both (N, V,) and (N, V).

Proof. Obvious.

For any N and 7 we denote by G(2V, n) the set of all partitioning games without
sidepayments which have the set of players N and the set of basic coalitions 7.
Embedding GS(, n1) into G(N, n) by the mapping (7): v~ V,, we can regard
GS(V, 7) as a subset of G(M, 7).
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We need several concepts to state the main result of this section. Consider the
following system of equations:
Y Xr=1 forallieN, Xr=z0 forall Ten, ®)
ot
where (X7)r is a variable. We say that the system of equations (8) has the integral
property iff every extreme solution of (8) consists of integers. If (8) has the integral
property, there exists a one-to-one onto mapping from the set of all n-partitions of
N to the set of all extreme solutions of (8). This integer programming problem is
usually called a set partitioning problem (see Balas and Padberg (1976) and Murty
(1976)).
A family y of nonempty coalitions of N is said to be balanced iff the system of
equations
Y =1 foralljeN, 9
S:8sj
has a nonnegative solution d = (55)552,\,\{”) such that ds=0 iff S¢ y. The solution J is
called a balancing weight vector. Games (N, v) with sidepayments and (N, V)
without sidepayments are said to be balgnced iff

Y dsu(S)<v(N) for any balanced family y and its
Ser balancing weight vector &, (10)
(1 V(S)C V(N) for any balanced family y, (11)
Sey
respectively. Bondareva (1962, 1963) and Shapley (1967) show that a game with
sidepayments has a nonempty core if and only if it is balanced. Scarf (1967)
demonstrates that a balanced game without sidepayments has a nonempty core.’
A minimal balanced family is one that includes no other proper balanced family.
A m-family is a subset of 7.
Now we are in a position to state the main result of this section.

Theorem 2.7. The following six statements are equivalent:
(i) The system (8) has the integral property;
(ii) Every balanced n-family is a union of n-partitions;
(iii) Every minimal balanced n-family is a n-partition;
(iv) Every (N, V) in G(N, n) is a balanced game;
(v) Every (N, V) in G(N, n) has a nonempty core,
(vi) Every (N, v) in GS(N, nr) has a nonempty core.

Before proving this theorem, let us consider its implications.

3 Balancedness is not a necessary condition for the nonemptiness of the core of a game without
sidepayments; cf. Billera (1970).
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Example 2.8. Consider the family 7 of basic coalitions which was given in Example
2.3. If n=38, the bridge game has a nonempty core. But every partitioning game with
basic coalitions 7 does not necessarily have a nonempty core. For example,
y=1{1,2,3,4}, {3,4,5,6}, {1,2,5,6}, {7}, {8}} is a minimal balanced n-family but
not a z-partition. Then Theorem 2.7 implies that we can find a game in GS(V, n)
with an empty core. More concretely, the game (, v) which is defined by b on =

where
{;S{ ifSey,
o(S) = (12)

0 otherwise,

has an empty core.

Example 2.9. Consider a three-type assignment game, i.e., N=JUKUM (mutually
disjoint) and n={{i}:ieN}U{{j k,m}jel keK and meM}. A three-type
assignment game also does not necessarily have a nonempty core. For example, let
N={1,2,...,9} and J={1,2,3}, K=1{4,5,6} and M={7,8,9}. Then y={{1,4,7},
{1,5,9}, {2,4,8}, {2,6,9}, {3,5,7}, {3,6,8}} is a balanced n-family but not a »-
partition, so we can find a game in GS(N, 7) with an empty core. Concretely, the
game defined by (12) and the 7 and y of this example has an empty core (see Fig. 1).

1 2 3
4 6
7 8 9
Fig. 1

Thus, overall, Theorem 2.7 implies that each statement of Theorem 2.7 is quite
strong and, it is fair to say that Theorem 2.7 is a negative result. That is, the special
property of the assignment game (that every assignment game has a nonempty core)
is hardly generalized.

However, we can find some sufficient conditions for the integral property of (8).
Represent the system (8) as the matrix form, i.e.,, AX=¢ and Xz=0, where
X=(X7)rer and e is the vector with every component equal to 1. A sufficient
condition for (8) to have the integral property is the unimodular property of A, i.e.,
every minor determinant of 4 equals 0, 1 or —1 (Hoffman and Kruskal, 1956;
Theorem 2). Hoffman and Kruskal also give several necessary and sufficient
conditions and more convenient sufficient conditions for the unimodular property.

Proof of Theorem 2.7. The theorem is proved as indicated in Fig. 2.
Since GS(N, 7) is a subset of G(N, n1), (v)=(vi) is trivial, and (iv)=(v) is also
obvious by Scarf’s theorem.
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(i) = (il)  —=—{iii)

/ AN

{iv) {v) {vi)

Fig. 2

Proof of (i) (i) & (iii). Since every m-partition is a minimal balanced family and a
balanced family is the union of the minimal balanced families that it contains
(Shapley (1967, p. 457, Corollary)), the equivalence of (ii) and (iii) is true.

With any solution (Xs)se  of (8), we associate 0% = (68 ) on (gy Such that 3=
X for all Se 7 and & =0 otherwise. Then J% is a solution of (9), and it is easy to see
that 6 is an extreme point of (9) iff X is an extreme point of (8). Shapley’s lemma
(1967, Lemma 2) states that &% is an extreme point of (9) iff the balanced family
y¥={S:6{ >0} is minimal. Therefore X is an extreme point of (8) iff y* is a
minimal balanced family. Then it is clear that X is an integral solution iff y¥ is a 7-
partition.

Proof of (ii)=(iv). (a) Let y be a balanced n-family. We show that if xe ﬂTey (1),
then x e V(). Since y includes a z-partition py,

xe Q?V(T)crﬂ vinc U N v

€PN PNEPN) Tepy

(b) Let y be a balanced family which is not a 7n-family. Suppose xe& ﬂTey V). If
S € y does not belong to 7, then there is a z-partition p& of § with xe ﬂ Teps V(T) by
(6). For Ten, let yr={S:Sey, S¢nand Tepd}. We define § and 6 by

$={T:Teyand Ten}U( U p§>,

SeypnSen

or+ Y & if Teyand Ten,

Seyr
br=< ¥ Js if T¢ yand Tem,
Seyr
0 otherwise,

where d is a balancing weight vector for y. It is easily verified that this $ is a balanced
n-family with balancing weight vector é. Since xe V(T) for all Te j, the above
argument (9) is applicable to this case.

Proof of (vi)=(iii). Suppose that there is a minimal balanced n-family y which is
not a z-partition. Consider the game (V, v) with sidepayments which is defined by

|S| if Sey,
o(S)=
0 otherwise,

Then Lse,ds(S) = Yien Lsey s5:0s=|N|, where d is a balancing weight vector for
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y. But since y does not include any n-partition,

vN)= max Y o(T<|N|.

PNEP(N)  Tepy

By the Bondareva-Shapley theorem the core of (V, v) is empty.

3. Approximate cores of partitioning games

Obviously, the conditions stated for the nonemptiness of the cores of partitioning
games are extremely restrictive and, without some very special structure on the
collection of basic coalitions, we would not expect these conditions to be met. In this
section, however, we show that, given N and 7, the replications of games in both
GS(N, ) and GV, ) will have nonempty approximate cores if the number of
replications is sufficiently large. The results we will obtain depend only on N and 7
but not on the particular games (N, v) or (N, V).

Formally, given the set of players N={l,...,1,...,n} for each positive integer 7,
define N,={(},¢):i=1,...,nandg=1,...,r}. The set N, is called theset of players of
the r-th replication of N. For each i e N, the set {(/,g):¢=1,..., 7} is called the set of
players of type [ of the r-th replication of N. Given any subset S of N, let s=
(515 ---,Sn) be defined by its coordinates 5;= |[SN{(;, ¢): g=1, ..., r} | where |- | denotes
the cardinal number of a set. Then s is called the profile of S and is simply a list of
the numbers of players of each type contained in S. Given S, define g(5)=s, 50 o(+)
maps subsets of N, into their profiles.

A subset SCN, is called a basic coalition (of N,) iff o(5)=0(S") for some basic
coalition §'en of the set N. This definition allows all subsets of N, which are
identical in terms of their profiles to some basic coalition in N(=N)) to be basic
coalitions of N,. Let 7, be the set of all nonempty basic coalitions of N,. For any
nonempty SCN, we call ps={T\, ..., Ty} a n-partition of Siff T,en, forall 1,...,k
and pgis a partition of S. Let P,(S) be the set of all n,-partitions of S.

For a given partitioning game (N, v)e GS(N, ) we define the rth replica game
(N, v,) generated by (V, v) by

v (T)=w(T") forall Ten, (13)
where T" e n with o(T) = o(T") and

u(T)= max ), u(7T) forall T¢n,. (14)

Ps€PS) Tepg

For a given partitioning game (&, V) e G(N, n) we define the rth replica game
(N, V,) generated by (N, V) by

VA(S)=RN-Nx1(s5) forallSen,, (15)
where 5’ e 7 with 9(5) = 0(8) = 0(5’), and
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vs)y= |J [\ V(1) forallSen, (16)

pseP(S)Teps

where NS is a subset of N, such that SCN® and o(NS)=(l, ..., 1).
We remark that in both the sidepayments and no-sidepayments cases, the games
(N,, v,) and (N,, V,) are partitioning games.

Example 3.1. Consider a three-type assignment game as given in Example 2.9. The
rth replication is defined as follows,

N.={(,q):ieN,q=1,...,r},
and N, is divided into

JL={U:q):jel. g=1,....r},

K={k g keK g=1,..,r},

M.,={(mq):meMg=1,...,r}.
The collection of basic coalitions 7, is given as

m={{( )} (hg) e Ny}

U{{U. ) (kg% (m g} Ui ed, (k g) €K, (m, ") e M, }.

In particular, let us consider the three-type assignment game with an empty core
given in Example 2.9. Let »=2. Then it holds that

n(N) = ({(1,1), @,1), (7,DP + (@D, 61, 9.D})
+u({3,1), (5,1, (7.2} + . ({(2,2), (4,2), 8, 1D})
+0,({(1,2), (5,2), 9,.2)H +1({(3,2), (6,2), (8,2)})
= 18. 17

The partition associated with v, (N, ) is described by Fig. 3. Hence vector (1, 1,...,1)
is feasible and further it is easy to see that no coalition can improve upon this vector.
Therefore (N;, v,) already has a nonempty core. This property is generalized in
Theorem 3.2.

(1,1 (2,1) (3,1 (1,2 (2,2) (3,2)
(4,1) {5, 1) (4,2) {5,2) (6,2)
(7,17 (8.1 (9, M (7.2 8,2) (9,2

Fig. 3.
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Before starting and proving our theorems, we require the concept of the balanced
cover of a game.

For arbitrarily given games (V, v) and (v, V) with and without sidepayments, the
balanced cover games (N, §) and (N, 17) are defined as follows,

v(S) if SN,
(
N max Sru(T): yis a balanced famil
is) = 4 X | £ oDy Y as)
with a balancing
weight vector 5} ifS=N,
V(S) if SN,
YO U Nvy ifs=n, (19

vef Tey
where f is the set of all balanced families.

Our next theorem will be used in the proof of the following theorems and is of
some interest itself.

Theorem 3.2. Let (N, n) be given. Then there is an integer m° such that for any
positive integer k and any (N, v) e GS(V, n) and (N, V) e G(N, n), the replica games
(N,, v,) and (N,, V) have nonempty cores, where r=km°.

Proof. Let B denote the collection of all minimal n-balanced families. Given ye B,
observe that the (unique) balancing weights dg for Sey are all rational numbers,
because J is an extreme solution of linear equations with integral coefficients.
Therefore there is an m° which satisfies the requirement that m°ds is an integer for
all Sey and for all ye B. We claim that this m° satisfies the requirements of the
theorem.

This m®is also the integer given in (Wooders, 1981; Lemma 5), i.e.,

ml

if xe V(N), then [] x& V,o(No)- (20)
i=1

Also from (Wooders, 1981; Lemma 3) we have
?ﬂo
for all positive integers &, if [[ xe V;0(N,0),
f=1

o i Q21
then [] x& Vipmo(Nimo)-
i=1

Let x be in the core of (V, V); from Scarf’s theorem (1967), there is such an x. We
show that for all positive integer &, [] ,-k;"f)x is in the core of (V,, V,), where = kmP.
From (20) and (21), []/-,x e V,(V,). Therefore it is sufficient to show that for any
SCN,, ¥ {_ix does not belong to int V,(S).
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Suppose for some nonempty subset SCN,, [I/-,xeintV,(S). From the defini-
tion of the game (N, V,) there is an m-partition ps of S such that []/_,xe
int ﬂreps V.(T),i.e., []i=1xe int V(T) for all Te ps. Given T¢ ps, thereisa T*en
by (16) such that o(T* =o(T) and V(T)=RMN=N"x V(T*), where NTCN, such
that T NTand o(NT)=(l, ..., 1). This implies x & int ¥(T*). This is a contradiction
to the choice of x.

The above proof also applies to partitioning games with sidepayments.*

The above theorem states that given any (&, V) and (N, v) in G(V, 7), respectively,
there are subsequences of the generated sequences of replica games such that all
games in the subsequences have nonempty cores. This type of property was noted by
Shubik for his Bridge Game Example and our result generalizes Shubik’s
observation. Just as Shubik’s Bridge Game has a nonempty core for all numbers of
players such that the set of players can be partitioned into groups of four, our result
shows that any partitioning game has a non-empty core if the set of players can be
partitioned into basic coalitions associated with a payoff x in the core of the
balanced cover of the (unreplicated) game. In the following we introduce concepts
of approximate cores, one for partitioning games with sidepayments and a more
restrictive one for partitioning games without sidepayments.” We show that
independently of V (or v), all sufficiently large replications of partitioning games
have nonempty approximate cores.

For games without sidepayments we have the following result (this also applies to
games with sidepayments).

Theorem 3.3. For any A>0 there is an r* such that for all r=zr* and for any
(N, V)e G(N, n), there is a vector X in the core of the balanced cover game (N, V)
of the r-th replica game generated by (N, V) and a vector x" in V.(V,) such that

G @) € Ny Xig # Xig | <Ar*. (22)

Informally, Theorem 3.3 states that given a game (N, V), for sufficiently large
replications r it is possible to find vectors x” in V,(&,) which ‘approximate’ some
vector X7 in the core of the balanced cover game in the sense that the percentage of
players payoff x, differs from )?fq can be made arbitrarily small. Moreover, ‘close’
approximations can be obtained simultaneously for all (N, V) in G(N, nr) by the
appropriate choice of r*and 4.

Theorem 3.3 differs from a related theorem of Shubik and Wooders (1982) in that
they use a slightly different, less restrictive, concept of approximate core than we
do. We are able to obtain our stronger result because sequences of replica games

4 This theorem can easily extended to show that for some mP, for all positive integers &, the games
(N, V) and (N,,v,) where r=4km? are ‘totally balanced’ in the sense that all subgames of the games
(N,, V,) and (N, v,) have nonempty cores.

5 Similar type of approximate cores of games derived from exchange economies are well known
(Henry, 1972; Dierker, 1971; Broome, 1972).
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generated by a given game satisfy properties not required by Shubik and Wooders
(see Shubik and Wooders (1982) and also Wooders (1981)).

Proof of Theorem 3.3. Let m be as defined in the proof of Theorem 3.2. Let r* be
sufficiently large so that m°|N|/r*< . For any (N, V)e G(N, n) select any y in the
core of the balanced cover game (N, V) of (N, V). For each r let ' =[]/_,». It
follows that ¥ is in the core of (V,, V,) for each r (the proof is essentially the same as
the proof that []/-;x is in the core of (N, ¥;) in the proof of Theorem 3.2).

Given rzr*, let k be the largest integer such that km®<r and let j=r—km®.
Arbitrarily select ze V(N). Let x"=[]*"7 » x [1{_1z. From superadditivity, x'e V,
(V) since [TV € Vio(Nimo) and []4-12 € V;(N;). Then it holds that

{(t, @ eN,: Xiy # xig} | =JIN| = mOIN| = mOIN| = Ar*,

Now we consider nonemptiness of approximate cores of partitioning games with
sidepayments. The approximate core concept used in Theorem 3.4, however, is the
Shapley-Shubik (1966) weak eg-core. To enable us to state the theorem
independently of the function v we normalize the games in GS(M, ). Let GS*(N, n)
denote the class of partitioning games with sidepayments, normalized so that for all
(N, v) € GS*(N, ),

v({i})=0 forallie Nand v(N)=|N]|. 23)
Theorem 3.4. For any € >0 there is an r* such that for all r=r* and for any

(N, v) € GS*(N, 7) the r-th replica game generated by (N, v) has a nonempty e-core,
i.e., there is g vector x" suich that

L, <ulN), @)
(i gy e Ny

Y X,zu(S)-¢lS| forall SCN,. @5
hq)es

Example 3.5. Consider the three-type assignment game with an empty core given in
Example 2.9. In Example 3.1 it is shown that (V;, v,) already has a nonempty core.
Furthermore it is easily verified that

9r if ris even,
U (N;) =
9(r—1)+6 if ris odd,

and, if r is even, then the core of (V,, v,) is nonempty. If 7 is odd, then the vector x”
such that

Xiz=1-1/3r forall(,q)eN,

is feasible. Since 1/3r—0 (r— ), this vector is in the g-core for all sufficiently large
r. Note that Theorem 3.4 states that it is possible to choose r independently of a
particular game in GS(¥, 7).
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Proof of Theorem 3.4. From a result established in the proof of Theorem 3.3 we
have the result that if x is in the core of the balanced cover game (N, D) of
(N, v) e GS*(N, m), then [[/- x is in the core of the balanced cover game (N,, §,) of
the rth replica game (N, v,) of (V, v). Therefore

U.(N)=ro(N) forallr=1. (26)

Let m° be as defined in the proof of Theorem 3.2. Then, if r=4km®+, for some
integers £ and j, we have

6r(Nr) = ﬁkmO(NkmO) + 51(1\6) (27)
For any (N, v) e GS*(V, m) we have

0(V) = max {Z Jsu(S): y is a balanced family with balancing
" weight vector 5} (28)
= v(N)sZEIyésg INJuN) = N2,
For r=mP let k be the largest integer such that km°=<r and let j=r— km°. Given
any (V, v) € GS*(V, n), from Theorem 3.2 and the Bondareva-Shapley theorem,
Um0 (Nimo) = Uemo(Niemo) — for all positive integers 4. (29)
Then it follows from (26), (27), (28), (29) and superadditivity that
U(V,) = GAN,) = Ok (Nimo) + Gi(N;) — [0 (Ngmo) + 1;(N))]
= 0;(N)) = Ui(N)) S JO(N) — julN) = JIN P = m°IN |2, (30)
Now select 7* sufficiently large so that m%N|%/r*<e. Given any (N, v) € GS*(N, 7)
and any r=r*, we have, by (30),
5,(N;) = v (N,) = mO|N |2 < re. 31)
Let x” be in the core of (V,, 0,). Then we define y” by
Yig=Xig—e forall (f,g)eN,
It follows from (31) that this y” satisfies (25) and (26).

Remarks: An extension

Although Wooders’ result (1981) applies to a larger class of sequences of games
than those constructed from given games with sidepayments. Theorem 3.4 suggests
another theorem which, for the sidepayments case, is stronger than the result in
Wooders (1981).

In this extension we will define a more general class of sequences of replica games
than previously considered herein and obtain a result analogous to Theorem 3.4 for
this class.
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Given n, let I denote the n-fold Cartesian product of the non-negative integers,
called the set of profiles. Given any se I and s"€ [ where s’ <s, the profile s’ is called
a subprofile of s.

Let v denote a superadditive function mapping 7 into R, where v(0)=0. Define
N,={(i,¢):i=1,...,nand g=1,...,r} and v,, a function mapping subsets of N, into
R, so that v,(S)=uv(s) when o(§)=s5.%7 Then (N,, v,) is a game and the sequence
(N,, u)7~ ) is called a sequence of replica games. Note that we do not necessarily have
O(V,) = ri(Vy), a property of replica games generated by a given game.

Let G*S denote the set of all sequences of replica games (N, v,);~; normalized so
that for all SCN,, 0=v(S) and lim sup,..v(N,)/r <|N;|. We then have the
following theorem which is stated without proof since the result is an easy extension
of Theorem 3.4 and results in Wooders (1981) applied to sidepayment games.

Theorem 3.4°. Given any £>0 there is an r* such that for any function v defined as

above and for all r=r* the r-th replica game (N,, v,) has a nonempty e-core, i.e.,
there is an x" € R™ satisfying

T xp=uN), L xzo(S)-€lS|  forall SCN.
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